Development of sustainable intermetallic iron-based gap magnets for automotive applications

Casadei, Matteo (2025) Development of sustainable intermetallic iron-based gap magnets for automotive applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 37 Ciclo.
Documenti full-text disponibili:
[thumbnail of PhD_Thesis_Matteo_Casadei.pdf] Documento PDF (English) - Accesso riservato fino a 31 Dicembre 2025 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (46MB) | Contatta l'autore

Abstract

Rare-earth (RE) permanent magnets are of fundamental importance in the transition from fossil fuels towards renewable energy alternatives since they are used in a variety of technological applications, in particular electric motors and generators. In the last decade, more concerns have been raised regarding the supply risks of RE, their volatile prices and environmental impact. The development of a new class of noncritical magnets with intermediate properties, called “gap magnets”, could help reducing the demand for such critical materials. Since iron is extremely abundant, iron-based materials are desirable for this new class of magnets. In this work, we have synthesized and characterized the intrinsic properties of two families of intermetallic iron-based magnetic materials, namely Fe5SiB2 and Fe2P. Optimization of intrinsic properties is a key step for applications, since high Curie temperature allows higher working temperatures and MS and HA are the theoretical upper limits for remanence and coercivity, respectively. Intrinsic properties can be tuned by chemical substitution, thus, we synthesized different samples of Ge, Re and Cr doped Fe5SiB2 and Co and Si co-doped Fe2−xCoxP1−ySiy. Experimental results on the Fe2P system have also been complemented by theoretical DFT calculations in order to estimate magnetic properties such as magnetic moment and magnetocrystalline anisotropy energy. Results show that, despite increased anisotropy, doped Fe5SiB2 system remains a semi-hard magnet, but Fe2−xCoxP1−ySiy has great potential as gap magnet, with theoretical maximumenergy product approaching 200 kJ/m3.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Casadei, Matteo
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Permanent magnets, gap magnets, magnetocrystalline anisotropy
Data di discussione
10 Giugno 2025
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^