Analysis of inflammatory, metabolic and nutritional parameters as prognostic factors in locally advanced cervical cancer

Ferioli, Martina (2025) Analysis of inflammatory, metabolic and nutritional parameters as prognostic factors in locally advanced cervical cancer, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Oncologia, ematologia e patologia, 37 Ciclo. DOI 10.48676/unibo/amsdottorato/11719.
Documenti full-text disponibili:
[thumbnail of tesi per ams.pdf] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (1MB)

Abstract

Multiple predictors have been studied and included in predictive models for locally advanced cervical cancer (LACC) treated with chemoradiation (CRT). Among published predictive models there is often heterogeneity for clinical setting, analyzed outcomes and included predictors, which makes it sometimes difficult to apply the model in the real daily practice. Therefore, there is growing interest in investigating emerging prognostic factors that can provide additional valuable information. To improve the accuracy of outcome predictions and enable treatment customization based on prognostic profiles, we analyzed a large population of patients treated with CRT for LACC in our institution exploring the impact of several parameters on clinical oncological outcomes. We retrospectively analyzed pre-treatment systemic inflammatory indices, nutritional parameters (focusing on sarcopenic obesity), and metabolic parameters such as maximum standardized uptake value (SUVmax). This analysis reported conflicting outcomes that currently do not support the routine use of the valuated parameters. However, sarcopenic obesity emerged as a novel and significant predictor of adverse outcomes and we confirmed the importance of pre-treatment hemoglobin assessment and anemia correction. Advanced statistical methodologies and collaborative efforts are needed to enhance the accuracy of prognostic models. Constructing large databases through cooperative initiatives may provide a robust foundation for the development of reliable predictive models in the future.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Ferioli, Martina
Supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
locally advanced cervical cancer, prognostic parameters
DOI
10.48676/unibo/amsdottorato/11719
Data di discussione
8 Aprile 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^