Photocatalytic production of chemicals and hydrogen from biomass

Maslova, Valeriia (2020) Photocatalytic production of chemicals and hydrogen from biomass, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica, 32 Ciclo. DOI 10.48676/unibo/amsdottorato/9189.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (7MB)

Abstract

In this work, with the aim to tackle several approaches towards sustainable chemistry, two reactions were studied: aerobic photo-oxidation of biomass derived 5-hydroxymethyl-2-furfural (HMF), and anaerobic photo-reforming of glycerol known as a by-product in biodiesel industry, towards production of chemicals and hydrogen. Solar-assisted reactions were performed by means of heterogeneous photocatalysis, in mild conditions such as atmospheric pressure, room temperature and water as a benign solvent. Titanium dioxide (lab-synthesized and commercial) was used as a photo-active catalyst, which surface was modified by introducing different metal (e.g. Au, Au-Cu, Pt) and metal oxide (e.g. NiO) nanoparticles. The prepared materials were characterized by XRD, DRS, BET, TEM, SEM, RAMAN and other techniques. The influence of the support, the size and type of the deposited metal and metal oxide nanoparticles on the photo-catalytic transformation of HMF and glycerol was evaluated. In the case of HMF, the influence of the base addition and the oxygen content on the reaction selectivity was also studied. The effect of the crystalline phase composition and morphology of TiO2 in the glycerol photo-reforming reaction was assessed as well. The surface of the synthesized TiO2 nano-powders was investigated by means of Surface Organometallic Chemistry (SOMC) approach. In particular, the surface was characterized by chemical titration and DRIFT techniques. Furthermore, the SOMC concept allowed preparing of well-dispersed Pt nanoparticles on the TiO2 surface. The photo-catalytic activity of this sample in the glycerol photo-reforming process was tested and compared to that of other Pt-containing catalysts prepared by conventional technics. In view of avoiding the agglomeration and sedimentation of suspended titania powders in water media, thick films of synthesized and commercial TiO2 were deposited on a conductive substrate using screen-printing technique. The prepared electrodes were characterized by profilometry, SEM, XRD, optical, electrochemical and photo-electrochemical methods.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Maslova, Valeriia
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Photocatalysis, TiO2, Biomass, HMF, Glycerol, Hydrogen, Surface chemistry, Thick films
URN:NBN
DOI
10.48676/unibo/amsdottorato/9189
Data di discussione
3 Febbraio 2020
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^