Montobbio, Noemi
(2019)
A metric model of the visual cortex, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Matematica, 32 Ciclo. DOI 10.6092/unibo/amsdottorato/9101.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (10MB)
|
Abstract
The purpose of this thesis is the development of a model for the geometry of the connectivity of the primary visual cortex (V1), by means of functional analysis tools on metric measure spaces. The metric structure proposed to describe the internal connections of V1 implements a notion of correlation between neurons, based on their feature selectivity: this is expressed through a connectivity kernel that is directly induced by the local feature analysis performed by the cells. Such kernel carries a geometrical structure consistent with the well-known properties of long-range horizontal connections in V1, and it is compatible with the perceptual rules synthesized by the concept of association field. Moreover, its construction can be applied to banks of filters not necessarily obtained through a group representation, and possibly only numerically known. This model is then applied to insert biologically inspired connections in deep learning algorithms, to enhance their ability to perform pattern completion in image classification tasks. The main novelty in our approach lies in its ability to recover global geometric properties of the functional architecture of V1 without imposing any parameterization or invariance, but rather by exploiting the local information naturally encoded in the behavior of single V1 neurons in presence of a visual stimulus.
Abstract
The purpose of this thesis is the development of a model for the geometry of the connectivity of the primary visual cortex (V1), by means of functional analysis tools on metric measure spaces. The metric structure proposed to describe the internal connections of V1 implements a notion of correlation between neurons, based on their feature selectivity: this is expressed through a connectivity kernel that is directly induced by the local feature analysis performed by the cells. Such kernel carries a geometrical structure consistent with the well-known properties of long-range horizontal connections in V1, and it is compatible with the perceptual rules synthesized by the concept of association field. Moreover, its construction can be applied to banks of filters not necessarily obtained through a group representation, and possibly only numerically known. This model is then applied to insert biologically inspired connections in deep learning algorithms, to enhance their ability to perform pattern completion in image classification tasks. The main novelty in our approach lies in its ability to recover global geometric properties of the functional architecture of V1 without imposing any parameterization or invariance, but rather by exploiting the local information naturally encoded in the behavior of single V1 neurons in presence of a visual stimulus.
Tipologia del documento
Tesi di dottorato
Autore
Montobbio, Noemi
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Metric spaces, Visual cortex, Connectivity kernel, Diffusion processes, Neurogeometry, Convolutional Neural Networks, Image classification
URN:NBN
DOI
10.6092/unibo/amsdottorato/9101
Data di discussione
25 Ottobre 2019
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Montobbio, Noemi
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Metric spaces, Visual cortex, Connectivity kernel, Diffusion processes, Neurogeometry, Convolutional Neural Networks, Image classification
URN:NBN
DOI
10.6092/unibo/amsdottorato/9101
Data di discussione
25 Ottobre 2019
URI
Statistica sui download
Gestione del documento: