Merlettini, Andrea
(2019)
Micro-nanostructured polymeric materials with specific functionalities for advanced biomedical applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Chimica, 31 Ciclo. DOI 10.6092/unibo/amsdottorato/8834.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB)
|
Abstract
The possibility to tune material properties up to nanoscale represents a great opportunity for the scientific community to obtain devices capable to fulfill the always new medical demands. During this Thesis project micro and nano-structured polymeric materials have been used in the field of drug delivery and tissue engineering. Three different research lines have been explored: (i) the use of polymeric fibrous systems as drug and nanoparticles carriers, (ii) design and evaluation of novel shape memory polymers to produce shape memory scaffolds and (iii) development of smart affinity membranes.
Electrospinning were exploited to obtain polymeric fibrous carriers made of different biodegradable and bioresorbable polymers, such us Poly(lactic-acid) and Poly(lactic-co-glycolic). The obtained biodegradable carriers have been exploited to achieve controllable particles release as well as, to obtain composites capable to deliver two drugs simultaneously with controllable and predictable kinetics.
The possibility to obtain electrospun scaffolds capable of interconverting between a temporary and a permanent shape with the application of a thermal stimulus was explored. In this context, two polymers have been designed to behave as shape memory materials in the range of human body temperature.
Finally smart affinity membranes have been studied. This kind of materials are capable to detect specific molecules or biomacromolecules from complex mixtures, finding useful applications in the biomedical field as diagnostic and therapeutic devices. Smart affinity membranes might be used for example to detect specific kind of cells by exploiting the binding interaction between an antibody and cell receptors. During this thesis project poly(L-lactic acid) electrospun scaffolds conjugated with antibodies have been produced and the efficacy of different functionalization methods to generate the –COOH group necessary to perform the antibodies conjugation was investigated.
Abstract
The possibility to tune material properties up to nanoscale represents a great opportunity for the scientific community to obtain devices capable to fulfill the always new medical demands. During this Thesis project micro and nano-structured polymeric materials have been used in the field of drug delivery and tissue engineering. Three different research lines have been explored: (i) the use of polymeric fibrous systems as drug and nanoparticles carriers, (ii) design and evaluation of novel shape memory polymers to produce shape memory scaffolds and (iii) development of smart affinity membranes.
Electrospinning were exploited to obtain polymeric fibrous carriers made of different biodegradable and bioresorbable polymers, such us Poly(lactic-acid) and Poly(lactic-co-glycolic). The obtained biodegradable carriers have been exploited to achieve controllable particles release as well as, to obtain composites capable to deliver two drugs simultaneously with controllable and predictable kinetics.
The possibility to obtain electrospun scaffolds capable of interconverting between a temporary and a permanent shape with the application of a thermal stimulus was explored. In this context, two polymers have been designed to behave as shape memory materials in the range of human body temperature.
Finally smart affinity membranes have been studied. This kind of materials are capable to detect specific molecules or biomacromolecules from complex mixtures, finding useful applications in the biomedical field as diagnostic and therapeutic devices. Smart affinity membranes might be used for example to detect specific kind of cells by exploiting the binding interaction between an antibody and cell receptors. During this thesis project poly(L-lactic acid) electrospun scaffolds conjugated with antibodies have been produced and the efficacy of different functionalization methods to generate the –COOH group necessary to perform the antibodies conjugation was investigated.
Tipologia del documento
Tesi di dottorato
Autore
Merlettini, Andrea
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
31
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
polymer, shape memory, biomedical, electrospinning, drug delivery
URN:NBN
DOI
10.6092/unibo/amsdottorato/8834
Data di discussione
28 Marzo 2019
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Merlettini, Andrea
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
31
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
polymer, shape memory, biomedical, electrospinning, drug delivery
URN:NBN
DOI
10.6092/unibo/amsdottorato/8834
Data di discussione
28 Marzo 2019
URI
Statistica sui download
Gestione del documento: