Graziani, Simone
(2018)
Enabling Ubiquitous OLAP Analyses, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Computer science and engineering, 30 Ciclo. DOI 10.6092/unibo/amsdottorato/8593.
Documenti full-text disponibili:
Anteprima |
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (10MB)
| Anteprima
|
Abstract
An OLAP analysis session is carried out as a sequence of OLAP operations applied to multidimensional cubes. At each step of a session, an operation is applied to the result of the previous step in an incremental fashion. Due to its simplicity and flexibility, OLAP is the most adopted paradigm used to explore the data stored in data warehouses. With the goal of expanding the fruition of OLAP analyses, in this thesis we touch several critical topics. We first present our contributions to deal with data extractions from service-oriented sources, which are nowadays used to provide access to many databases and analytic platforms. By addressing data extraction from these sources we make a step towards the integration of external databases into the data warehouse, thus providing richer data that can be analyzed through OLAP sessions. The second topic that we study is that of visualization of multidimensional data, which we exploit to enable OLAP on devices with limited screen and bandwidth capabilities (i.e., mobile devices). Finally, we propose solutions to obtain multidimensional schemata from unconventional sources (e.g., sensor networks), which are crucial to perform multidimensional analyses.
Abstract
An OLAP analysis session is carried out as a sequence of OLAP operations applied to multidimensional cubes. At each step of a session, an operation is applied to the result of the previous step in an incremental fashion. Due to its simplicity and flexibility, OLAP is the most adopted paradigm used to explore the data stored in data warehouses. With the goal of expanding the fruition of OLAP analyses, in this thesis we touch several critical topics. We first present our contributions to deal with data extractions from service-oriented sources, which are nowadays used to provide access to many databases and analytic platforms. By addressing data extraction from these sources we make a step towards the integration of external databases into the data warehouse, thus providing richer data that can be analyzed through OLAP sessions. The second topic that we study is that of visualization of multidimensional data, which we exploit to enable OLAP on devices with limited screen and bandwidth capabilities (i.e., mobile devices). Finally, we propose solutions to obtain multidimensional schemata from unconventional sources (e.g., sensor networks), which are crucial to perform multidimensional analyses.
Tipologia del documento
Tesi di dottorato
Autore
Graziani, Simone
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Business Intelligence, OLAP, OLAM, Data Warehouse
URN:NBN
DOI
10.6092/unibo/amsdottorato/8593
Data di discussione
20 Aprile 2018
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Graziani, Simone
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Business Intelligence, OLAP, OLAM, Data Warehouse
URN:NBN
DOI
10.6092/unibo/amsdottorato/8593
Data di discussione
20 Aprile 2018
URI
Statistica sui download
Gestione del documento: