Oxidative Stress and Friedreich’s Ataxia

Bolotta, Alessandra (2014) Oxidative Stress and Friedreich’s Ataxia, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze farmacologiche e tossicologiche, dello sviluppo e del movimento umano, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6282.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (3MB) | Anteprima

Abstract

Friedreich’s Ataxia (FRDA) is a neurodegenerative disorder caused by a deficiency of the protein frataxin and characterized by oxidative stress. The first aim of my research project was to analyze the effects of tocotrienol in FRDA patients. Patients received for 2 months a low dose of tocotrienol. A number of biochemical parameters related to oxidative stress were studied. We consistently showed that taking for 2 months a low dose of tocotrienol led to the decrease of oxidative stress indexes in FRDA patients. Also, this study provides a suitable model to investigate the efficacy of natural compounds to counteract the oxidative stress in FRDA. Furthermore, we investigated whether the tocotrienol was able to modulate the expression of the frataxin isoforms (FXN-1, FXN -2, FXN-3) in FRDA patients. We demonstrated that tocotrienol leads to a specific and significant increase of FXN-3 expression. As no structural and functional details were available for FNX-2 and FXN-3, 3D-models were built. FXN-1, the canonical isoform, was then docked on the human iron-sulphur complex and functional interactions were computed; when FXN-1 was replaced by FXN-2 or FNX-3, we found that the interactions were maintained, thus suggesting a possible biological role for both isoforms. The second aim of my research project was to investigate the role of a single nucleotide polymorphism (SNP) in the protein Sirtuin 6 in FRDA patients. In fact, it was known that those who harbour a SNP (Asn46/Ser46) in the gene enconding Sirt6 show a better outcome those individuals who are homozygous for the Asn 46 allele. We found that fibroblasts and iPSC-derived neurons from FRDA patients harboring the SNP (Asn46/Ser46) have a reduced amount of Sirt6 protein compared to cells from individuals who are homozygous for the prevalent Asn allele. Our studies provide new information on the role of Sirtuins in FRDA pathogenesis.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Bolotta, Alessandra
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Ciclo
26
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
FRDA Oxidative Stress iPSCs
URN:NBN
DOI
10.6092/unibo/amsdottorato/6282
Data di discussione
8 Aprile 2014
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^