Documenti full-text disponibili:
Abstract
Staphylococcus aureus is a Gram positive pathogen that causes various human infections and represents one of the most common causes of bacteremia. S. aureus is able to invade a variety of non-professional phagocytes and that can survive engulfment by neutrophils, producing both secreted and surface components that compromise innate immune responses. In the contest of our study we evaluated the functional activity of vaccine specific antibodies by opsonophagocytosis killing assay (OPKA). Interestingly a low level of killing of the staphylococcal cells has been observed. In the meanwhile intracellular survival studies showed that S. aureus persisted inside phagocytes for several hours until a burst of growth after 5 hours in the supernatant. These data suggest that the strong ability of S. aureus to survive in the phagocytes could be the cause of the low killing measured by OPKA. Moreover parallel studies on HL-60 cells infected with S. aureus done by using transmission electron microscopy (TEM) interestingly showed that staphylococcal cells have an intracellular localization (endosomal vacuoles) and that they are able not only to maintain the integrity of their membrane but also to replicate inside vacuolar compartments. Finally in order to generate 3D volume of whole bacteria when present inside neutrophilic vacuoles, we collected a series of tomographic two-dimensional (2D) images by using a transmission electron microscope, generating 5 different tomograms. The three-dimensional reconstruction reveals the presence of intact bacteria within neutrophil vacuoles. The S. aureus membrane appears completely undamaged and integral in contrast with the physiological process of phagosytosis through vacuoles progression. S. aureus bacteria show a homogenous distribution of the density in all the three dimensions (X, Y, Z). All these evidences definitely explain the ability of the pathogen to survive inside the endosomal vacuoles and should be the cause of the low killing level.
Abstract
Staphylococcus aureus is a Gram positive pathogen that causes various human infections and represents one of the most common causes of bacteremia. S. aureus is able to invade a variety of non-professional phagocytes and that can survive engulfment by neutrophils, producing both secreted and surface components that compromise innate immune responses. In the contest of our study we evaluated the functional activity of vaccine specific antibodies by opsonophagocytosis killing assay (OPKA). Interestingly a low level of killing of the staphylococcal cells has been observed. In the meanwhile intracellular survival studies showed that S. aureus persisted inside phagocytes for several hours until a burst of growth after 5 hours in the supernatant. These data suggest that the strong ability of S. aureus to survive in the phagocytes could be the cause of the low killing measured by OPKA. Moreover parallel studies on HL-60 cells infected with S. aureus done by using transmission electron microscopy (TEM) interestingly showed that staphylococcal cells have an intracellular localization (endosomal vacuoles) and that they are able not only to maintain the integrity of their membrane but also to replicate inside vacuolar compartments. Finally in order to generate 3D volume of whole bacteria when present inside neutrophilic vacuoles, we collected a series of tomographic two-dimensional (2D) images by using a transmission electron microscope, generating 5 different tomograms. The three-dimensional reconstruction reveals the presence of intact bacteria within neutrophil vacuoles. The S. aureus membrane appears completely undamaged and integral in contrast with the physiological process of phagosytosis through vacuoles progression. S. aureus bacteria show a homogenous distribution of the density in all the three dimensions (X, Y, Z). All these evidences definitely explain the ability of the pathogen to survive inside the endosomal vacuoles and should be the cause of the low killing level.
Tipologia del documento
Tesi di dottorato
Autore
Nosari, Sarah
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Staphylococcus aureus; Opsonophagocytosis killing assay; Scanning Electron Microscopy; Transmission Electron Microscopy; Transmission Electron Tomography;
URN:NBN
DOI
10.6092/unibo/amsdottorato/5762
Data di discussione
22 Aprile 2013
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Nosari, Sarah
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Staphylococcus aureus; Opsonophagocytosis killing assay; Scanning Electron Microscopy; Transmission Electron Microscopy; Transmission Electron Tomography;
URN:NBN
DOI
10.6092/unibo/amsdottorato/5762
Data di discussione
22 Aprile 2013
URI
Statistica sui download
Gestione del documento: