The bursting behavior of gas slugs: laboratory and analytical insights into Strombolian volcanic eruptions.

Del Bello, Elisabetta (2012) The bursting behavior of gas slugs: laboratory and analytical insights into Strombolian volcanic eruptions., [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Geofisica, 24 Ciclo. DOI 10.6092/unibo/amsdottorato/4263.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (9MB) | Anteprima

Abstract

The aim of this thesis is to study how explosive behavior and geophysical signals in a volcanic conduit are related to the development of overpressure in slug-driven eruptions. A first suite of laboratory experiments of gas slugs ascending in analogue conduits was performed. Slugs ascended into a range of analogue liquids and conduit diameters to allow proper scaling to the natural volcanoes. The geometrical variation of the slug in response to the explored variables was parameterised. Volume of gas slug and rheology of the liquid phase revealed the key parameters in controlling slug overpressure at bursting. Founded on these results, a theoretical model to calculate burst overpressure for slug-driven eruptions was developed. The dimensionless approach adopted allowed to apply the model to predict bursting pressure of slugs at Stromboli. Comparison of predicted values with measured data from Stromboli volcano showed that the model can explain the entire spectrum of observed eruptive styles at Stromboli – from low-energy puffing, through normal Strombolian eruptions, up to paroxysmal explosions – as manifestations of a single underlying physical process. Finally, another suite of laboratory experiments was performed to observe oscillatory pressure and forces variations generated during the expansion and bursting of gas slugs ascending in a conduit. Two end-member boundary conditions were imposed at the base of the pipe, simulating slug ascent in closed base (zero magma flux) and open base (constant flux) conduit. At the top of the pipe, a range of boundary conditions that are relevant at a volcanic vent were imposed, going from open to plugged vent. The results obtained illustrate that a change in boundary conditions in the conduit concur to affect the dynamic of slug expansion and burst: an upward flux at the base of the conduit attenuates the magnitude of the pressure transients, while a rheological stiffening in the top-most region of conduit changes dramatically the magnitude of the observed pressure transients, favoring a sudden, and more energetic pressure release into the overlying atmosphere. Finally, a discussion on the implication of changing boundary on the oscillatory processes generated at the volcanic scale is also given.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Del Bello, Elisabetta
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze matematiche, fisiche ed astronomiche
Ciclo
24
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Gas slug Taylor bubble Basaltic volcanoes Gas overpressure Stromboli Falling film
URN:NBN
DOI
10.6092/unibo/amsdottorato/4263
Data di discussione
16 Marzo 2012
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^