Evaluation of glycoconjugate antigens as vaccine candidates against group A Streptococcus and human immunodeficiency virus infections

Kabanova, Anna (2010) Evaluation of glycoconjugate antigens as vaccine candidates against group A Streptococcus and human immunodeficiency virus infections, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Biologia cellulare, molecolare e industriale/cellular, molecular and industrial biology: progetto n. 2 Biologia funzionale dei sistemi cellulari e molecolari, 22 Ciclo. DOI 10.6092/unibo/amsdottorato/2406.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (6MB) | Anteprima

Abstract

This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Kabanova, Anna
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Ciclo
22
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
glycoconjugate vaccine group A Streptococcus HIV
URN:NBN
DOI
10.6092/unibo/amsdottorato/2406
Data di discussione
29 Aprile 2010
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^