Toward practical depth estimation based on deep learning

Zhang, Youmin (2024) Toward practical depth estimation based on deep learning, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Computer science and engineering, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/11525.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Creative Commons Attribution Non-commercial No Derivatives 4.0 (CC BY-NC-ND 4.0) .
Download (56MB)

Abstract

Depth estimation from images is a classic computer vision problem that has occupied researchers for decades. Obtaining dense and accurate depth estimation is pivotal to effectively address higher-level tasks in computer vision such as autonomous driving, 3D reconstruction, and robotics. Therefore, with a focus on diverse depth estimation setups, this thesis addresses significant challenges that impact methodologies for inferring depth from images or obtaining completed depth from hardware sensors. The goal is to develop precise and efficient frameworks tailored for accurate Simultaneous Localization And Mapping (SLAM) in challenging environments.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Zhang, Youmin
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Depth Sensing, SLAM, 3D Reconstruction, Stereo Matching, Depth Superresolution, Depth Completion, Unsupervised Monocular Depth Estimation
URN:NBN
DOI
10.48676/unibo/amsdottorato/11525
Data di discussione
24 Giugno 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^