PDEs for neural networks with internal states

Ambrogi, Elena (2024) PDEs for neural networks with internal states, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Matematica, 37 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 3 Settembre 2026 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (7MB) | Contatta l'autore

Abstract

Nel contesto delle neuroscienze matematiche, il modello di Integrate and Fire gode indubbiamente di grande fama e di una vasta letteratura. Eppure, la sua peculiare struttura matematica rende lo studio di questa equazione stimolante e sempre aperto. Il modello classico consiste in un'equazione che descrive la dinamica di una rete di neuroni in funzione del potenziale di membrana delle cellule. Una rete può essere interconnessa con legami eccitatori o inibitori o disconnessa, nel qual caso l'equazione sarà lineare. Noi siamo interessati al comportamento asintotico di tali reti nel caso lineare, dove strumenti matematici come l'entropia relativa, il metodo integrale e la teoria di Harris si sono rivelati utili per dimostrare la convergenza verso lo stato stazionario. Nella prima estensione del modello classico di Integrate and Fire che proponiamo, sostituiamo la condizione al bordo puntuale con un termine non locale, inserendo un parametro di casualità. Per questo nuovo sistema, dimostriamo la convergenza allo stato stazionario tramite la teoria di Harris e dell'entropia relativa con disuguaglianza di Poincaré indipendente dal parametro casuale. Inoltre, studiamo la convergenza asintotica delle soluzioni di questo modello a quelle del classico. Nella seconda estensione ci occupiamo di incorporare una variabile per la corrente di adattazione. In primo luogo, studiamo la dinamica di quest'ultima variabile sola, analizzando la regolarità della soluzione stazionaria in dipendenza dai parametri e studiando il comportamento asintotico tramite i differenti metodi dell'entropia relativa con argomento di compattezza e metodo integrale. Indaghiamo poi la dinamica del modello bidimensionale tramite delle simulazioni numeriche e lo confrontiamo con un'equazione di Fokker-Planck similare con diffusione parziale e nonlinearità. Alcune simulazioni numeriche accompagnano lo studio di ogni modello analizzato, permettendo così di supportarne o anticiparne i risultati teorici.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Ambrogi, Elena
Supervisore
Dottorato di ricerca
Ciclo
37
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
partial differential equations, asymptotic behaviour, relative entropy, Harris theory, Poincaré inequality, mathematical neuroscience
Data di discussione
5 Giugno 2024
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^