Decoding Agc1 deficiency: bioinformatics approaches to unveil the functional implications of Slc25a12 on the transcriptome and epigenome

Balboni, Nicola (2024) Decoding Agc1 deficiency: bioinformatics approaches to unveil the functional implications of Slc25a12 on the transcriptome and epigenome, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Biologia cellulare e molecolare, 36 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 1 Gennaio 2026 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (4MB) | Contatta l'autore

Abstract

In the brain, mutations in SLC25A12 gene encoding AGC1 cause an ultra-rare genetic disease reported as a developmental and epileptic encephalopathy associated with global cerebral hypomyelination. Symptoms of the disease include diffused hypomyelination, arrested psychomotor development, severe hypotonia, seizures and are common to other neurological and developmental disorders. Amongst the biological components believed to be most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination. Recent studies (Poeta et al, 2022) have also shown how altered levels of transcription factors and epigenetic modifications greatly affect proliferation and differentiation in oligodendrocyte precursor cells (OPCs). In this study we explore the transcriptomic landscape of Agc1 in two different system models: OPCs silenced for Agc1 and iPSCs from human patients differentiated to neural progenitors. Analyses range from differential expression analysis, alternative splicing, master regulator analysis. ATAC-seq results on OPCs were integrated with results from RNA-Seq to assess the activity of a TF based on the accessibility data from its putative targets, which allows to integrate RNA-Seq data to infer their role as either activators or repressors. All the findings for this model were also integrated with early data from iPSCs RNA-seq results, looking for possible commonalities between the two different system models, among which we find a downregulation in genes encoding for SREBP, a transcription factor regulating fatty acids biosynthesis, a key process for myelination which could explain the hypomyelinated state of patients. We also find that in both systems cells tend to form more neurites, likely losing their ability to differentiate, considering their progenitor state. We also report several alterations in the chromatin state of cells lacking Agc1, which confirms the hypothesis for which Agc1 is not a disease restricted only to metabolic alterations in the cells, but there is a profound shift of the regulatory state of these cells.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Balboni, Nicola
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Agc1 deficiency, rare disease, Transcriptomics, Epigenomics, gene networks, bioinformatics, childhood rare disease, oligodendrocyte precursor cells, stem cells, ATAC seq, RNA seq
URN:NBN
Data di discussione
8 Aprile 2024
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^