Inside standard and hyperspectral low-dose CT variational imaging: parameter identification and material decomposition

Bevilacqua, Francesca (2024) Inside standard and hyperspectral low-dose CT variational imaging: parameter identification and material decomposition, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Matematica, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/11252.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (37MB)

Abstract

The main contribution of this thesis is the proposal of novel strategies for the selection of parameters arising in variational models employed for the solution of inverse problems with data corrupted by Poisson noise. In light of the importance of using a significantly small dose of X-rays in Computed Tomography (CT), and its need of using advanced techniques to reconstruct the objects due to the high level of noise in the data, we will focus on parameter selection principles especially for low photon-counts, i.e. low dose Computed Tomography. For completeness, since such strategies can be adopted for various scenarios where the noise in the data typically follows a Poisson distribution, we will show their performance for other applications such as photography, astronomical and microscopy imaging. More specifically, in the first part of the thesis we will focus on low dose CT data corrupted only by Poisson noise by extending automatic selection strategies designed for Gaussian noise and improving the few existing ones for Poisson. The new approaches will show to outperform the state-of-the-art competitors especially in the low-counting regime. Moreover, we will propose to extend the best performing strategy to the hard task of multi-parameter selection showing promising results. Finally, in the last part of the thesis, we will introduce the problem of material decomposition for hyperspectral CT, which data encodes information of how different materials in the target attenuate X-rays in different ways according to the specific energy. We will conduct a preliminary comparative study to obtain accurate material decomposition starting from few noisy projection data.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Bevilacqua, Francesca
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Computed Tomography, Poisson Noise, Parameter Identification, Low-Dose CT, Hyperspectral Tomography, Material Decomposition
URN:NBN
DOI
10.48676/unibo/amsdottorato/11252
Data di discussione
22 Marzo 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^