Shahpari, Armin
(2023)
Investigation of plant genetic-microbiome interactions in different plant species, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze e tecnologie agrarie, ambientali e alimentari, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10862.
Documenti full-text disponibili:
Abstract
The rhizosphere, i.e. the soil surrounding the plant roots, and endosphere, i.e. the microbial communities within the plant organs harbors microbes known to influence root and plant physiological processes. An important question is to what extent plant species, genotypes and environmental conditions affect bacterial and fungal communities.
The objectives of the first research study were to unravel and compare the rhizospheric microbiota of grape in two independent vineyards using 16S and ITS amplicon sequencing, evaluate location and varietal effects, and test the correlation between bioavailable copper levels and other soil parameters with microbiota composition and diversity. Our results showed that the microbial alpha diversity based on Shannon index differed significantly between vineyards while it did not differ between two grape cultivars.
In the second study, we were focusing on different wheat species and genotypes such as Bread Wheat, Wild Emmer Wheat, Domesticated Emmer Wheat, Durum Wheat Landraces, Durum Wheat cultivars, T. monococcum and triticale in two fields located in Bologna and Foggia. The objectives of this research experiment were to elucidate and compare the rhizospheric and endophytic microbiota of 30 diverse wheat genotypes in two different fields using 16S amplicon sequencing. Our results showed that the microbial alpha diversity based on Shannon index differed significantly between fields of Bologna and Foggia, in which Bologna had a higher diversity in respect to Foggia for both rhizospheric and endophytic communities. Using Shannon index there was significant differences, for instance, between Durum Emmer Wheat and Wild Emmer Wheat in Bologna, and between Bread Wheat and Durum Wheat Landraces in Foggia. Our results contribute to understand the role of wheat species and genotype and the filed management on the root-microbe-soil interactions in the perspective of understanding their impact on crop systems sustainability.
Abstract
The rhizosphere, i.e. the soil surrounding the plant roots, and endosphere, i.e. the microbial communities within the plant organs harbors microbes known to influence root and plant physiological processes. An important question is to what extent plant species, genotypes and environmental conditions affect bacterial and fungal communities.
The objectives of the first research study were to unravel and compare the rhizospheric microbiota of grape in two independent vineyards using 16S and ITS amplicon sequencing, evaluate location and varietal effects, and test the correlation between bioavailable copper levels and other soil parameters with microbiota composition and diversity. Our results showed that the microbial alpha diversity based on Shannon index differed significantly between vineyards while it did not differ between two grape cultivars.
In the second study, we were focusing on different wheat species and genotypes such as Bread Wheat, Wild Emmer Wheat, Domesticated Emmer Wheat, Durum Wheat Landraces, Durum Wheat cultivars, T. monococcum and triticale in two fields located in Bologna and Foggia. The objectives of this research experiment were to elucidate and compare the rhizospheric and endophytic microbiota of 30 diverse wheat genotypes in two different fields using 16S amplicon sequencing. Our results showed that the microbial alpha diversity based on Shannon index differed significantly between fields of Bologna and Foggia, in which Bologna had a higher diversity in respect to Foggia for both rhizospheric and endophytic communities. Using Shannon index there was significant differences, for instance, between Durum Emmer Wheat and Wild Emmer Wheat in Bologna, and between Bread Wheat and Durum Wheat Landraces in Foggia. Our results contribute to understand the role of wheat species and genotype and the filed management on the root-microbe-soil interactions in the perspective of understanding their impact on crop systems sustainability.
Tipologia del documento
Tesi di dottorato
Autore
Shahpari, Armin
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Wheat, grapevine, microbiome, 16S rRNA, ITS, metagenomics
URN:NBN
DOI
10.48676/unibo/amsdottorato/10862
Data di discussione
28 Giugno 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Shahpari, Armin
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Wheat, grapevine, microbiome, 16S rRNA, ITS, metagenomics
URN:NBN
DOI
10.48676/unibo/amsdottorato/10862
Data di discussione
28 Giugno 2023
URI
Statistica sui download
Gestione del documento: