Pucci, Michela
(2021)
Impact of Glycosyltransferases on the Phenotype, Signaling and Transcriptome of Colorectal Cancer Cell Lines.
Focus on the role of glycosyltransferases B4GALNT2 and FUT6 and their cognate Sda and sLex antigens, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Oncologia, ematologia e patologia, 33 Ciclo. DOI 10.48676/unibo/amsdottorato/9907.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB)
|
Abstract
In colorectal cancer (CRC), two carbohydrate structures are modulated: the Sda antigen, synthesized by B4GALNT2, and sLex antigen, mainly synthesized by FUT6. sLex antigen is often overexpressed and associated with worse prognosis; B4GALNT2/Sda antigen are dramatically downregulated but their role in tumor progression and development is not fully clear.
TCGA interrogation revealed a dramatic down-regulation of B4GALNT2 mRNA in CRC, compared with normal samples. Patients with higher B4GALNT2 mRNA in CRC samples displayed longer survival. Yet, methylation and miRNA expression play a relevant role in B4GALNT2 downregulation in CRC. To clarify the mechanisms linking the B4GALNT2/Sda expression level to CRC phenotype, three different CRC cell lines were modified to express B4GALNT2: LS174T cell line, in which the constitutively expressed sLex antigen was partially replaced by Sda; SW480/SW620 pair, both lacking Sda and sLex antigens.
In LS174T cells, the expression of B4GALNT2 reduced the ability to grow in poor adherence conditions and the expression of ALDH, a stemness marker. In SW620 cells, B4GALNT2 expression impacted on the main aspects of malignancy. In SW480 cells the expression of B4GALNT2 left unchanged the proliferation rate and the wound healing ability.
To clarify the impact of sLex on CRC phenotype, the SW480/SW620 pair were permanently transfected to express FUT6 cDNA. In both cell lines, overexpression of FUT6/sLex boosted the clonogenic ability in standard growth conditions. Conversely, the growth in soft agar and the capacity to close a wound were enhanced only in SW620 cells.
Transcriptome analysis of CRC cell lines transfected either with B4GALNT2 or FUT6 showed a relevant impact of both enzymes on gene expression modulation.
Overall, current data may help to personalize therapies for CRC patients according to the B4GALNT2 levels and support a causal effect of this glycosyltransferase on reducing malignancy independently of sLex inhibition.
Abstract
In colorectal cancer (CRC), two carbohydrate structures are modulated: the Sda antigen, synthesized by B4GALNT2, and sLex antigen, mainly synthesized by FUT6. sLex antigen is often overexpressed and associated with worse prognosis; B4GALNT2/Sda antigen are dramatically downregulated but their role in tumor progression and development is not fully clear.
TCGA interrogation revealed a dramatic down-regulation of B4GALNT2 mRNA in CRC, compared with normal samples. Patients with higher B4GALNT2 mRNA in CRC samples displayed longer survival. Yet, methylation and miRNA expression play a relevant role in B4GALNT2 downregulation in CRC. To clarify the mechanisms linking the B4GALNT2/Sda expression level to CRC phenotype, three different CRC cell lines were modified to express B4GALNT2: LS174T cell line, in which the constitutively expressed sLex antigen was partially replaced by Sda; SW480/SW620 pair, both lacking Sda and sLex antigens.
In LS174T cells, the expression of B4GALNT2 reduced the ability to grow in poor adherence conditions and the expression of ALDH, a stemness marker. In SW620 cells, B4GALNT2 expression impacted on the main aspects of malignancy. In SW480 cells the expression of B4GALNT2 left unchanged the proliferation rate and the wound healing ability.
To clarify the impact of sLex on CRC phenotype, the SW480/SW620 pair were permanently transfected to express FUT6 cDNA. In both cell lines, overexpression of FUT6/sLex boosted the clonogenic ability in standard growth conditions. Conversely, the growth in soft agar and the capacity to close a wound were enhanced only in SW620 cells.
Transcriptome analysis of CRC cell lines transfected either with B4GALNT2 or FUT6 showed a relevant impact of both enzymes on gene expression modulation.
Overall, current data may help to personalize therapies for CRC patients according to the B4GALNT2 levels and support a causal effect of this glycosyltransferase on reducing malignancy independently of sLex inhibition.
Tipologia del documento
Tesi di dottorato
Autore
Pucci, Michela
Supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
CRC, glycosylation, gene expression, stemness
URN:NBN
DOI
10.48676/unibo/amsdottorato/9907
Data di discussione
22 Ottobre 2021
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Pucci, Michela
Supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
CRC, glycosylation, gene expression, stemness
URN:NBN
DOI
10.48676/unibo/amsdottorato/9907
Data di discussione
22 Ottobre 2021
URI
Statistica sui download
Gestione del documento: