Gardini, Aldo
(2020)
Bayesian inference for quantiles and conditional means in log-normal models, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze statistiche, 32 Ciclo. DOI 10.6092/unibo/amsdottorato/9349.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (4MB)
|
Abstract
The main topic of the thesis is the proper execution of a Bayesian inference if log-normality is assumed for data. In fact, it is known that a particular care is required in this context, since the most common prior distributions for the variance in log scale produce posteriors for the log-normal mean which do not have finite moments. Hence, classical summary measures of the posterior such as expectation and variance cannot be computed for these distributions.
The thesis is aimed at proposing solutions to carry out Bayesian inference inside a mathematically coherent framework, focusing on the estimation of two quantities: log-normal quantiles (first part of the thesis) and conditioned expectations under a general log-normal linear mixed model (second part of the thesis). Moreover, in the latter section, a further investigation on a unit-level small area models is presented, considering the problem of estimating the well-known log-transformed Battese, Harter and Fuller model in the hierarchical Bayes context.
Once the existence conditions for the moments of the target functionals posterior are proved, new strategies to specify prior distributions are suggested. Then, the frequentist properties of the deduced Bayes estimators and credible intervals are evaluated through accurate simulations studies: it resulted that the proposed methodologies improve the Bayesian estimates under naive prior settings and are satisfactorily competitive with the frequentist solutions available in the literature.
To conclude, applications of the developed inferential strategies are illustrated on real datasets.
The work is completed by the implementation of an R package named BayesLN which allows the users to easily carry out Bayesian inference for log-normal data.
Abstract
The main topic of the thesis is the proper execution of a Bayesian inference if log-normality is assumed for data. In fact, it is known that a particular care is required in this context, since the most common prior distributions for the variance in log scale produce posteriors for the log-normal mean which do not have finite moments. Hence, classical summary measures of the posterior such as expectation and variance cannot be computed for these distributions.
The thesis is aimed at proposing solutions to carry out Bayesian inference inside a mathematically coherent framework, focusing on the estimation of two quantities: log-normal quantiles (first part of the thesis) and conditioned expectations under a general log-normal linear mixed model (second part of the thesis). Moreover, in the latter section, a further investigation on a unit-level small area models is presented, considering the problem of estimating the well-known log-transformed Battese, Harter and Fuller model in the hierarchical Bayes context.
Once the existence conditions for the moments of the target functionals posterior are proved, new strategies to specify prior distributions are suggested. Then, the frequentist properties of the deduced Bayes estimators and credible intervals are evaluated through accurate simulations studies: it resulted that the proposed methodologies improve the Bayesian estimates under naive prior settings and are satisfactorily competitive with the frequentist solutions available in the literature.
To conclude, applications of the developed inferential strategies are illustrated on real datasets.
The work is completed by the implementation of an R package named BayesLN which allows the users to easily carry out Bayesian inference for log-normal data.
Tipologia del documento
Tesi di dottorato
Autore
Gardini, Aldo
Supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Markov Chain Monte Carlo, Generalized Inverse Gaussian, Log-Normal Mixed Models, Quantile Estimation
URN:NBN
DOI
10.6092/unibo/amsdottorato/9349
Data di discussione
2 Aprile 2020
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Gardini, Aldo
Supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Markov Chain Monte Carlo, Generalized Inverse Gaussian, Log-Normal Mixed Models, Quantile Estimation
URN:NBN
DOI
10.6092/unibo/amsdottorato/9349
Data di discussione
2 Aprile 2020
URI
Statistica sui download
Gestione del documento: