Development of computational methods for biological complexity

Bovo, Samuele (2018) Development of computational methods for biological complexity, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze biotecnologiche e farmaceutiche, 30 Ciclo. DOI 10.6092/unibo/amsdottorato/8366.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (7MB) | Anteprima

Abstract

The cell is a complex system. In this system, the different layers of biological information establish complex links converging in the space of functions; processes and pathways talk each other defining cell types and organs. In the space of biological functions, this lead to a higher order of “emergence”, greater than the sum of the single parts, defining a biological entity a complex system. The introduction of omic techniques has made possible to investigate the complexity of each biological layer. With the different technologies we can have a near complete readout of the different biomolecules. However, it is only through data integration that we can let emerge and understand biological complexity. Given the complexity of the problem, we are far from having fully understood and developed exhaustive computational methods. Thus, this make urgent the exploration of biological complexity through the implementation of more powerful tools relying on new data and hypotheses. To this aim, Bioinformatics and Computational Biology play determinant roles. The present thesis describes computational methods aimed at deciphering biological complexity starting from genomic, interactomic, metabolomic and functional data. The first part describes NET-GE, a network-based gene enrichment tool aimed at extracting biological functions and processes of a set of gene/proteins related to a phenotype. NET-GE exploits the information stored in biological networks to better define the biological events occurring at gene/protein level. The first part describes also eDGAR, a database collecting and organizing gene-disease associations. The second part deals with metabolomics. I describe a new way to perform metabolite enrichment analysis: the metabolome is explored by exploiting the features of an interactome. The third part describes the methods and results obtained in the CAGI experiment, a community experiment aimed at assessing computational methods used to predict the impact of genomic variation on a phenotype.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Bovo, Samuele
Supervisore
Dottorato di ricerca
Ciclo
30
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Biological Networks, Gene enrichment analysis, Bioinformatics, Genomics, Metabolomics
URN:NBN
DOI
10.6092/unibo/amsdottorato/8366
Data di discussione
3 Maggio 2018
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^