Monti, Alice
(2017)
Essays in the Econometric Analysis of Systemic Risk Measures, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze statistiche, 29 Ciclo. DOI 10.6092/unibo/amsdottorato/7782.
Documenti full-text disponibili:
Anteprima |
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (3MB)
| Anteprima
|
Abstract
This thesis aims at the study of systemic risk measurement, which became crucial after the 2007 − 2009 financial crisis. The objective of the thesis is twofold: (i) we address the issue of assessing the accuracy of systemic risk measures, (ii) we investigate the role of the long-range dependence in systemic risk forecasting, under both methodological and empirical perspectives. From the methodological point of view, we propose two appropriate loss functions, the Tail Tick Loss function and the Tail Mean Square Error, specifically designed to evaluate the CoVaR and MES accuracy, respectively. Moreover, we introduce a comprehensive model called Asymmetric-Component-GARCH (ACGARCH), which is able to capture both the leverage effect and long-range dependence. An empirical analysis of different bivariate volatility models to the daily returns of 91 US financial institutions in the period 2000 − 2012 confirms the need of employing appropriate loss functions to evaluate systemic risk accuracy and to discriminate among different competing models. Moreover, empirical results encourage the usage of the ACGARCH model in the systemic risk framework.
Abstract
This thesis aims at the study of systemic risk measurement, which became crucial after the 2007 − 2009 financial crisis. The objective of the thesis is twofold: (i) we address the issue of assessing the accuracy of systemic risk measures, (ii) we investigate the role of the long-range dependence in systemic risk forecasting, under both methodological and empirical perspectives. From the methodological point of view, we propose two appropriate loss functions, the Tail Tick Loss function and the Tail Mean Square Error, specifically designed to evaluate the CoVaR and MES accuracy, respectively. Moreover, we introduce a comprehensive model called Asymmetric-Component-GARCH (ACGARCH), which is able to capture both the leverage effect and long-range dependence. An empirical analysis of different bivariate volatility models to the daily returns of 91 US financial institutions in the period 2000 − 2012 confirms the need of employing appropriate loss functions to evaluate systemic risk accuracy and to discriminate among different competing models. Moreover, empirical results encourage the usage of the ACGARCH model in the systemic risk framework.
Tipologia del documento
Tesi di dottorato
Autore
Monti, Alice
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
29
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Systemic Risk, Conditional Value-at-Risk, Marginal Expected Shortfall, DCC model, GARCH, Long-range dependence, Forecasting accuracy, Forecast evaluation, Tick Loss, Loss functions
URN:NBN
DOI
10.6092/unibo/amsdottorato/7782
Data di discussione
15 Febbraio 2017
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Monti, Alice
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
29
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Systemic Risk, Conditional Value-at-Risk, Marginal Expected Shortfall, DCC model, GARCH, Long-range dependence, Forecasting accuracy, Forecast evaluation, Tick Loss, Loss functions
URN:NBN
DOI
10.6092/unibo/amsdottorato/7782
Data di discussione
15 Febbraio 2017
URI
Statistica sui download
Gestione del documento: