Mousli, Kindah
(2016)
Optimize Natural Ventilation and Thermal Mass in Residential Buildings to Achieve Thermal Comfort and Reduction of Energy Consumption in Hot Dry Climate, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Ingegneria energetica, nucleare e del controllo ambientale, 28 Ciclo. DOI 10.6092/unibo/amsdottorato/7469.
Documenti full-text disponibili:
Abstract
Using natural phenomena to reach indoor comfort has been known since early time and the oldest heritage architecture‘s and engineering of Middle East region, which has responded with such phenomena as well very good solutions special for hot-dry region (height temperature and radiation at summer and big variation between day and night temperature also between the hot summer and cool winter). This Architecture realized inside its houses optimum comfortable temperatures throughout nearly all the days of the yearlong. That was through equating with the volume adopting and the space taming with the different natural elements forces of the sun, atmosphere and climate as all which is common in these days as passive design strategies and reducing energy consumption .
This research investigate the thermal mass and natural ventilation for traditional house (hot-dry region in Damascus) that gives high energy efficiency in providing cool indoor air through ventilation (single sided , cross ventilation) and envelope behavior, with the procedures of measurements combined with simulation program model, to improve Middle East new residential buildings through utilize combination of passive cooling and heating techniques. Natural ventilation in traditional building coupled with effects of massive construction and design assemble, provide thermal comfort (temperature control) over interior condition. This strategies are utilized to conserve energy in a hot-dry climate specially on middle east region as Damascus and other cities which have comfort traditional houses .
The modern template applied by simulation program for traditional heating and cooling technique achieves thermal comfort related to occupant behavior and reduces energy consumption for new apartment of about 30-45% reduction of energy needs at Damascus, 20-35% at Cairo and 15-30% also at very hot dry climate as Riyadh.
Abstract
Using natural phenomena to reach indoor comfort has been known since early time and the oldest heritage architecture‘s and engineering of Middle East region, which has responded with such phenomena as well very good solutions special for hot-dry region (height temperature and radiation at summer and big variation between day and night temperature also between the hot summer and cool winter). This Architecture realized inside its houses optimum comfortable temperatures throughout nearly all the days of the yearlong. That was through equating with the volume adopting and the space taming with the different natural elements forces of the sun, atmosphere and climate as all which is common in these days as passive design strategies and reducing energy consumption .
This research investigate the thermal mass and natural ventilation for traditional house (hot-dry region in Damascus) that gives high energy efficiency in providing cool indoor air through ventilation (single sided , cross ventilation) and envelope behavior, with the procedures of measurements combined with simulation program model, to improve Middle East new residential buildings through utilize combination of passive cooling and heating techniques. Natural ventilation in traditional building coupled with effects of massive construction and design assemble, provide thermal comfort (temperature control) over interior condition. This strategies are utilized to conserve energy in a hot-dry climate specially on middle east region as Damascus and other cities which have comfort traditional houses .
The modern template applied by simulation program for traditional heating and cooling technique achieves thermal comfort related to occupant behavior and reduces energy consumption for new apartment of about 30-45% reduction of energy needs at Damascus, 20-35% at Cairo and 15-30% also at very hot dry climate as Riyadh.
Tipologia del documento
Tesi di dottorato
Autore
Mousli, Kindah
Supervisore
Dottorato di ricerca
Scuola di dottorato
Ingegneria industriale
Ciclo
28
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Thermal comfort, natural ventilation, hot/dry climate,courtyard, energy simulation
URN:NBN
DOI
10.6092/unibo/amsdottorato/7469
Data di discussione
1 Giugno 2016
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Mousli, Kindah
Supervisore
Dottorato di ricerca
Scuola di dottorato
Ingegneria industriale
Ciclo
28
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Thermal comfort, natural ventilation, hot/dry climate,courtyard, energy simulation
URN:NBN
DOI
10.6092/unibo/amsdottorato/7469
Data di discussione
1 Giugno 2016
URI
Statistica sui download
Loading...
Gestione del documento: