Memory Hierarchy Design for Next Generation Scalable Many-core Platforms

Azarkhish, Erfan (2016) Memory Hierarchy Design for Next Generation Scalable Many-core Platforms, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Elettronica,telecomunicazioni e tecnologie dell'informazione, 28 Ciclo. DOI 10.6092/unibo/amsdottorato/7255.
Documenti full-text disponibili:
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (11MB) | Anteprima


Performance and energy consumption in modern computing platforms is largely dominated by the memory hierarchy. The increasing computational power in the multiprocessors and accelerators, and the emergence of the data-intensive workloads (e.g. large-scale graph traversal and scientific algorithms) requiring fast transfer of large volumes of data, are two main trends which intensify this problem by putting even higher pressure on the memory hierarchy. This increasing gap between computation speed and data transfer speed is commonly referred as the “memory wall” problem. With the emergence of heterogeneous Three Dimensional (3D) Integration based on through-silicon-vias (TSV), this situation has started to recover in the past years. On one hand, it is now possible to improve memory access bandwidth and/or latency by either stacking memories directly on top of processors or through abstracted memory interfaces such as Micron’s Hybrid Memory Cube (HMC). On the other hand, near memory computation has become worthy of revisiting due to the cost-effective integration of logic and memory in 3D stacks. These two directions bring about several interesting opportunities including performance improvement, energy and cost reduction, product miniaturization, and modular design for improved time to market. In this research, we study the effectiveness of the 3D integration technology and the optimization opportunities which it can provide in the different layers of the memory hierarchy in cluster-based many-core platforms ranging from intra-cluster L1 to inter-cluster L2 scratchpad memories (SPMs), as well as the main memory. In addition, by moving a part of the computation to where data resides, in the 3D-stacked memory context, we demonstrate further energy and performance improvement opportunities.

Tipologia del documento
Tesi di dottorato
Azarkhish, Erfan
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Settore disciplinare
Settore concorsuale
Parole chiave
Memory Hierarchy, Three dimensional Integration, Many-core Platforms, Near Memory Computation
Data di discussione
9 Giugno 2016

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi