
AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA, TELECOMUNICAZIONI E

TECNOLOGIE DELL’INFORMAZIONE

Ciclo XXVIII

Settore Concorsuale di afferenza: 09/E3 Elettronica

Settore Scientifico disciplinare: ING-INF/01

Memory Hierarchy Design for Next Generation
Scalable Many-core Platforms

Presentata da: ERFAN AZARKHISH

Coordinatore Dottorato Relatore

Prof. Alessandro Vanelli Coralli Prof. Luca Benini

Esame finale anno 2016

Memory Hierarchy Design

for Next Generation

Scalable Many-core

Platforms

Erfan Azarkhish

a thesis submitted for the degree of

Doctor of Philosophy

at the University of Bologna, Bologna,

Italy.

February 23, 2016

I would like to dedicate this thesis to my loving wife.

ii

Abstract

Performance and energy consumption in modern computing platforms is

largely dominated by the memory hierarchy. The increasing computational

power in the multiprocessors and accelerators, and the emergence of the

data-intensive workloads (e.g. large-scale graph traversal and scientific al-

gorithms) requiring fast transfer of large volumes of data, are two main

trends which intensify this problem by putting even higher pressure on the

memory hierarchy. This increasing gap between computation speed and

data transfer speed is commonly referred as the “memory wall” problem.

With the emergence of heterogeneous Three Dimensional (3D) Integration

based on through-silicon-vias (TSV), this situation has started to recover

in the past years. On one hand, it is now possible to improve memory

access bandwidth and/or latency by either stacking memories directly on

top of processors or through abstracted memory interfaces such as Micron’s

Hybrid Memory Cube (HMC). On the other hand, near memory computa-

tion has become worthy of revisiting due to the cost-effective integration of

logic and memory in 3D stacks. These two directions bring about several

interesting opportunities including performance improvement, energy and

cost reduction, product miniaturization, and modular design for improved

time to market.

In this research, we study the effectiveness of the 3D integration technol-

ogy and the optimization opportunities which it can provide in the different

layers of the memory hierarchy in cluster-based many-core platforms rang-

ing from intra-cluster L1 to inter-cluster L2 scratchpad memories (SPMs),

as well as the main memory. We will demonstrate that with the current

TSV technologies, moving towards the third dimension inside the processing

iii

clusters can only be beneficial in terms of modularity, flexibility, and man-

ufacturing cost. While, to achieve significant performance improvements,

lower levels of the memory hierarchy should be explored.

In addition, by moving a part of the computation to where data resides,

in the 3D-stacked memory context, we demonstrate further energy and

performance improvement opportunities. Our obtained results are backed

up by the physical implementation of cycle-accurate models (down to post

place-and-route layouts) using industrial technology libraries, as well as,

calibrated full-system simulation environments. We have used different

industrial and academic platforms in synergy with each other to achieve

accurate and realistic conclusions.

[1][2][3][4][5][6], [7]

iv

Acknowledgements

I would like to thank my supervisor Professor Luca Benini for his support

and guidance over these years. He has provided exciting research oppor-

tunities for me, allowed me to meet brilliant people, and work in world-

class institutions and research environments. I would like to thank my

co-advisors Dr. Igor Loi and Dr. Davide Rossi for helping me during this

research and for their valuable and insightful comments.

My gratitude also goes to everyone who has made this thesis possible:

EMS Research Group at the University of Kaiserslautern for their valu-

able DRAM IP core, and their contribution to the developed DRAM con-

troller; STMicroelectronics for providing access to one of their technology

libraries; Samsung Electronics for their support and funding; Integrated

Systems Laboratory at the ETH Zurich University for hosting me as guest

researcher; and finally Christoph Pfister for his excellent work on address

scrambling.

This thesis has been funded by European projects (VIRTICAL, Phidias,

YINS, and Multitherman), and Samsung Electronics.

v

Contents

1 Introduction 1
1.1 Organization of Dissertation . 10

2 3D Stacking of L1 Scratchpad Memories 14
2.1 Motivations and Challenges . 14
2.2 Related Works . 16
2.3 2D Logarithmic Interconnect . 17

2.3.1 Network Protocol . 18
2.3.2 Request Block . 19
2.3.3 Response Block . 20

2.4 3D Logarithmic Interconnect . 20
2.4.1 Centralized 3D Logarithmic Interconnect 21
2.4.2 Distributed 3D Logarithmic Interconnect 22

2.5 Dealing with 3D Integration Issues . 22
2.5.1 ESD Protection . 23
2.5.2 Boot-time Configuration . 23
2.5.3 Process/Voltage/Temperature Variations 24

2.6 Experimental Results . 25
2.6.1 Comparison with Other Topologies 27
2.6.2 Design Alternatives . 28
2.6.3 Discussion . 32

2.7 Summary . 32

3 3D Stacking of L2 Scratchpad Memories 34
3.1 Motivations and Challenges . 34
3.2 Related Works . 36
3.3 3D-NUMA Memory IP . 39
3.4 Network Operation . 42

3.4.1 Role of the Read Buffer . 43
3.4.2 Flow Control Components . 43

3.5 Design Implementation . 45
3.6 Performance Evaluation . 48

3.6.1 Network Parameters of 3D-NUMA 49
3.6.2 3D-NUMA vs Memory Banks Attached to NoC 51
3.6.3 Effect of Memory Interleaving 52
3.6.4 Effect of Maximum Outstanding Transactions 54

vi

3.6.5 Different Configurations with Equal Memory Size 55
3.7 Power and Temperature Analysis . 56

3.7.1 Power Analysis . 56
3.7.2 Thermal Analysis . 59

3.8 Packaging and Power Delivery . 64
3.9 Manufacturing Yield and Cost . 65
3.10 Summary . 68

4 Near Memory Computation in the L3 Memory Context 69
4.1 Motivations and Challenges . 70
4.2 Related Works . 71
4.3 The Smart Memory Cube (SMC) . 74

4.3.1 The Main Interconnect on LoB 74
4.3.2 Address Remapping and Scrambling 76
4.3.3 Vault Controllers . 81

4.4 Calibrating The CA Model . 83
4.5 Experimental Results . 85

4.5.1 HMC Exploration . 86
4.5.2 Address Remapping . 91
4.5.3 Handling PIM Traffic . 96

4.6 Summary . 100

5 Processor-in-Memory Design for the Smart Memory Cube 101
5.1 Motivations and Challenges . 101
5.2 Related Works . 103
5.3 The SMC Simulation Environment . 104
5.4 Design of the Processor-in-Memory . 106

5.4.1 PIM’s Memory Model . 106
5.4.2 Enhancing PIM’s Functionality 108

5.5 Design of the Software Stack . 109
5.5.1 Offloading Mechanisms . 110

5.6 Experimental Results . 111
5.6.1 Accuracy Verification and Calibration 111
5.6.2 Benchmarking Results . 112

5.7 Summary . 120

6 Conclusions 121

References 124

A Accuracy verification of the high-level SMC model 140

B Source codes of computation kernels 142

vii

List of Tables

2.1 Comparison of different arbitration methods (p=16) 19
2.2 Performance comparison between LIN, NoC, and Bus executing different

benchmarks. 28
2.3 Comparison of post-layout area between LIN and NoCs. 29

3.1 Number of power TSVs required for each die, and the total count for
manufacturing one instance of each . 65

5.1 Zero-load latency of memory accesses 112

viii

List of Figures

1.1 Steady growth in the memory density over the years (Source:[8]) 2
1.2 Off-chip Bandwidth per Million Transistors at Peak Theoretical Clock

Rate (Source:[8]) . 2
1.3 Cross-section of the WIOMING Wide-IO DRAM (Source: [9]) (a) and

the HMC’s die photograph (Source: [10]) (b). 3
1.4 An overview of a typical memory hierarchy in the cluster-based many-

core platforms. 4
1.5 A comparison of the computing efficiency among the biological brains

and different computation technologies (Source:[11]). 6
1.6 Historical Clock-rates (Source:[8]). 6
1.7 Die photograph of the NVIDIA Fermi GU-GPU (Source: [12]). 7
1.8 Block diagram of the Hybrid Memory Cube (HMC) (Source:[13]) 9
1.9 An overview of our contributions throughout this dissertation. 11

2.1 Abstract view of the Logarithmic Interconnect (a), and its usage inside
a cluster based many-core platform (b). 16

2.2 Block diagrams of the 2D Logarithmic Interconnect (2D-LIN) 18
2.3 Implementation of arbitration methods: (a) PRR, (b) PLRG 20
2.4 Block diagrams of the Centralized 3D Logarithmic Interconnect (C-LIN) 22
2.5 Block diagrams of the Distributed 3D Logarithmic Interconnect (D-LIN) 23
2.6 Structure of 3D stacking and boot-time configuration circuitry (a), delay

elements to remove the high-current glitches (b). 24
2.7 Overview of the hierarchical flow for design of C-LIN and D-LIN 25
2.8 Performance comparison between NoC and LIN under different working

set sizes. 27
2.9 Physical implementation of the designs: 2-LIN with 2MB SRAM (a),

Details of the landing pads on redistribution layer (RDL) in D-LIN (b),
Logic Die of D-LIN with Cu-Cu Direct bonding (c), Memory die of D-
LIN with details of the TSV Matrix (d), 3D Stacking with 4 stacked
memory dies (e). 30

2.10 Comparison of silicon area (mm2) (a), Maximum achievable frequency
(MHz) (b). 31

2.11 Effect of TSVs and their drivers on the critical path of the 3D designs. 31

3.1 Overview of the target architecture and memory map for 3D-NUMA
memory IP . 36

ix

3.2 Block diagram of the 3D-NUMA memory IP (a) and its configurable
parameters (b). 40

3.3 Implementation of the Read-Buffer for C = 2, MOT = 4. 42
3.4 Schematic view of request-grant FIFOs (a), Join (b), Fork (c) components. 44
3.5 Experimental setup for design and exploration of 3D-NUMA 45
3.6 Schematic view of the 3D-NUMA design to implement 46
3.7 Physical implementation of 3D NUMA in STMicroelectronics CMOS-

28nm Low Power Technology. 48
3.8 Average Memory Access Time (AMAT) in cycles and its variation (std.

dev.) for PARSEC benchmarks, plotted for different number of stacked
memory dies (L). Total L2 memory sizes changes from 512 KB to 4 MB
proportional to L. 49

3.9 Effect of requested bandwidth on Average Memory Access Time (AMAT)
(a) and delivered bandwidth (b) (normalized to the ideal case: 64 GB/sec.),
where uniform random traffic with packet inter-arrival time ofRandom[0, T]
is applied. 50

3.10 Comparison of the execution time (MCycles) between Scenario 1: 3D-
NUMA (a), and Scenario 2: memory banks directly attached to NIs (b),
for different PARSEC benchmarks (c). 52

3.11 Comparison of two scenarios for 3D-NUMA:Word-level-interleaving [WLI]
(a) and Bank-level-interleaving [BLI] (b); using PARSEC benchmarks
(c) (Values of WLI are normalized to BLI) 53

3.12 Comparison of two scenarios for 3D-NUMA under uniform random traf-
fic with packet inter-arrival time of Random[0, T] (Values of WLI are
normalized to BLI). 53

3.13 Effect of Maximum Outstanding Transactions (MOT) on execution time
(KCycles) (a), Average Memory Access Time (AMAT), and access time
variation, in cycles (b). Effect of MOT on the distribution of Memory
Access Time (MAT) in cycles (c), full-bandwidth uniform random traffic
is applied. 54

3.14 Total executed cycles and execution time (μS) for different configura-
tions leading to the same total memory size (S×L×C = 2MB), where
uniform random traffic is applied . 55

3.15 Power consumption breakdown in the logic die (a), and in memory
die MD0 with automatic clock gating (b), comparison of power in the
stack of 8 memory dies for four different clocking strategies (c), en-
ergy/transaction (nJ) compared in the same experiment (d). In all
experiments, uniform random traffic has been applied with a packet
inter-arrival time of Random[0,T]). 57

3.16 Reduction in switching activity: in a stack of 8 memory die with PCL
(a), in memory dies with PCM (b), total consumed power in the stack
of 8 memory dies compared between the clock gating methods (c) . . . 59

3.17 Four configurations for 3D-stacking of 3D-NUMA: Memory-Processor-
Interposer (MPI) (a), Memory-Interposer-Processor (MIP) (b), Processor-
Interpose-Memory faced Down (PIMD) (c), and Processor-Interposer-
Memory faced Up (PIMU) (d) . 60

x

3.18 Cross section of the PIMD configuration 60
3.19 Temperature cool down rate (◦ K/Seconds) of the PE Die in the four

configurations (a), and its transient temperature (◦ K) increase due to
constant power consumption in the PE die [TSS: steady state tempera-
ture] (b), Effect of power consumption (W) in the PE die on its tempera-
ture (◦ K)(c), PE die temperature versus the number of stacked memory
dies [L] (d). 62

3.20 Final temperature map of the PE die in the four configurations: MIP
(a), MPI (b), PIMD (c), PIMU (d), cross-sections of the whole stacks
(e,f,g,h). 64

3.21 Manufacturing yield versus TSV failure rate compared between 3D-
NUMA with no TSV redundancy, TSV Repair Scheme (Up to 5 Fixes),
and the 2D counterpart . 67

3.22 Overall manufacturing cost of one PIMD stack compared its 2D coun-
terpart . 67

4.1 Overview of the Smart Memory Cube (SMC) 73
4.2 Proposed AXI 4.0 based logarithmic interconnect for SMC 75
4.3 5-layer substitution-permutation network for 22 address bits (S.22.5.05) 79
4.4 Quality of 22-bit substitution-permutation networks vs. number of layers. 79
4.5 Modified 4-layer address scrambler for 22 address bits (S.17.5.04) . . . 80
4.6 Address scrambler for improving sequential read with additional signal

to enable or disable scrambling (S.17.5.04.T) 81
4.7 Three additional scrambling alternatives: S.14.8.04 (a), S.14.8.04.T

(b), S.14.8.00 (c). 82
4.8 Schematic view of a Vault Controller 83
4.9 Delivered bandwidth of one vault only (a) and the baseline HMC (b).

Zero load latency breakdown for READ (c) and WRITE (d) commands. 87
4.10 Effect of page policy on delivered bandwidth from SMC 87
4.11 Effect of R/W ratio of random traffic on total bandwidth delivered from

SMC . 88
4.12 Effect of AXI data width (a) and DRAM bus width (b) on delivered

bandwidth from SMC . 89
4.13 Effect of DRAM tCK (a) and AXI Clk period (b) on bandwidth delivered

by SMC . 90
4.14 Effect of scaling down the timing parameters of DRAM (a) and number

of banks per vault (b) on bandwidth delivered by the SMC 91
4.15 Effect of conventional address remapping (a), and address scrambling

(b) on delivered bandwidth of SMC . 91
4.16 Effect of changing the step size of synthetic linear traffic on delivered

bandwidth and execution time. 93
4.17 Delivered bandwidth compared between different addressing schemes,

compared for linear walk (a), and random walk (b). The nodes size of
the data structure has been changed from 256Bytes to 4096Bytes. . . . 94

xi

4.18 Heat map for the DRAM banks plotted over time, for linear walk on data
structure nodes with different node sizes. In the upper plots address
mapping is LOW.INTLV. In the middle plots the addressing scheme is
S.14.8.00, and in the bottom ones S.17.5.04.T is utilized. 95

4.19 Heat map for the DRAM banks plotted over time, for three benchmarks:
blackscholes, dense-matrix-add, and streamcluster. In the upper plots
address mapping is LOW.INTLV, and in the bottom ones address map-
ping is S.17.5.04. 95

4.20 Effect of Row-major (RM) and Column-Major (CM) matrix traversal
methods on delivered bandwidth. 96

4.21 Increase in average (a) and maximum (b) memory access time caused by
PIM. Delivered bandwidth to PIM as a function of requested bandwidth
on PIM port (c), Drop in main bandwidth caused by interference of PIM
(d) . 97

4.22 Effect of requested bandwidth by ideal PIM on x264 (a), and effect of
buffer size of double-buffering PIM on x264 (b). 98

4.23 Effect of increasing the number of PIM ports on delivered bandwidth
(a) to the main links, AMAT of the main links (b), PIM’s delivered
bandwidth (c), maximum MAT (b) . 99

5.1 An overview of the SMCSim Environment for Design Space Exploration
of the Smart Memory Cube (SMC) . 105

5.2 A sample page to frame mapping highlighting the merged pages (a), The
slice-table data structure (b), values stored in the slice-table for current
example (c) . 107

5.3 Visualization of the simulated system in SMCSim composed of the host
processors, the interconnects, SMC controller and the serial links, the
SMC model, and the PIM subsystem. 109

5.4 PIM’s software stack . 110
5.5 An overview of the accuracy comparison methodology between the high-

level SMC model developed in gem5 and the cycle-accurate SMC model. 111
5.6 Traversing the sparse graphs represented using LIL format using two

DMA resources . 114
5.7 Offloading overheads in execution of the ATF kernel 114
5.8 PIM’s speed-up with/without SMC Atomic Commands (left axis), LLC

hit-rate associated with the data port of the executing CPU (right axis) 115
5.9 PIM’s speed-up versus cache block size of the host 116
5.10 Effect of PIM’s TLB size on hit-rate and speed-up 116
5.11 Effect of DMA transfer size on PIM’s execution time 117
5.12 Achieved energy efficiency for using PIM versus total stacked memory

size (a), power breakdown for execution of the host (b) and PIM (c) . 118
5.13 PIM’s energy efficiency versus its clock frequency. 119
5.14 Simulation setup for comparison of PIM with a host-side accelerator

with similar capabilities. 119

xii

Chapter 1

Introduction

The memory hierarchy in the modern computer systems plays a crucial role and highly

impacts their performance and energy consumption. With the advancements in the

processor technology, computational capabilities and transistor count of the processors

are increasing rapidly. This has been coupled with a steady growth in the memory

density illustrated in Figure 1.1. For these reasons, the amount of bandwidth theoret-

ically available to each transistor has been decreasing exponentially (See Figure 1.2).

Also, the emergence of data-intensive workloads such as graph traversal [14] and scien-

tific applications [15], requiring fast transfer of large volumes of data, has put an even

higher pressure on the memory system. As a result, an increasing portion of time and

energy in computing systems is spent on data movement, especially in off-chip mem-

ory accesses [16]. This increasing gap between computation speed and data transfer is

known as the “memory wall” problem.

Design of the memory hierarchy has always been challenging due to the incompat-

ibility of the DRAM and the logic process technologies [17]. Recently, the integration

of DRAM in logic processes has achieved some partial success, but it has always been

plagued by high cost and low memory density issues [18]. Under these circumstances,

logic and DRAM are placed on separate dies, and the communication between them

has been provided by the high latency and power hungry IO pins. On the other hand,

SRAM-based caches and memories can be accommodated in the logic dies, neverthe-

less, their size is extremely limited and highly impacts the manufacturing yield and

cost of the logic process [19].

With the emergence of heterogeneous Three Dimensional (3D) Integration based

on through-silicon-vias (TSV), this situation has started to recover in the past years.

Because, it is now possible to improve memory access bandwidth and/or latency by

1

Figure 1.1: Steady growth in the memory density over the years

(Source:[8])

Figure 1.2: Off-chip Bandwidth per Million Transistors at Peak The-

oretical Clock Rate (Source:[8])

either stacking memories directly on top of processors as in the WIOMING Wide-

IO DRAM shown in Figure 1.3.a, or through abstracted memory interfaces such as

Micron’s Hybrid Memory Cube (HMC) shown in Figure 1.3.b.

The Three-dimensional (3D) Integration Technology has been explored in academia

and industry for over a decade now, and a wide variety of technologies, materials, and

processes have been used for research and demonstrations. Several vertical interconnect

technologies have been explored, including wire bonding, microbump, contactless (ca-

pacitive or inductive), and through-silicon-via (TSV) vertical interconnect [20]. Among

them, the TSV approach has gained popularity, due to the high interconnection density.

From the TSV technologies, MITLL [20] and Tezzaron TSV [21] offer high density (over

2

Figure 1.3: Cross-section of the WIOMING Wide-IO DRAM (Source:

[9]) (a) and the HMC’s die photograph (Source: [10]) (b).

15000 via/mm2) and low resistance (<0.5 Ohm) and capacitance (<2 fF), however,

their number of stacked layers is limited to 3 and 2 respectively, and they are used in

technologies larger than 90 nm and in low-volume production. The current state of the

art [22][23][24] in high-volume production-ready TSV technology uses more conserva-

tive spacing (< 10000 via/mm2) and physical and electrical interfaces (�30 fF). TSV

technology was brought to commercial maturity by memory manufacturers (DRAM

and Flash) to build “memory-cubes” made of vertically stacked thinned memory dies

which achieve higher capacity in packages with smaller footprint and power compared

to traditional multi-chip modules. In fact, one of the biggest drivers for high-volume

adoption of the 3D-Integration technology has been 3D memory stacking with three

main classes of: 3D DRAM main memories, 3D caches, and 3D Scratchpad Memories

(SPM) [25].

3D stacked DRAM memories offer larger capacity and higher bandwidth in com-

parison with traditional DDR devices. The most outstanding examples of 3D stacked

DRAMs are the Hybrid Memory Cube [13], the High Bandwidth Memory (HBM) [26],

and the Exascale Memory [27]. 3D stacking of caches, which is an approach still at ad-

vanced R&D stage, has been intensively investigated, as well. 3D stacked caches with

wide I/O interfaces [28][29] and 3D stacked non-uniform cache architectures (NUCA)

[30][25][31] are just a few samples in this context. In contrast with caches, SPMs are

visible in the System-on-Chip (SoC) memory map, and are suitable for data-structures

which are not well-managed through caches. L1 SPMs offer very low latency access to

a cluster of tightly-coupled processors. L2 scratchpad memories exhibit lower sensitiv-

ity to memory access latency and its variations. This makes them another interesting

3

PE I$

PE I$

PE I$

DMA

L2
 In

te
rc

on
ne

ct

L2 SPM

L1
 In

te
rc

o.

L1
 S

PM

IF

L1
 In

te
rc

o.

PE I$

PE I$

PE I$

DMA

L1
 S

PM

IF
L1

 In
te

rc
o.

PE I$

PE I$

PE I$

DMA

L1
 S

PM

IF

Off-chip
Interface

On-Chip
Off-Chip

L3
DRAM

Memory

Figure 1.4: An overview of a typical memory hierarchy in the cluster-

based many-core platforms.

candidate for going towards the third dimension. In addition, SPMs can coexist with

the caches and most application processors and almost all mobile SoCs feature on-

chip scratchpad memories shared by multiple processing elements. Snapdragon 800

Processors by Qualcomm [32], Exynos 5 by Samsung [33], and Keystone II by Texas

Instruments, with private/shared caches and scratchpad memories are great examples

in this context. We should clarify that by L1 we mean an in-cluster memory which

should be accessed without stalling the pipeline of the processors. L2 is an out-of-

cluster memory with a typical latency of on-chip inter-cluster access, i.e. a few tens of

cycles. And lastly, main (L3) memory is typically off chip, and characterized with a

latency of hundreds of cycles (See Figure 1.4)

It has been predicted that 3D TSV chip market will grow more than 10 times faster

than the global semiconductor industry [34]. Also, wafer foundries such as Samsung

and TSMC have been developing vertical integration offerings to meet with the de-

mand from leading fab-less companies such as Qualcomm, Broadcom, Marvell, nVidia

and Apple, along with fab-lite IC companies such as TI, STMicroelectronics (STM)

and NEC/Renesas [34]. Nevertheless, the time for adoption of 3D Integration for mass

production keeps shifting out into the future. Several technical challenges and infras-

tructure issues are delaying high volume manufacturing of TSV technology for 3D ICs.

Until these issues can be resolved, alternative packages will continue to be used [35].

4

On the other hand, advanced packaging technologies provide new opportunities

for heterogeneous integration, power delivery, cost optimization, and thermal manage-

ment. Stacked Chip Scale Packaging (SCSP) of Amkor Technology [36] is one such

example which provides several different 2.5D/3D options for integration of heteroge-

neous dies in a package. Among other packaging technologies, Dual DRAM Package

(DDP), Dual Face Down (DFD), and Quad Face Down (QFD) [37][38] with the main

target of DRAMs provide complex forms of wire-bonding which may be adopted even

for other levels in the memory hierarchy. Technologies such as TSV Silicon Interposer

(TSI) [39][40] and wafer reconstitution [41] provide even more flexibility in hybrid

2.5D/3D stacking. TSIs enable stacking of different dies on both sides to achieve a

better utilization of space and to facilitate heat transfer of high power chips. Wafer

reconstitution provides electrical connections from the chip pads to the interconnects

by means of an artificial wafer. Redistributed Chip Packaging (RCP) [41] developed

by Freescale Semiconductor offers scalable chip-scale packaging and multi-die hetero-

geneous integration. In addition, Package on Package (PoP) stacking is supported in

RCP by means of Through-Package Vias.

Another active trend in the computing domain has been parallel processing where

a large number of simple cores are integrated on the same die. The ever increasing

focus on the energy-efficient architectures (as shown in Figure 1.5) and slowdown in the

improvement in the clock frequency (See Figure 1.6) have been the two main drivers

for moving from single processing cores to multi-core and multi-cluster platforms. GP-

GPUs such as NVIDIA Fermi [42], HyperCore [43], and ST-Microelectronics Platform

2012/STHORM [44] are the most visible examples in this trend. All of these archi-

tectures follow cluster-based many-core designs with a limited number of processors

(up to 32) in each cluster. Several levels of scratchpad-memories and caches along

multi-channel DRAM memories form their memory hierarchy and serve for different

range of requirements from the processing clusters. An overview of the typical memory

hierarchy in such platforms is illustrated in Figure 1.4, and the die photograph of the

NVIDIA Fermi GP-GPU is shown in Figure 1.7.

Researchers in the early nineties, tried to tackle the “memory wall problem” in a

completely different way [45], by looking into the possibility to migrate some part of

computation closer to the memory systems. Computational RAM [45] using SRAMs or

DRAMs coupled with processing elements close to the sense amplifiers, and Intelligent-

RAM (IRAM) [46] to fill the gap between DRAM and processors, are just two exam-

ples of the efforts in this area. It was shown by Patterson et. al. [46] that in memory

5

Figure 1.5: A comparison of the computing efficiency among the bi-

ological brains and different computation technologies (Source:[11]).

Figure 1.6: Historical Clock-rates (Source:[8]).

processing can lead to a memory bandwidth and energy efficiency improvement of

50X∼100X and 2X respectively, along with a latency reduction of about 2X. Unfor-

tunately, the “processing-in-memory” research efforts in the late nineties and the first

decade of the new millennium (See [45][46][17] for samples) did not lead to successful

6

Figure 1.7: Die photograph of the NVIDIA Fermi GU-GPU (Source:

[12]).

industrial platforms and products. The main reason for this lack of success was that

all these works were assuming that significant amount of logic resources, needed for

having processing elements close to the memory arrays, could be integrated on DRAM

dies (or vice versa). This could not be achieved economically given the restrictions of

DRAM processes (e.g., limited number of metal levels, slow transistors).

With the appearance of the heterogeneous 3D integration of logic and memory

dies based on through-silicon-vias (TSV), this situation has started to change, and the

interest in near-memory computation has been renewed [47]. Loh et. al. [48] study a

fixed function Processor-in-Memory (PIM) in a 3D-stacked context as a starting point.

Farmahini et. al. [49] demonstrate a Coarse Grain Reconfigurable Accelerator (CGRA)

located on a separate die and connected to the DRAM dies through Through Silicon

Vias (TSVs). Islam et. al. [15] present how to form a PIM cluster with 64 Cortex-A5

processors and two levels of caches. Active Memory Cube (AMC) [50] extends the

logic layer of the HMC with clusters of vector processors without caches. In [51] PIM

is comprised of CPUs and GPUs. [52] augments the logic die with a cluster of 16 light-

weight general purpose cores with 2 levels of caches. Tesseract [53] features a network

of memory cubes each accommodating a cluster of in-order cores with L1 caches.

7

Near memory computation can now exploit two main opportunities provided by

3D integration: (1) vicinity to the main storage resulting in reduced memory access

latency and energy, (2) higher bandwidth provided by Through Silicon Vias (TSVs) in

comparison with the interface to the host, limited to the pins. The last missing piece

came in place when an industrial consortium backed by several major semiconductor

companies introduced HMC. [13] In the HMC, a memory cube is stacked on top of a

logic die (See Figure 1.8). The logic die at the bottom of the hybrid stack provides

an advanced communication interface between the memory cube on top and the rest

of the computing system on the board. Fast serial IO transceivers for off-chip com-

munication, and on-chip controllers and interconnects for multiplexing the vertically

stacked memory partitions (called “vaults”), are all implemented in it. The communi-

cation mechanism follows a packet-based protocol implementing different networking

layers (physical, link, and transaction layers). It also supports advanced flow-control

and congestion control mechanisms [13]. This form of abstraction hides the details of

the DRAM control from the host and provides a flexible and standard communication

infrastructure to be used by different host platforms. Also, apart from the performance

and energy benefits [54], this mechanism allows for supporting higher-level commands

(e.g. atomic operations [13]), in addition to the conventional read and write commands.

Because of this flexibility and abstraction, we believe that HMC is the best target for

hosting processor in memories.

To summarize, in the past years, the focus on high-performance computing along

with energy efficient architectures have lead to an ever increasing interesting in parallel

computing systems, increasing the pressure on the memory hierarchy. 3D integration

has created two optimization opportunities to hopefully solve this “memory wall” prob-

lem:

• Improving memory access bandwidth and/or latency by either stacking memories

directly on top of processors, or through abstracted memory interfaces such as

Micron’s Hybrid Memory Cube (HMC).

• Revisiting near memory computation due to the cost-effective integration of logic

and memory in 3D stacks, by placing logic and memory close to each other, but in

their own optimized processes, and provide high bandwidth connection between

them by means of TSVs.

In this research, we exploit these two opportunities and study the effectiveness of

the 3D integration technology in the different layers of the memory hierarchy in cluster-

8

Figure 1.8: Block diagram of the Hybrid Memory Cube (HMC)

(Source:[13])

based many-core platforms ranging from intra-cluster L1 to inter-cluster L2 scratchpad

memories (SPMs), as well as the main memory. We investigate the provided optimiza-

tion opportunities in terms of performance, power consumption, and silicon area. In

addition, by moving a part of the computation to where data resides we demonstrate

further optimization opportunities. Apart from improvements in performance, energy,

and area, we also keep an eye on scalability, modularity, and manufacturability issues,

and try to propose flexible solutions reducing time-to-market and manufacturing cost

and effort. We demonstrate that with the current TSV technologies, moving towards

the third dimension inside the processing clusters can only be beneficial in terms of

modularity, flexibility, and manufacturing cost. While, to achieve significant perfor-

mance improvements the next levels of the memory hierarchy should be explored.

Our proposed solutions range from circuit-level optimizations to minimize high-

current glitches in the 3D stacked interfaces to avoid degradation of the chip’s life and

performance; to system level clock gating and power reduction strategies; and soft-

ware level coordination of computation for the sake of energy and performance. Our

obtained results are backed up by physical implementation of cycle-accurate models

using industrial technology libraries, as well as, calibrated full-system simulation envi-

9

L1
 In

te
rc

o.

PE I$

PE I$

PE I$

DMA

L1
 S

PM

IF

L2
 In

te
rc

on
ne

ct

L2 SPM

L1
 In

te
rc

o.

PE I$

PE I$

PE I$

DMA
L1

 S
PM

IF

L1
 In

te
rc

o.

PE I$

PE I$

PE I$

DMA

L1
 S

PM

IF

Off-chip
Interface

On-Chip

L3
DRAM

Memory

Off-Chip

L1
 S

PM

L1
 S

PM

L1
 S

PM

L2 SPM
L2 SPM

L2 SPM

L3
DRAM

Memory

L3
DRAM

Memory

L3
DRAM

Memory

L3
DRAM

Memory

Smart Memory Cube
(SMC)

3D-LIN:
C-LIN / D-LIN

3D-NUMA

L1
 S

PM

L1
 S

PM

L1
 S

PM

L1
 S

PM

L1
 S

PM

L1
 S

PM

Figure 1.9: An overview of our contributions throughout this disser-

tation.

ronments. We have used different industrial and academic platforms in synergy with

each other to achieve accurate and realistic conclusions. Here we present the outline

of this dissertation.

1.1 Organization of Dissertation

This dissertation is structured as follows: In chapter 2 we investigate the benefits

of moving towards the third dimension in a processor-to-L1-memory context (See Fig-

ure 1.9). We focus on a single processing cluster sharing a tightly coupled multi-banked

L1 scratchpad memory, and propose two 3D network architectures: Centralized Log-

arithmic Interconnect (C-LIN) and Distributed Logarithmic Interconnect (D-LIN) to

provide low-latency L1 memory access through 3D interfaces. We propose a modular

stacking strategy which allows stacking of multiple identical memory dies. Our de-

signs have been implemented using two bonding techniques with consideration of the

electrostatic discharge (ESD) protection circuits. In subsection 2.6.2, we point out the

obstacles which have prevented 3D integration in the L1 context (L1 caches, L1 SPMs,

and processors) from being successful in the industry, despite the general belief that

TSVs can greatly reduce wire length and improve clock frequency.

10

In chapter 3, we extend our studies to the L2 memory context and focus on L2

scratchpad memories located outside the processing clusters (Figure 1.9) because of

their requirement for large sizes and lower sensitivity to memory access latency and

variations. Also, because most application processors and almost all mobile SoCs

feature a large on-chip L2 memory which is shared by multiple cores. We will present

3D-NUMA, a 3D L2 memory IP, which can be attached to a cluster based multi-core

platform through its NoC Interfaces, and offer high-bandwidth memory access with low

average latency. Our proposed IP allows modular stacking of multiple memory dies with

identical layouts using a single mask set, supports multiple in-flight transactions, and

achieves high clock frequency thanks to its highly pipelined nature. Several experiments

are performed to evaluate 3D-NUMA in terms of performance, power consumption,

thermal behavior, and manufacturing yield and cost.

In chapter 4 and chapter 5, we will move towards the last level in the memory

hierarchy, and study the benefits provided by 3D integration, there (Figure 1.9). We

choose the Hybrid Memory Cube (HMC) as the most outstanding industrial example,

and introduce the concept of the “Smart Memory Cube (SMC)”: a fully backward

compatible and modular extension to it, supporting near memory computation. In

chapter 4 we focus on the architectural implications and the required infrastructure

inside HMC to support this feature. We propose a high performance and extensible

AXI-4.0 based Logic-Base (LoB) interconnect, carefully designed to provide high band-

width to the external serial links, as well as plenty of extra bandwidth to any generic

and AXI-compliant PIM device attached to its extension ports. We also implement

a novel address scrambling mechanism for reducing vault/bank conflicts and robust

operation in presence of pathological traffic patterns. Cycle accurate (CA) models for

the SMC interconnect and its interfaces are developed, and their parameters are tuned

based on the available data from the literature on HMC.

Lastly, in chapter 5 we explore the design of a PIM architecture for the SMC

introduced in chapter 4. A full-system simulation environment called SMCSim has been

developed and verified against the Cycle-Accurate (CA) model described in chapter 4.

SMCSim models the complete hardware and software stack ranging from high-level

user application to low-level firmware and hardware layers. It takes into account the

offloading and dynamic overheads caused by the operating system, cache coherence, and

memory management, as well. We propose an optimized memory virtualization scheme

for zero-copy data sharing between host and PIM; enhance the PIM architecture’s

capabilities by the aid from atomic in-memory operations; and improve its memory

11

access by means of a flexible Direct Memory Access (DMA) engine.

The main contributions of this dissertation can be summarized as follows:

• Design and physical implementation of two 3D network architectures

for modular and flexible stacking of L1 scratchpad memories

Our proposed designs offer modularity and better scalability in comparison with

their 2D counterparts. However, in terms of delay, they are so competitive yet.

We observed that since the current TSV technologies are not yet so competitive

with on-chip wires, for small sized L1 memories 3D integration does not seem to

be beneficial in terms of performance.

• Design and physical implementation of a 3D L2 SPM IP called 3D-

NUMA offering high-bandwidth memory access with low average la-

tency

We demonstrate that addition of 3D-NUMA to a multi-cluster system can lead

to an average performance boost of 34%. Moreover, through several experiments

we show that 3D-NUMA is energy and power efficient, temperature friendly, and

has unique features suitable for low cost manufacturing.

• Introduction of the Smart Memory Cube (SMC), a fully backward

compatible extension to HMC, supporting near memory computation

on the LoB die, and Design of a high performance AXI-compatible

LoB interconnect for it

Our designed interconnect easily meet the demands of current and future pro-

jections of HMC (Up to 205GB/s READ bandwidth with 4 serial links and 32

memory vaults). The interference between the PIM traffic and the main links is

found to be negligible when PIM has up to 2 ports requesting up to 64GB/s. It

is further shown that low-interleaved addressing is not reliable enough for an ab-

stracted memory such as HMC. Fat data structures with power-of-two node sizes

are particularly identified as unfavorable patterns for low-interleaving. A more ro-

bust address scrambling mechanism is proposed to effectively reduce bank/vault

conflicts. Logic synthesis confirms that our proposed models are implementable

and effective in terms of power, area, timing (power consumption less than 5mW

up to 1GHz and area less than 0.4mm2).

• Design of a processor in memory architecture for SMC featuring an

optimized memory virtualization scheme for zero-copy data sharing

12

between host and PIM

It is shown that even in a case where the only benefit of using PIM is latency

reduction, up to 2X performance improvement in comparison with the host SoC,

and around 1.5X against a similar host-side accelerator is still achievable. By scal-

ing down the voltage and frequency of the proposed PIM it is possible to reduce

energy by about 70% and 55% in comparison with the host and the accelerator,

respectively.

A summary of the obtained results and conclusions is given at the end of each

chapter, while chapter 6 gives a general conclusion to the dissertation. References

[1, 2, 3, 4, 5, 6, 7] have been published throughout the work on this thesis.

13

Chapter 2

3D Stacking of L1 Scratchpad

Memories

In this chapter we focus on shared tightly coupled data memories (TCDMs), as they

are the key architectural elements for building multi-core clusters in programmable

accelerators and embedded systems, and they provide a convenient shared memory ab-

straction while avoiding cache coherence overheads. We use 3D integration to increase

modularity and scalability of the L1 TCDMs, and study the effects of going vertical on

their performance and silicon area. We propose two 3D network architectures: C-LIN

and D-LIN, which allow modular stacking of multiple L1 memory dies over a multi-core

cluster with a limited number of processing elements.

2.1 Motivations and Challenges

The increasing focus on energy-efficient architectures coupled with a slowdown in clock

speed improvement has created a growing interest in parallel computing where a large

number of simple cores are integrated onto the same die. GP-GPUs such as NVIDIA

Fermi [42], HyperCore [43], and ST-Microelectronics Platform 2012/STHORM [44]

are the most visible examples in this trend. All of these architectures follow cluster-

based many-core designs with a limited number of processors (up to 32) in each cluster

sharing tightly-coupled L1 data memories (TCDM), a.k.a scratchpad memories (SPM).

TCDMs are useful for the data-structures which are not well-managed through the

caches. Together with Direct Memory Access (DMA) engines they can lead to more

efficient implementations with more predictable behaviors [55].

Network-on-chips (NoC) designs have been advocated as an alternative to bus-based

14

architectures; thanks to their scalability which makes them suitable for inter-cluster

communication and in L2 and upper levels of the memory hierarchy. However, their

high average latency and latency variability, as well as increased design complexity to

guarantee correctness and fairness (e.g., avoiding deadlock, livelock, starvation) [56]

brings their usefulness in processor-to-L1-memory context under question.

On the other hand, crossbar-based interconnects, like the one in IBM BlueGene/Q

[57], can provide a uniform and ultra-low memory access latency within a cluster,

which is not achievable in multi-stage NoC systems. The design of crossbar networks

for high-performance usually relies on custom circuit design techniques such as pass

transistors and low-swing drivers (e.g. [58]). Full-custom approaches are not suitable

for architectures featuring soft cores and third-party Intellectual Property (IP) blocks,

and their reusability is limited across technology nodes. Therefore, processor-to-L1-

memory interconnects provided as a parametric synthesizable IP are highly desirable

in this context.

In this chapter, we take advantage of the 3D integration technology to increase

the shared L1 memory size in a processing cluster in a modular fashion, i.e. stacking

memory dies on top of a logic die, without the need to re-spin silicon (as it would

be needed for traditional 2D technology). We focus on a single cluster with a typi-

cal size (16 processing elements) sharing a tightly coupled multi-banked L1 memory

(See Figure 2.1.b), and propose two 3D network architectures, C-LIN and D-LIN (de-

signed in synthesizable RTL) which can be configured based on user specifications and

technology constraints to provide low-latency memory access. Our modular stacking

strategy allows system integrators to stack multiple memory dies and create arbitrary

L1 memory sizes through different height stacks with identical dies, without the need

for different masks for dies at different levels in the stack. The designs have been im-

plemented in STMicroelectronics (STM) CMOS-28nm Low Power technology library,

using two bonding techniques with consideration of the electrostatic discharge (ESD)

protection circuits.

Related research efforts are presented in section 2.2. 2D-LIN and its 3D extensions

are described in section 2.3 and section 2.4. Issues related to the 3D Integration are

discussed in section 2.5, and finally, experimental results and a summary of conclusions

are presented in sections section 2.6 and section 2.7.

15

Logarithm
ic Interconnect

DMA1

D-LIN C-LIN

DMAd

MM1

MM2

MM3

MMm

PE1

PE2

PEp

a)

&

PE

PE

L
I
N

M

M

M

M

M

M

MM

MM

MM

&

PE

PE

L
I
N

M

M

M

M

M

M

MM

MM

MM

&

PE

PE

L
I
N

M

M

M

M

M

M

MM

MM

MM

&

PE

PE

L
I
N

M

M

M

M

M

M

M

MM

MM

b)

Figure 2.1: Abstract view of the Logarithmic Interconnect (a), and

its usage inside a cluster based many-core platform (b).

2.2 Related Works

Performance limitations of the interconnection networks have led to a renewed interest

in interconnect research and a transition from traditional bus-based systems to more

sophisticated topologies, including mesh network-on-chips [59], hierarchical bus models

[60], flattened butterfly on-chip networks [61], and crossbars [62], [19], and [63]. The

ability of crossbars to provide uniform access latency makes them an appealing option

in processor-to-L1 memory interface for limited-cardinality clusters (16 PEs, typically)

illustrated in Figure 2.1.b. Because predictable access latencies allow for quality-of-

service guarantees and ease of programming. Custom designed crossbar-switches can

provide very high bandwidths (e.g., 1Tbit/s in [58]), however, lack of configurability and

their incompatibility with standard technology libraries provided by silicon foundries

make them unsuitable to SoC Design. Crossbar networks for tightly coupled shared

memories have been used in the HyperCore Architecture [43], which contains a shared

on-chip memory accessed through a series of combinational switches; and in [19] and

[62] using Mesh of Trees (MoT) and Swizzle Switch Networks (SSN), respectively.

3D stacking of scratchpad memories to replace fast on-chip SRAMs has been studied

in [64] and [65]. In [64], the authors proposed a configurable memory layer that consists

of many uniform memory elements connected directly to processors. In [65], a prototype

of 3D stacked TCDM has been published, which is a two-layer 3D IC, with logic die

consisting of 64 general-purpose processor cores running at 277MHz and connected

through a mesh NoC, and the memory die with 256KB of SRAM. While these works

16

have simply focused on the use of private memory banks, our work proposes a solution

for sharing L1 memory, and shows that NoC solutions are not suitable in this context.

Finally, 3D extension of low-latency crossbars for shared L1 clusters has been inves-

tigated in [63] and [62], while [66] uses time-division multiplexing buses for this purpose.

The key difference between our proposed approach and these works is modularity, which

allows stacking of several memory dies on a logic die without the need for new masks

for each stacked die. Moreover, our solutions offer better scalability compared to [63]

(More in depth discussion is performed in section 2.5 and section 2.6). Also, physical

synthesis on realistic 3D floorplans make our obtained results more accurate.

2.3 2D Logarithmic Interconnect

The basic 2D Logarithmic Interconnect (2D-LIN) is a low-latency and flexible crossbar

that connects multiple processing elements (PEs) to multiple SRAM memory modules

(MMs) (See Figure 2.1.a). The IP is optimized to provide fast arbitration and single

cycle access to TCDM banks, as well as, synchronization mechanisms for inter-process

communication. It is built following the Mesh Of Trees approach, where the network

is created combining binary trees [63]. Each tree provides a unique combinational path

between the PEs and one memory module, and vice versa. Therefore, the request and

the response paths are decoupled in 2D-LIN to maintain non-blocking communication

(See Figure 2.2).

The key property of this soft IP is the reconfigurability. User has control on the

following parameters: number of PE channels (p), number of direct-memory-access

(DMA) channels (d), number of memory modules (m), size of each memory module in

kilobytes (s), and width of data bus (w). Furthermore, bank/word level inter-leaving

are both supported, and arbitration can be performed using either Pseudo-LRG or

Pseudo-Round-Robin methods, which are modified versions of Least-recently-granted

(LRG) and round-robin (RR) to become suitable for implementation inside binary

trees. The fraction m/p is defined as BankingFactor. When this parameter is less than

or equal to one, there will be a high number of collisions between PEs while accessing

memory banks, and performance drops severely. Simulation results with different traffic

patterns show that a banking factor of 2 offers over 94% of the performance of the ideal

case where no collision exists.

17

Data MUX TreeD

Address
Decoder Req

Response Block

Data MUX TreeD

Address
Decoder Req

Response Block

Test
&

Set

Address Decoder Resp

DMA

PE

Arbitration Tree

Arbitration Tree

Request BlockR Bl k

Flow
Control

Test
&

Set

Address Decoder Resp

DMA

PE

Arbitration Tree

Arbitration Tree

Request Blockl k

Flow
Control

W
I
R
I
N
G

PE1

PEp

MM1

MMm

Bank1

Bankm

Figure 2.2: Block diagrams of the 2D Logarithmic Interconnect (2D-

LIN)

2.3.1 Network Protocol

Each clock cycle, all the requests made from masters (PEs and DMAs) are propagated

through the request blocks. Collisions due to multiple requests directed to the same

memory bank are avoided by the arbitration performed in each node. PEs losing the

arbitration are stalled, and the winners conclude the transfer in a single clock cycle in

case of a store, while, in case of a load, the read data is returned the next clock cycle.

This architecture implements atomic test-and-set operation as well. It should be noted

that, apart from the topology, also the flow control mechanism presented in this work

differs from [19] in the way that it operates only at one edge of clock, therefore the

clock period can be reduced further, and even though in this method read operations

takes two cycles to complete, pipelining of reads allows an average performance of one

read per cycle.

18

Table 2.1: Comparison of different arbitration methods (p=16)

Arbitration Complexity LRG-Wait AMAT Bias

LRG - 0 9.85 1.6

RR - p− 1 10.13 2.1

PRR log(p) p− 1 9.8 10.3

PLRG p log(p) 9.63 1.9

SS p2 0 9.85 1.6

2.3.2 Request Block

Request block is in charge of collecting all the PEs’ requests directed to a specific mem-

ory module (see Figure 2.2). This block is built out of a single binary tree with each

node being an arbitration primitive. Combining several binary trees, the network can

support both generic number of ports and different priorities. Therefore, high priority

channels for processors and low priority channel for eventual peripherals are imple-

mented. Arbitration between requests can be implemented using different algorithms.

Round-Robin (RR) and Least-Recently-Granted (LRG) are two widely used fair ar-

bitration algorithms; yet, they are not suitable for implementation in a binary-tree.

We modified them as Pseudo-Round-Robin (PRR) and Pseudo-LRG (PLRG) to be

used inside the logarithmic interconnect. Table 2.1 compares the modified algorithms

with RR, LRG, and a good approximation of LRG called Swizzle-Switch Arbitration

(SS) [62] which keeps and updates a table of priorities. Results have been gathered

from a high-level simulator under different traffic traces (explained in subsection 2.6.1).

In this table AMAT stands for normalized Average Memory Access Time in Cycles;

LRG-Wait represents the longest time in cycles which a request may wait in the LRG

position before being granted; and Bias shows the amount of unfairness between input

requests in every one thousand simulation cycles, calculated as in (2.1).

Bias =
1000

Cycles
×

p∑
i=0

|grants[i]− 1/p

p∑
j=0

grants[j]| (2.1)

Simulation results show that, on average, all presented algorithms perform similarly

and even their unfairness is negligible with respect to the Ideal LRG. Nevertheless, the

RR and PRR suffer from the fact that they disregard the request in LRG position and

in the worst case that request may have to wait for (p−1) cycles. While, this worst-case

latency is improved to only log(p) cycles in the PLRG algorithm. Moreover, PLRG

can be implemented with o(p) gates and memory elements, whereas Ideal LRG needs a

19

B0 B1 B2

Cl
k

Rs
t

Re
q_

o

G
nt

_i

Cnt C

0

1

(a)

t_t_

C T

Re
q_

o

G
nt

_i

0

1

(b)

Figure 2.3: Implementation of arbitration methods: (a) PRR, (b)

PLRG

stack and SS needs o(p2) registers and logic. Figure 2.3 depicts the implementation of

RR and PLRG inside the logarithmic interconnect. As can be seen, in PRR a simple

counter changes the priority of channels every time every time a request is granted.

While, in PLRG, each binary arbiter contains a toggle flip-flop, which switches to the

unacknowledged input every time a grant is received.

2.3.3 Response Block

Response block is in charge of collecting all the responses from memory modules which

are directed to a specific PE (see Figure 2.2). It can be considered as a specular

version of the request block. However, since the response network is only used for read

operations and the read latency is deterministic (1 cycle), no response collisions are

possible, and the response path can be simplified by replacing the arbiters with simpler

multiplexers.

2.4 3D Logarithmic Interconnect

Centralized 3D-Logarithmic-Interconnect (C-LIN) and Distributed 3D-Logarithmic-

Interconnect (D-LIN) are two extensions of the 2D-LIN to be integrated in a 3D-stacked

Chip multiprocessor. These topologies provide more flexibility in comparison to 2D-

LIN by automatically splitting the design into one logic layer and several memory

layers and stacking them over each other. Both networks have been designed based

on the assumption that memory layers with identical layouts will be stacked over

20

each other, forming vertical memory cones with all their parameters automatically

configured during the boot procedure. This allows for reduction in the chip cost and

design effort, and adds design flexibility. To allow stacking of identical memory dies,

all components on different memory layers share the input data and control signals

from the logic die, and tri-state data buses for their responses, as well. Lastly, both C-

LIN and D-LIN support configurable parameters of 2D-LIN, plus a parameter l which

represents the maximum number of stackable memory layers, though the number of

stacked memories can be chosen freely after the 3D chip assembly step. It should be

noted that, in the 3D network presented in [63], interconnects are replicated completely

in each memory layer, and a copy of the arbitration circuits for each layer is placed on

the logic layer. As a result, addition of new memory layers, increases BankingFactor,

and therefore the size of the logic-die grows. Whereas, in our designs, addition of

new memory layers does not affect BankingFactor and only adds to the capacity of

the existing banks. This makes our solutions more scalable (The comparison between

obtained results is performed in section 2.6).

2.4.1 Centralized 3D Logarithmic Interconnect

C-LIN is the simplest extension to 2D-LIN. As illustrated in Figure 2.1.a, the 2D design

is cut at the memory interface, therefore, PEs and the interconnection network are

placed on the logic layer, while memory modules along with small layer decoding logics

are placed on memory layers (See Figure 2.4). One benefit of this architecture is that

logic and memory elements are completely separated, therefore, different technologies

and optimizations may be utilized for design of the logic and memory dies. In addition,

memory layers in C-LIN can be designed as simple, small, and inexpensive as possible

(please refer to subsection 2.6.2 and Figure 2.9 for the physical implementation results).

The network operation of C-LIN is similar to 2D-LIN with the difference that after the

arbitration in the logic layer, the winner request will be sent to memory layers through

the TSVs and request address will be matched with LayerID (a number which uniquely

identifies each memory layer) in the layer decoding logics of each layer. Therefore, the

address space is divided among the memory dies, and for each memory bank only

one die will be active at a time. This helps maintain the combinational nature of the

logarithmic interconnect and avoids insertion of buffers and FIFOs between layers.

21

Data MUX

Data MUX

Arbitration
+ Data

Arbitration
+ Data

MM

MM

C

C

O

O

T

T

I

I

MM

T

I

MM

T

I

Logic Layer Mem Layer 1 Mem Layer 2

1 2

3

4
5

6

PE

PE

W
 I

 R
 I

 N
 G

W
 I

 R
 I

 N
 G

Request

Response

Bank1 Bank1

Bank2 Bank2

Layer
Decoder

Layer
Decoder

Layer
Decoder

Layer
Decoder

Figure 2.4: Block diagrams of the Centralized 3D Logarithmic Inter-

connect (C-LIN)

2.4.2 Distributed 3D Logarithmic Interconnect

In the other alternative, D-LIN, 2D design is cut at the PE interface (See Figure 2.1.a),

therefore, interconnect is distributed among the layers as illustrated in Figure 2.5.

Similar to C-LIN, flow-control is performed in the logic layer, whereas, after arbitration

in the logic layer, filtered requests will be propagated to memory layers and in the

target memory layer knowing that all the collisions have been already resolved, simple

multiplexer trees send data into MMs. Response networks also act similar to C-LIN,

with the difference that they are located in memory layers. In both C-LIN and D-LIN,

outputs from different memory layers are resolved using tri-state logic.

The main benefit of D-LIN is reduction in number of TSVs. Since the number

of TSVs in D-LIN is proportional to the number of masters (p + d), and because

BankingFactor is usually greater than one, the number of master channels will be less

than the slave channels (m), hence, the reduction in the number of TSVs.

2.5 Dealing with 3D Integration Issues

This section presents architectural solutions to the issues related to 3D Integration of

TCDMs using C-LIN and D-LIN.

22

Logic Layer Mem Layer 1 Mem Layer 2

PE

C

Data MUX

Data MUX

MM

T

I

DData O

Data

Arbitration

O

Data MUX

Data MUX

MM

T

I

PE

C

Data MUX

Data MUX

MM

T

I

DData O

Data

Arbitration

O

Data MUX

Data MUX

MM

T

I

1 2 3

4

567

D

W

I
 R

I

 N

G

W

I
 R

I

 N

G

W

I
 R

I

 N

G

Request

Response

Bank1 Bank1

Bank2 Bank2

Layer
 Decoder

Layer
 Decoder

Layer
 Decoder

Layer
 Decoder

Figure 2.5: Block diagrams of the Distributed 3D Logarithmic Inter-

connect (D-LIN)

2.5.1 ESD Protection

The inter-die signal interfaces in a 3D-IC are vulnerable to electrical stress induced

during stacking or testing steps. Approximately 60% of silicon IC failures are a result

of electrical overstress or electrostatic discharge (EOS/ESD) [67]. To cope with these

issues, IOs passing through the TSVs will be protected by input and output protection

circuitry. As illustrate in Figure 2.4 and Figure 2.5, four types of IO Drivers are

designed for this purpose: O and T are simple and tri-state output buffers respectively

with reverse diodes for protection at their outputs, and I and C are input buffer and

clamp circuits with protection diodes at their input stages. The O and C cells require

level-shifters as well, since they may operate between two different voltage domains.

All these cells have been adopted from conventional IO Pad Drivers and are tuned to

drive much less capacitance of stacked TSVs of at most 8 layers. To avoid a long chain

of buffers, the I and T cells are placed out of the chain at the inputs and outputs of

each memory module (See Figure 2.6.a). This way, the signals do not need to travel

through multiple buffers to reach a memory module.

2.5.2 Boot-time Configuration

In order for the memory layers to have identical layouts, boot-time configuration cir-

cuits are required to assign unique LayerID values to each memory die. For this

23

Fa
ce

 to
 F

ac
e

Carrier

Lo
gi

c
Di

e

To BGA Pads

0

Configuration

MemLayers

+1 LayerID

T
S
V

T
S
V

T
S
V

+1 LayerID

T
S
V

T
S
V

T
S
V

+1 LayerID

T
S
V

T
S
V

T
S
V

Req Block

O C

Resp Block

T
S
V

Fa
ce

 to
 B

ac
k

M
em

 D
ie

 1
M

em
 D

ie
 2

M
em

 D
ie

 3

T
S
V

T
S
V

T
S
V

Operation

Su
bs

tr
at

e
Si

O
2

Su
bs

tr
at

e
Su

bs
tr

at
e

Si
O

2
Si

O
2

Si
O

2
Su

bs
tr

at
e

T
S
V

T
S
V

I TMM

Dcd

T
S
V

T
S
V

I TMM

Dcd

T
S
V

T
S
V

I TMM

Dcd

PE Eni

D
In

ac
tiv

e

Ac
tiv

e

Layer i
Data

De
la

y
El

em
en

t

Enj

Layer j
Data

D TS
V

SSSS

a) b)

Figure 2.6: Structure of 3D stacking and boot-time configuration cir-

cuitry (a), delay elements to remove the high-current glitches (b).

purpose, assuming via-first technology [22], LayerID is incremented in each layer and

sent to the next memory layer (See Figure 2.6.a). And in order to provide the total

stacked memory size to the operating system, the last layer is identified by means of

pull-down resistors, and its LayerID is returned to the logic layer as the number of

memory layers.

2.5.3 Process/Voltage/Temperature Variations

The importance of process, voltage, and temperature variations intensifies in 3D cir-

cuits, since the dies from different process corners may be stacked over each other, and

timing critical circuits such as the clock distribution network have to operate correctly

under these conditions. One problem with such issues is the appearance of high cur-

rent glitches on the outputs of tri-state drivers. As Figure 2.6.b illustrates, only one

of the drivers should be active at a time, however, because of variations, one layer

may start driving the bus before another has stopped, therefore, high current glitches

will appear on the output bus which may degrade the chip’s life and performance. In

order to solve this issue, the driver in each layer should guarantee that it will return to

inactive state before any other starts to drive. The simple delay elements illustrated in

Figure 2.6.b can serve for this purpose, and by adjusting the delay between activation

24

TECH LIBS

MACRO LEFS

Timing
Constraints

User
Constraints

3D Log.
Interco.

DC

MACRO LIBS

TECH LIBS

MACRO LIBS

TECH LIBS DC-Topo DC-Topo

SoC SoC
MACRO LIBS

TECH LIBS

Primetime

Met?No

Yes

Area
Report

Power
Report

Delay
Report

Verification FlowImplementation Flow

VSIM

Testbench

VSIM
SIM MODELS

Testbench

VSIM
SIM MODELS

Testbench

Verilog (RTL)

Mem LayerLogic Layer

Assemble

SW
Activity

Delay,
Netlist

Delay,
Netlist

Fl
oo

rp
la

n
(D

EF
)

Fl
oo

rp
la

n
(D

EF
)

Parasitics - SPEF

Pass/Fail

Pass/Fail

Pass/Fail

Figure 2.7: Overview of the hierarchical flow for design of C-LIN and

D-LIN

and deactivation the glitches can be completely eliminated.

Another issue is the clock skew among memory layers which has been analysed

thoroughly in [68], [69]. Moreover, synchronizers can be utilized between layers to

correctly transfer data between clock domains [70]. Clock trees with tunable delays

and phase detectors can also automatically remove the clock skews [71]. In order to

maintain the combinational nature of the interconnection network, we utilize only the

simplest method which is increasing clock margins during the Clock Tree Synthesis

(CTS) phase.

2.6 Experimental Results

In this section, we discuss the experimental results for the low-latency networks in terms

of timing performance and silicon area. Our baseline 2D-LIN platform is a multi-core

25

system composed by 16 (STxP701) PEs that share the on-chip TCDM with 32 memory

banks (BankingFactor=2) each having a size ranging from 8 KB to 64 KB. While in

C-LIN and D-LIN, bank size is fixed (8 KB), and memory size increases modularly

by changing the number of stacked layers from 1 to 8. For physical implementation

we followed the hierarchical design flow illustrated in Figure 2.7. After a preliminary

synthesis and timing budgeting of the whole design; topographical synthesis and place

and route (P&R) are performed separately for logic and one memory layer. Then, the

layers are assembled together and a capacitive load of 30 fF is used to model each TSV

[22] (The capacitance of the micro-bumps is negligible compared to the TSV itself (less

than 2 fF) [72]). Finally for the sign-off step, post place&route net-list along with

the parasitic are fed into Primetime and a multi-corner static timing analysis (STA) is

performed. If the obtained results are not suitable, the flow should iterate once more

with possible changes in constraints.

We explored different configurations in terms of memory size embedded in the

design, with metrics derived from the state-of-the-art technology and tools. Our design

flow is based on the STM CMOS-28nm Low Power technology library, with a Multi

VTH synthesis flow with Synopsys Design Compiler Graphical (2011.09), and Place and

Route with Cadence Encounter Digital Implementation (10.1), and the sign-off tasks

in Primetime (2011.09). We assumed that memory dies in the 3D designs are stacked

on top of the logic die, which provides power supply, clock, and data/control signals

to them. The logic die has been designed using 10 metal layers, while this number

has been reduced to 7 in memory dies because of lower routing complexity2. Memories

and PEs have been implemented using pre-designed hard macros. As can be seen in

Figure 2.6.a, the first memory layer is stacked over the logic layer using the face-to-face

technology, as the others use face-to-back stacking. This eliminates the need for TSVs

between the first two layers. In addition, the operating voltage of the memory layers has

been increased slightly over the logic layer. This allows for removal of the level-shifter

inside the C cell, and a reduction in its layout size and delay (Considering the fact

that for 32 memory banks about 1000 C cells are required). Lastly, we implemented

our solutions with two different bonding techniques: Micro-bumps and Cu-Cu Direct

Bonding [74].

In this section, first we try to present the benefits of the logarithmic interconnect

1STxP70 is a cost effective 32-bit ASIP RISC core implemented using a 7-stage pipeline for reaching

600 MHz, which can execute up to two instructions per clock cycle (dual issue) [44].
2This reduction would lead to a significantly reduced mask and production cost, which is an example

of how 3D integration enables cost optimization [73].

26

40

50

60

70

80

90

100

110

120

0 50 100 150 200 250

To
ta

l E
xe

cu
tio

n
Ti

m
e

(μ
 S

)

LIN

NoC

Working Set Size (KBytes)

16KBytes

Figure 2.8: Performance comparison between NoC and LIN under

different working set sizes.

in comparison with existing interconnect solutions, then we explore the design alter-

natives. Finally, we discuss the obtained results.

2.6.1 Comparison with Other Topologies

First, we compare LIN with an extremely high-performance NoC to show the supe-

riority of low-latency interconnects in processor-to-L1-memory context. We modeled

our baseline LIN(16 × 32) and a Mesh-NoC(4 × 4) presented in [75] in a home made

cycle accurate trace simulator, fed with memory traces from MPARM [76] running

a 16 PE configuration. For LIN, we assumed a clock frequency of 400MHz, Pseudo

Round-Robin arbitration, and single cycle access to memory banks. While for the NoC

we assumed a clock frequency of 5GHz (this is very optimistic for a low-power process

such as STM CMOS-28nm) and a flit size of 32bits. We use pipelined 6-port switches

[75] (N, S, E, W, P, M) with fall through latency of 5 clock cycles, and we assume

the link latency to be 1 cycle. X-Y routing is assumed, as well. In our comparison

we use memory banks of 8KB from the STM 28nm CMOS technology, with an access

time of 1ns. We have attached two of these banks to each NoC switch aggregating a

total of 32 banks. In the first experiment, each PE sends uniform traffic to the address

range of [HomeBank ± WorkingSetSize/2], for 10000 transactions. As Figure 2.8

illustrates, when WorkingSetSize is small, every PE accesses its home bank only and

NoC performs slightly better than LIN. However, as PEs start to access remote banks,

NoC’s execution time increases rapidly. While on the other hand, LIN’s execution time

recovers after an increase, because of load distribution among multiple banks.

27

Table 2.2: Performance comparison between LIN, NoC, and Bus ex-

ecuting different benchmarks.
Benchmarks FAST CT SIFT

LIN Execution Time (ms) 5.59 79.89 4464.07
AMAT (ns) 6.54 6.47 6.46

NoC Execution Time (ms) 8.21 106.92 4943.43
AMAT (ns) 7.53 7.09 6.57

Bus Execution Time (ms) 46.40 730.51 30799.99
AMAT (ns) 81.30 82.40 81.90

For the second experiment, three embedded parallel image processing benchmarks

[77] have been executed, and a time-division multiplexing bus has been modeled in our

simulator, as well. Table 2.2 presents the results, where FAST is a corner detection

algorithm, SIFT is an scale invariant feature transform, and CT is a color tracking

algorithm. In all cases LIN performs better than NoC, and bus results are an upper

bound to the execution time since all accesses result in contention. The reason for this

advantage is that even though mechanisms such as speculative and look-ahead routing

allow for a bandwidth of about 1 flit/cycle in NoCs, yet they are not beneficial in

processor-to-L1-memory context. Because traffics do not have a bursty nature, and

small packets can not benefit from the huge bandwidth provided by NoC switches. In

addition, memory access latency is critical in this context since it can lead to stalling

the pipeline of the processors. Also it should be noted that there is an opportunity

to further optimize the speed of LIN using custom circuit techniques such as [62].

However, this will result in incompatibility with standard technology libraries provided

by silicon foundries and remove the configurability features of LIN.

Next, table 2.3 compares the post-layout area between LIN (16×32) and three other

NoCs. All results have been scaled to 28 nm technology, and NoC switches have been

scaled to flit size of F = 32b by a factor of (F2/F1)
1.8 (extracted from Orion 2.0 [78]).

As can be seen, NoCs require much larger areas than LIN, which is due to the large

number of memory elements used in them. This is while LIN is purely combinational

with no pipelining or buffering elements.

2.6.2 Design Alternatives

This subsection presents the results of timing performance and silicon area for our

three designs: 2D-LIN, C-LIN, and D-LIN; implemented using two different bonding

28

Table 2.3: Comparison of post-layout area between LIN and NoCs.

Interconnect Cardinality Area (mm2)

LIN (p=16,m=32) 0.09

NoC-3.6GHz [79] 4x4 0.29

MIRA (3DM) [80] 4x4 0.40

MIRA (3DM-E) [80] 4x4 0.98

NoC-5.1GHz [75] 4x4 1.02

techniques. The area for PE hard macros (STxP70) is about 0.25mm2 and for each

8KB memory bank about 0.02mm2. Also for the Micro-bumps a minimum pitch of

40μm × 50μm, and for the direct bonding a more dense pitch of 10μm × 10μm have

been used [74]. In addition, as a corner case, the ESD protection circuitry has been

removed from the direct bonding technique. The resulting layouts after full placement

and routing for 2D-LIN and D-LIN (Cu-Cu direct bonding) are depicted in Figure 2.9.

Figure 2.10.a illustrates the silicon area (mm2) for 2D and 3D implementations.

As can be seen, the 2D die size increases with the embedded on-chip SRAM, except

for the first two configuration, where PE obstructions and design geometry dominate

the total design area (See also Figure 2.9.a). As the number of memory banks in-

creases, total area grows, and large channels should be allocated for wires to reduce

the routing congestion. Relative distances increase, and a massive number of buffers

are inserted by the synthesis tool. In the 3D configurations, memory dies are equipped

with a large number of TSVs, therefore a large portion of the die is allocated for TSV

placement (routing obstruction and keep-out region for placement). This is illustrated

in Figure 2.9.d. It should be noted that in this experiment, C-LIN contains 2688

TSVs, while, in D-LIN this number is reduced by 47% to 1424. The effect of TSVs is

intensified when Micro-Bumps are used because of the large pitch.

Timing results are depicted in Figure 2.10.b where 8 memory layers have been

stacked for 3D configurations. It can be seen that, C-LIN and D-LIN improve the

performance over 2D-LIN with the same memory size by small factors of 6.7% and

3.7% respectively, while it is usually believed that TSVs can greatly reduce wire length

and improve clock frequency. In order to explain this, consider the 2D planar design

with 2MB of memory, for which we obtained a maximum frequency of 324MHz. While,

for the C-LIN design with Cu-Cu direct bonding, we obtained a maximum frequency

of 348MHz. If we assume that TSVs are ideal with zero capacitance, we can obtain

a maximum frequency of 433MHz for the 3D design (which is comparable with the

29

���� ���� ���� ���� ���	 ���
���� ����

���
 ���� ����� ����� ����� ����	����� �����

	��

����������������

���

����
�

����

���� ���� ���� ����

���	

����

���� ���
 ����

���
 ���� ����� �����

����� ����� ����	 �����

�������
����

	
��
����
	�����������

���	�

�����

����
�

���

��������!"

���

�������
����

���
������
�����

���!��

���!�
�

���"�
�

#�

�����

���

���

���

$�
��$�
�

$�
��%�
&
'()'(
����
*�%
+#�+�

��

����*�
&�+��.�*/��0����
������1

���

Figure 2.9: Physical implementation of the designs: 2-LIN with 2MB

SRAM (a), Details of the landing pads on redistribution layer (RDL)

in D-LIN (b), Logic Die of D-LIN with Cu-Cu Direct bonding (c),

Memory die of D-LIN with details of the TSV Matrix (d), 3D Stacking

with 4 stacked memory dies (e).

frequency of a 2D design with 256KB of memory). Comparing this clock frequency

with 348MHz for C-LIN gives that 0.56ns of the critical path is devoted only to driving

the TSVs, or in other words, TSVs and their drivers drop the performance over the

ideal case by a factor of 24% (See Figure 2.11). This situation can be further explained

considering the 30fF capacitive load of TSVs, resulting in a total load of 240fF in a stack

of 8 TSVs, which is roughly equal to 4mm ofMetal8 wire having a coupling capacitance

30

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

256K 512K 1M 2M 256K 256K 256K 256K

L Die M Die L Die M Die L Die M Die L Die M Die

uBUMP Cu-Cu uBUMP Cu-Cu

C-LIN D-LIN

2D 3D

Ar
ea

 [m
m

^2
]

L Die: Logic Die
M Die: Memory Die

Memory Size
0

50

100

150

200

250

300

350

400

450

500

256K 512K 1M 2M Up to 2M Up to 2M Up to 2M Up to 2M

uBUMP Cu-Cu uBUMP Cu-Cu

C-LIN D-LIN

2D 3D

M
ax

im
um

 F
re

qu
en

cy
 [M

Hz
]

Memory Size

a) b)

Figure 2.10: Comparison of silicon area (mm2) (a), Maximum achiev-

able frequency (MHz) (b).

Ideal TSVs
2.3ns (433MHz)

TSVs
0.35ns

2D Design
3.08 ns (324MHz)

P+uB
0.21ns

Protection Circuits +
 uBumps

Figure 2.11: Effect of TSVs and their drivers on the critical path of

the 3D designs.

of 66fF/mm. This explains that current TSVs are not yet scaled enough to provide a

major performance boost over 2D planar designs. Moreover, from comparison of results

between micro-bumps and direct copper bonding without protection circuits, it can be

estimated that micro-bumps and protection circuits further drop the performance by

a factor of about 9%, consuming 0.21ns of the critical path.

One last point to mention is that, System Latency in [63] is calculated as (Network

Latency + Memory Access Time), and by maintaining a fixed BankingFactor (reduc-

tion in number of banks per layers by addition of new layers), it has been shown that

both system and network latency decrease significantly. While, in our experiments we

showed that a major contributor to the performance drop is the latency of the TSVs

and their drivers, and in order to support our argument we performed timing charac-

terization of the whole 3D stack considering the TSV loads and their driver circuits,

and derived maximum achievable frequency directly from the post-layout results of the

physical synthesis tool.

31

2.6.3 Discussion

As our results demonstrated, the area and speed of the TSVs including their protection

circuitry in current 3D technologies are not yet much better that the on-chip wires.

However, 3D TSV technology can help reduce the overall cost of the die stack signif-

icantly, by implementation of the memory dies at lower costs: Using reduced number

of masks or different technology options (e.g. different thresholds or different oxide

thickness for the memory transistors to minimize leakage) to have better memories

compared to the ones that could be implemented on the same die as the logic [73].

Furthermore, long critical paths in our single cycle design may suggest that current

TSVs can be more beneficial in higher levels of the memory hierarchy where latency

is not critical and pipelining can break the critical paths (e.g. [55]). Lastly, it should

be noted that, as the network gets larger, the P&R effects such as long wiring buffers

and routing congestion become increasingly important, and we believe that delays will

increase even more in larger designs. Also, it should be noted that in a real design

back-end, multi-corner and possibly multi-mode analysis should be performed which

will make convergence even more difficult. Therefore, we suggest to build processing

clusters with tightly coupled memories using proposed LIN alternatives, and use NoC

as another level of hierarchy for inter-cluster communication, to benefit from both low

latency of LIN and scalability of NoC.

2.7 Summary

In this chapter we presented two synthesizable network architectures, C-LIN and D-

LIN derived from the Logarithmic Interconnect (LIN), which can be integrated with

3D Stacking technology to provide access to tightly coupled shared memory banks

stacked over multi-core clusters. Architectural simulation results demonstrated that in

processor-to-L1-memory context, LIN outperforms both traditional NoCs and simple

time-division multiplexing buses. We devised a modular design strategy which allows

users to stack multiple memory dies and create different height stacks with identical

dies, without the need for different masks for dies at different levels in the stack. The

designs have been explored in terms of area and latency, and full layout results show

that for large 2D designs the main problems are routing congestion, signal integrity,

and the mask cost. Therefore, our proposed 3D designs offer better scalability, however,

in terms of delay they are not so competitive with their 2D planar counterpart. This

is mainly due to the fact that the pipelines of the processors are extremely sensitive

32

to the access latency of L1 memories, and current TSV technologies are not yet so

competitive with on-chip wires. For this reason, small sized L1 memories are not

beneficial in terms of performance to be moved towards the third dimension. This

motivates us study the effectiveness of 3D integration in the L2 memories shared by

multiple clusters in chapter 3.

33

Chapter 3

3D Stacking of L2 Scratchpad

Memories

In chapter 2, we observed that 3D-integration in the processor-to-L1-memory context,

with current technologies, can only provide higher flexibility, modularity, and possi-

ble cost reduction opportunities. But from performance point of view, it can be even

harmful due to relatively small sizes of the L1 memories and high sensitivity of the

processor’s pipeline to their memory access latency. In this chapter, we focus on out of

the cluster L2 scratchpad memories, instead. We believe that they are more suitable

candidates for 3D integration because of their large required size and higher tolerance

to latency and its variations. We present a synthesizable 3D-stackable L2 memory IP

component (called 3D-NUMA), which can be attached to a cluster-based multi-core

platform through its Network-on-chip Interfaces (NIs), and provide high-bandwidth

memory access with low average latency. 3D-NUMA is a scalable non-uniform mem-

ory access (NUMA) architecture which allows stacking of multiple identical memory

dies, supports multiple outstanding transactions, and achieves high clock frequencies

due to its highly pipelined nature. We implemented our design with STMicroelec-

tronics CMOS-28nm Low Power Technology, and several experiments are performed to

evaluate it from different aspects.

3.1 Motivations and Challenges

3D Integration has been explored in academia and industry for over a decade now, and

a wide variety of technologies, materials, and processes have been used for research

and demonstrations. Several vertical interconnect technologies have been explored,

34

including wire bonding, microbump, contactless (capacitive or inductive), and through-

silicon-via (TSV) vertical interconnect [20]. Among them, the TSV approach has

gained popularity, due to the high interconnection density.

Complex System in Package (SiP) solutions offered by companies such as TESSERA

[38], STATSChipPAC [40], Amkor Technology [36], and INVENSAS [37], address a po-

tentially large need in the market and are being recognized as the next industry thrust.

Heterogeneous integration, system miniaturization and flexibility, and block level testa-

bility are some of the several features offered by SiP solutions. In addition, they provide

a path to integration of planar IC with 3D-IC technology [41]. TSV Silicon Interposer

(TSI) is a good example of how heterogeneous dies with mixed technologies can be in-

tegrated at higher levels and greatly reduce die complexity and cost [39]. This type of

“technology disaggregation” offers the opportunity to optimize the silicon technology

for each individual IP, increases the capabilities of the products offered to the users,

provides more memory options and storage per ASIC, and more importantly, reduces

yield loss due to large dies [40]. On the other hand, with the miniaturization of pack-

ages and integration of different dies, some issues such as heat dissipation and power

delivery have raised a lot of concerns. As stated in [81], 3D stacking has a higher im-

pact on IR-drop than original 2D designs, since it inherently increases the resistance of

the power delivery network (PDN) which directly impacts IR-drop. Moreover, stacking

of dies over each other results in much higher power densities, and exacerbates heat

dissipation issues [82].

In this chapter, we focus on L2 scratchpad memories for three-dimensional integra-

tion, because of their relatively lower sensitivity to access latency and its variations.

Also because, most application processors and almost all mobile SoCs feature a large

on-chip L2 memory which is shared by multiple cores. Snapdragon 800 Processors by

Qualcomm with 2MB of L2 Cache [32], Exynos 5 by Samsung with 1MB of L2 Cache

[33], and Keystone II by Texas Instruments with 4MB of Shared L2 memory plus 4MB

of private L2 space configurable as cache or SPM [83], are great examples in this con-

text. We present 3D-NUMA, an L2 memory IP designed for integration as a 3D stacked

module, which can be attached to a cluster based multi-core platform through its NoC

Interfaces (NIs) (See Figure 3.1), offering high-bandwidth memory access with low av-

erage latency. Our proposed IP is a synthesizable and scalable non-uniform memory

access (NUMA) architecture which allows modular stacking of multiple memory dies

with identical layouts using a single mask set, supports multiple in-flight transactions,

and achieves high clock frequency, thanks to its highly pipelined nature.

35

Global
Interco.
(NoC)

PE L1
$

PE L1
$

PE L1
$

R

Processing
Cluster

M
ul

ti-
po

rt
ed

M
em

or
y

Co
nt

ro
lle

r

PE L1
$

PE L1
$

PE L1
$

R

Memory Map

L3
Mem.

L2
Mem.

Periph.

0x00000000

0xFFFFFFFF

0x10000000

0x10400000

Logic
Die (LD)

Mem. Dies
(MDs)

y paMMyromemMeM

PE Die (PD)

To
 m

ai
n

L3
M

em
or

y
(o

ff
-c

hi
p)

MD0

Logic Die

MD1
MD2

Mem Dies

LDL
3D-NUMA L2 Memory

M
em

or
y

Co
nt

ro
lle

r

L2

M
em

or
yProcessing

Cluster

Legends

R Reordering NoC If.

PE Processing Element
L1 $ L1 Cache (Inst.+Data)

Figure 3.1: Overview of the target architecture and memory map for

3D-NUMA memory IP

This chapter is organized as follows: Related research efforts are discussed in sec-

tion 3.2. An overview of 3D-NUMA is presented in section 3.3. Post-layout synthesis

results are presented in section 3.5. Performance, power, and temperature analysis are

performed in section 3.6 and section 3.7. Issues related to packaging and manufactur-

ing are discussed in section 3.8 and section 3.9, and lastly, a summary of the obtained

results is presented in section 3.10.

3.2 Related Works

Advanced packaging technologies provide new opportunities for heterogeneous inte-

gration, power delivery, cost optimization, and thermal management. Stacked Chip

Scale Packaging (SCSP) of Amkor Technology [36] is one such example which provides

several different 2.5D/3D options for integration of heterogeneous dies in a package.

Among other packaging technologies, Dual DRAM Package (DDP), Dual Face Down

(DFD), and Quad Face Down (QFD) [37][38] with the main target of DRAMs provide

complex forms of wire-bonding which may be adopted even for other levels in the mem-

ory hierarchy. Technologies such as TSV Silicon Interposer (TSI) [39][40] and wafer

reconstitution [41] provide even more flexibility in hybrid 2.5D/3D stacking. TSIs en-

able stacking of different dies on both sides to achieve a better utilization of space and

to facilitate heat transfer of high power chips. Wafer reconstitution provides electrical

connections from the chip pads to the interconnects by means of an artificial wafer.

Redistributed Chip Packaging (RCP) [41] developed by Freescale Semiconductor of-

fers scalable chip-scale packaging and multi-die heterogeneous integration. In addition,

36

Package on Package (PoP) stacking is supported in RCP by means of Through-Package

Vias.

3D stacking of DRAM memories as the last level in the memory hierarchy is orthog-

onal and complementary to the focus of this chapter, and will be studied in chapter 4.

However, 3D stacking of SRAM memories can provide more flexibility, opportunities

for process optimization, and simplified supply chain. Since dies are homogeneous from

a technology viewpoint, i.e. they can be manufactured in the same fab as logic dies.

Needless to say, given their low density and high cost, SRAM based memories are ob-

viously not a viable DRAM replacement for main memory, and they should be used

in lower levels of the memory hierarchy. We should add here that, embedding DRAM

memories in the lower levels of memory hierarchy is also another design alternative.

Tri-gate CMOS Embedded DRAM (eDRAM) designed in 22nm technology by Intel

[18], and the 45nm SOI eDRAM by IBM [84] are two examples which can offer better

area utilization, performance, and even power consumption compared to the SRAM

cells in the same technology nodes [85][86]. However, these technologies require special

process options and they are expensive compared to the state-of-the-art memories. In

our design we use industrialized SRAMs, nevertheless, our proposed architecture for

L2 memory can be easily adapted to use embedded DRAM, as well.

3D stacked caches with wide I/O interfaces [28][29], and 3D stacked non-uniform

cache architectures (NUCA) [30][25][31] are alternative solutions for moving towards

the third dimension. In [28], the authors have demonstrated that implementing the

memory bus between a L2 cache and an on-chip main memory as wide as a cache line,

which operates at core’s clock frequency, can provide the maximum bandwidth that

the L2 cache can consume and, thus, contribute to a large gain in system performance.

In [29] a 3D stacked SRAM cache with wide vertical I/O interconnections has been fab-

ricated at 0.18μm. However, in spite of all advantages in 3D stacked caches with wide

I/O interfaces, a centralized shared memory still lacks scalability [87]. On the other

hand, NoC based 3D stacked NUCA brings a scalable and modular communication

infrastructure. In 3D stacked NUCA, the stacked cache is divided into multiple banks

with different access latencies according to their locations to cores [30]. Connecting

each processing core to the 3D stacked NUCA cache separately through its own TSVs

enables high bandwidth and parallel communications between cores and stacked cache

banks. In [25], some advancements in trying to solve the DRAM issues are presented

with real chip results for WIOMING Multiprocessor SoC. An innovative distributed

caching mechanism is proposed to reduce memory access latency and external memory

37

bandwidth requirements. Lastly, [31] uses SRAM row cache to improve both perfor-

mance and energy in a 3D stacked DRAM. While 3D stacking of caches is also an

alternative solution, in this work we focus only on design of large on-chip memories

which are mapped in the address space to accommodate data structures which must

remain on-chip for sake of energy efficiency, and that are not well managed through

caches.

3D stacked scratchpad memories (SPM) have been studied in [64][65][55]. In [64],

the authors proposed a configurable memory die that consists of many uniform memory

elements, which are connected to each other with a switch-based 3D mesh intercon-

nection network. In [88], customizable redistribution layer (RDL) routing for a con-

figurable 3D stacked memory has been proposed. The RDL enables connecting each

core and memory cell without any switch connection. In [65] a prototype of 3D stacked

SPM has been published. It is a two-layer 3D IC, where the logic die consists of 64

general-purpose processor cores running at 277 MHz, and the memory die contains 256

KB SRAM. Each processor core is directly connected to each 4 KB of SRAM scratch-

pad data memory. All these works focus on 3D stacking of private memory banks.

While, in [55], a logarithmic interconnect provides low latency access to a stack of

shared L2 SPM dies. The main difference between this work and the presented works

is that we propose a high performance and scalable 3D non-uniform memory access

(NUMA) architecture for L2 SPMs, which allows modular stacking of multiple memory

dies with identical dies with a single mask set. Moreover, we have implemented our

proposed solution using the state-of-the-art technology libraries and performed several

experiments on power, performance, temperature, etc.

Focusing on die stack ordering strategies, several different configurations are pos-

sible to be used for a 3D stack consisting of memories, logic, and processing elements

(PEs). 3D stacked memories initially had their memory dies placed over the PE die.

For example, in [64] one layer of scratchpad memory is stacked over the PE die. In [89]

multiple levels of DRAM dies are stacked over a PE die composed by processors and

caches. In [90] DRAM dies are stacked over an interposer, while the logic die is placed

under it. And even in the initial proposal of Hybrid Memory Cube (HMC) by micron

multiple DRAM dies have been stacked over a logic die [91]. One drawback with these

solutions is the difficulty in heat dissipation of the PE or the logic dies. Most recently,

3D configurations with PE dies stacked over the memory dies have been proposed. In

[71] two face-to-face core and cache dies are stacked back-to-back and then placed over

multiple DRAM dies. In [82] similarly, PE die is stacked over a cache die and then

38

placed on top of multiple memory dies. A first-order thermal analysis shows improved

heat transfer in this configuration. In [92], an unthinned PE die is stacked over mul-

tiple thinned DRAM dies, with a heat-sink placed over them. For power delivery to

the PE die, Through-DRAM TSVs are utilized. Despite heat improvement in all these

solutions, they aggravate the very important problem of power delivery to the high-

power dies (i.e. PE and logic dies) stacked on the top levels. Power TSVs consume a

large percentage of die area, and more importantly, IR-drop and voltage droops in the

power distribution networks increase to a great extent [81].

One promising solution which can solve the drawbacks of the two mentioned con-

figurations, is through introduction of a double sided silicon interposer to the stack

[93] (see Figure 3.18). This way, high power dies can be stacked on its top, while low

power dies such as memories are placed on bottom. RDL metal layers on both sides

of the interposer along with TSVs passing through it provide connections between the

two sides. In [94] one such solution is proposed with a logic controller stacked on top

of a substrate. While the whole DRAM stack along with its controller are placed on

the bottom of the substrate. Similarly in [95] packaging requirements for such DRAM

stack design is investigated, and even a back-side heat slug is utilized for heat dissi-

pation of the low-power dies on the bottom side. To our knowledge, our work is the

first one with physical implementation of a 3D stacked L2 scratchpad memory and an

extensive evaluation of several different parameters.

3.3 3D-NUMA Memory IP

3D-NUMA is a 3D L2 scratchpad memory designed to be attached to cluster based

multi-core platforms with a global NoC connecting all the clusters, and each clus-

ter composed by multiple tightly coupled processors (illustrated in Figure 3.1). This

memory IP is well-suited for serving L1 cache refill/write-back commands, since it has

been designed to serve load and store packets of different sizes (up to 64 Bytes). It

should be noted that 3D-NUMA is mapped in the main address space and it supports

caching similar to the main memory, nevertheless, actual caching mechanisms (e.g.

directory/snooping mechanisms) are not implemented in this work, and pre-recorded

traces are used for performance analysis (See section 3.6). The word-level-interleaved

organization utilized in this memory system allows for breaking a Load64Bytes com-

mand into Load8Bytes commands and dispatching them to 8 parallel memory cones

(See Figure 3.2.a). This way, 3D-NUMA can offer much higher bandwidth than simple

39

N
oC

 In
te

rf
ac

e
1 Req.

Engine

Read Buffer

N
oC

 In
te

rf
ac

e
N Req.

Engine

Read Buffer

Resp.
Eng.

Resp.
Eng.

Arbitration
Tree

Fork

Join

Memory
Array

Fork

Join

Memory
Array

Fork

Join

Memory
Array

Fork

Join

Memory
Array

PC PC

PC PC

M
em

or
y

Co
ne

 0
M

em
or

y
Co

ne
 C

L

C

N

C

MOT

Arbitration
Tree

a)

b)

JF1

JF2

Logic Die (LD) Mem Die 0 Mem Die L

V11

V1C

VN1

VNC

W11

W1C

WN1

WNC

V11

W
I
R
I
N
G

VN1

V1C

VNC

W1

WC

W1

WC

Resp.
Valid

W1C

WNC

W1

WC

Resp.
Valid

W1C

WNC

V1

VC

Pipeline Registers
3D Partitioning

Response Path
Request Path

Clock

Patient Clock

FIFO

Legends
PC

Parameter Symbol Values

Number of NoC Interfaces N 1, 2, 4, …, 16

Number of Memory Cones C 1, 2, 4, …, 16

Maximum Outstanding Transactions MOT 1, 2, 4, …, 16

Number of Stacked Memory Dies (Layers) L 1, 2, 4, 8

Size of Each Memory Array S Any (32 KB)

Width of Data Bus W Any (64 bits)

Width of Address Bus A Any (32 bits)

Figure 3.2: Block diagram of the 3D-NUMA memory IP (a) and its

configurable parameters (b).

bank-level-interleaved memories directly attached to the NoC interfaces (See section 3.6

for detailed results).

An overview of the 3D-NUMA L2 memory IP is illustrated in Figure 3.2.a. When

request packets of different sizes arrive at the NoC Interfaces (NIs) (Load/Store{1, 2,
4,..., 64}Bytes), the Request Engines (REs) break the input packet into smaller units

called chunks and issues them in parallel to the Arbitration Trees (ATs), where a pseudo

round-robin arbitration is performed among the requests arriving from different NIs

(Vij and Wij in Figure 3.2.a show the wirings for requests and responses, respectively).

Winners enter the memory pipeline, while the losers wait for another cycle behind

40

the arbitration trees. Each request travels through the memory pipeline, and in each

memory die a partial address check is performed in Fork to identify whether the request

belongs to that particular memory die. If matched, memory access is performed and a

response is returned in the response path through the Join modules. Response paths

are shared among the Read Buffers, and simple return-address decoders issue valid

signals (resp. valid component) to the destination. Since the response chunks arriving

from different memory cones may arrive out of order and at different times, a data

structure called Read Buffer (RB) is utilized to merge them, build response packets to

original requests, and serialize them through the NI. It should be noted that the access

time of the memory dies increases with their indices (Non-Uniform Memory Access

[NUMA] behaviour), since the memory dies are separated by pipeline registers and

packets flow through these registers in each cycle. This feature allows for scalability,

facilitates stacking of new memory dies with a single mask set, and modularly increases

the memory size without affecting the clock frequency (Effect of the number of stacked

dies on memory access time is studied in section IV). One should note that, such change

in a flat die would require a complete silicon re-spin.

The key property of this soft IP is configurability through several parameters illus-

trated in Figure 3.2.b. N is the number of independent NoC interfaces which are used

to attach 3D-NUMA to a NoC (the design of which follows AXI bus standard [96]). C

is the number of parallel memory cones. This parameter defines the maximum possi-

ble number of words which can be fetched in parallel during a load operation. MOT

defines the maximum allowed in-flight transactions inside the memory system. This

parameter directly affects the depth and complexity of the read buffers (described in

the next subsection) while it has no effect on the memory pipeline and the other com-

ponents. L is the number of the stacked dies. S defines the size of each memory array,

and finally, W and A define the widths of the data bus and address bus, respectively.

One last point to mention is that this memory organization does not maintain the

order of the input packets, and may reorder them due to its NUMA nature. Therefore,

existence of reorder-buffers at the refill ports of L1 caches or the DMA engines in the

clusters is mandatory. This is not an unrealistic requirement, since most advanced

cache interfaces and DMAs handle Out Of Order (OOO) NoC responses [96].

41

Control Buffer
LID

Control
WValid

MOT

R
WTag

R W
WTag

Rdata

LID
Wdata
Valid

LIDTag

MOMOOTTOOTTOO

R W
WTag

Rdata

LID
Wdata
Valid

LIDTag

 C

LID

Valid

Tag

Ready Buffer

C

Data Buffer

Response
Selector

Control
Valid

W

WTag
WValid

(3)
(Read Response)

To Response
Engine

(2)
(Write Response)

From Memory
Banks

(1)
(Allocate Response)

From Request
 Engine

AR

WR

RR

Stall0 3 1 2
W R

Tag FIFO

Tag

Figure 3.3: Implementation of the Read-Buffer for C = 2, MOT = 4.

3.4 Network Operation

When a request packet arrives at one of the NoC Interfaces illustrated in Figure 3.2.a,

it is forwarded to the Request Engine through a small queue. The request engine tries

to allocate a location for this packet inside the Read Buffer, and if succeeds, it will

the grant the original request, otherwise stalls it. After successful allocation of the

request in the Read Buffer, it will be broken into chunks (word-level-interleaved based

on its lower address bits), and each chunk is sent to a separate memory cone and

waits there for the arbitration tree in that cone to compete with requests from other

NoC Interfaces. The winner chunk is allowed to enter the memory pipeline and move

forward through the pipeline registers in each clock cycle. In the memory pipeline, Fork

and Join components are responsible for flow control and routing of the request to the

intended memory layer, and returning back the response to the NoC Interfaces. Read

Buffer component is described in the next subsection and other components follow it

afterwards.

42

3.4.1 Role of the Read Buffer

Read Buffer is one of the most important components in 3D-NUMA, as it serves for

different purposes: First, it allows for supporting multiple outstanding transactions and

decouples request and response paths completely, by accepting up to MOT requests

and granting them while their responses are not ready yet. This helps utilize the

bandwidth of the memory pipeline more efficiently. In addition, since response chunks

from different memory cones may return at different times, RB stores them temporarily

until they all become available. Finally, all the header and control bits of the input

packet are stored in the RB to avoid propagating them through the whole memory

pipeline. When response data returns from the memory pipeline, response packet is

built using this stored information.

The schematic view of the Read Buffer is illustrated in Figure 3.3. When a request

arrives at one of the Request Engines, it is allocated in the associated Read Buffer by

assigning a new Tag to it from the Tag FIFO (If the Tag FIFO becomes empty, the

request will be stalled). Next, all the header and control bits of the input packet are

stored in the Control Buffer to avoid propagating them through the whole memory

pipeline. Finally, the location associated with this Tag inside the Ready Buffer will be

cleared. All these operations are performed in parallel in the step shown in Figure 3.3

as Allocate Response (AR). A couple of cycles after issuing the request, the response

chunks return from different memory cones. Read Buffer accommodates them based on

their tag and partial address bits, and sets the ready bit for each one of them inside the

Ready Buffer. This step is shown as Write Response (WR). A response becomes ready

when all of its chunks have arrived from the memory pipeline. Then, a First-comes-

first-served (FCFS) arbitration is performed among all the ready responses inside the

Response Selector module, and winner is sent to the Response Engine along with its

header and control bits which are necessary to route back the response. Finally, its

location is marked as empty for accommodation of new requests (Read Response (RR)

step).

3.4.2 Flow Control Components

Flow control in the logic die of 3D-NUMA is based on request-grant handshaking and

supports full bandwidth operation of 1 transaction per cycle, whereas, the memory

pipeline has been designed in a grant-less and straightforward fashion. In fact, when-

ever a requests chunk enters the memory pipeline, a location for its response is already

43

RAM

Elements

Head Tail

!= !=
w_req_i

w_data_i

0DEPTH-1

not_full not_empty

w_gnt_o wen

++

++

wdata

waddr

--

raddr

rdata

r_gnt_i

r_data_o

r_req_o

++OO

O O

incr decr

Datao

Valido

Data1

Data0

Valid0

Valid1 Previous
Layer

NE0

NE1Ro
un

d
Ro

bi
n

=

Reqi

Addi

La
ye

rID

Gnto
Gnti0
Reqo0

Gnti1
Reqo1

0

1

To Next
Layer

To This
Memory

Local
Memory

a) Request-Grant FIFO

b) Join c) Fork

Figure 3.4: Schematic view of request-grant FIFOs (a), Join (b), Fork

(c) components.

reserved in RB, therefore, there is no possibility that this request or its response get

stalled. This is another benefit of RB which helps remove the grant signal from the

memory pipeline, and greatly simplifies its hardware by replacing complex request-

grant FIFOs with simple pipelining flip-flops (illustrated in red color in Figure 3.2.a).

Fork is a combinational module which simply compares the address of the request

chunk with LayerID (index of current memory die/layer) and if matches, it sends the

chunk to the memory cut on this layer, otherwise forwards it to the next layer. While,

Join receives response chunks from this layer and the upper memory layer through

small FIFOs designed for this purpose, and chooses between them in a round-robin

fashion, and forwards the winner to lower layers. A schematic view of the Fork and Join

components, as well as, the request-grant FIFOs is illustrated in Figure 3.4. Request

Engine is responsible for decoding request packets and issuing them to the memory

pipeline. Load packets from the NoC Interface fit in a single flit, since they do not

have any payload. Therefore, Request Engine receives the whole packet in a single cycle

and then issues it to parallel memory cones (Only aligned access is supported). While,

Store packets have several flits, therefore, Request Engine issues requests to associated

memory cones serially, as it receives each flit. Lastly, Response Engine receives response

packets which are ready from Read Buffer, and serializes them into multiple flits to the

44

Traces
ModelSim PrimeTime

Design
Compiler

Encounter
Area

Floorplan
Timing

3D
Stacks

Power Thermal
Testbench

Verification
Models

bench

Constraints

elSim P

Netlist
Parasitics

Floorplan RTL

Power
Traces

Switching
Activity

3D
NUMA

HDL

Parsec
V2.1

Benchmark
Suite

Front-end Back-end

Performance
MAT, BW, …

Figure 3.5: Experimental setup for design and exploration of 3D-

NUMA

NoC Interface. In case of Load commands, a multi-flit packet is returned, while for

Store, only a single flit acknowledge packet is returned. It should be noted that, three

different arbiters are advocated in design of 3D-NUMA to resolve events happening

in the same cycle. Arbitration Tree (See Figure 3.2.a) is a modified version of the

Logarithmic Interconnect presented in the previous chapter which performs Pseudo-

round-robin arbitration over the input requests, and is modified to support grant-

based handshaking. Join module uses a simple Round-robin arbiter implemented as a

toggle flip-flop. And a FIFO based implementation of First-come, first-served (FCFS)

has been implemented inside the Response Selector (See Figure 3.3). All mentioned

arbitration algorithms have been chosen carefully to be fair, otherwise they can result

in starvation.

3.5 Design Implementation

An overview of the experimental setup for design and exploration of the 3D-NUMA

memory IP is illustrated in Figure 3.5. The individual steps will be described in

this section and the followings. Physical design of 3D-NUMA has been performed

45

Memory: High-density macros
(STM.) S=32KB

Cycle Time 1.04ns

N=16
(NoC
Ports)

C=16
(Memory
Cones)

L=8 (Mem. Dies)

Total L2
Memory:

4MB

MOT=8

Width=64b
Bursts=8B-64B

Figure 3.6: Schematic view of the 3D-NUMA design to implement

based on the STM Bulk CMOS-28nm Low Power technology library, with a Multi VTH

synthesis flow with Synopsys Design Compiler Graphical, and P&R in Cadence SoC

Encounter Digital Implementation. The baseline 3D-NUMA memory IP consists of one

Logic Die (LD) with 16 NoC Interfaces (N) and 8 (L) identical Memory Dies (MD)

stacked over it. The number of parallel memory cones is 16 (C), maximum supported

address width is 32 bits (A), width of the data bus is 64 bits (D), and the maximum

number of outstanding transactions is equal to 8 (MOT) for each NoC interface. The

schematic view of the design to be implemented is shown in Figure 3.6. For the memory

arrays, high density industrial hard macros (S=32KB, W=64bits), provided by the

STMicroelectronics company in the same technology, have been utilized. This is to

provide an access granularity of 64-bits, while the burst-length can flexibly range from

8Bytes to 64Bytes. The access time of these memories is 0.786ns with a cycle time

of 1.04ns. Up to a total of 4 MB of stacked L2 SPM can be provided by this IP. NoC

Interfaces have been implemented using pre-designed hard macros, as well, and for the

memory elements inside the Read Buffers small hard macros of 16 × 64 bits are utilized.

All other components have been synthesized as Soft IPs. The logic die is designed

using 10 metal layers, while this number is reduced to 8 in memory dies because of

lower routing complexity. This configuration has been used for all experiments, unless

otherwise stated.

3D clock distribution and delivery have been analysed thoroughly in [68][97], and

46

clock skew among layers can be dealt with synchronizers [70] or clock trees with tunable

delays and phase detectors [71]; In this design we have assumed a synchronous 2.0ns

clock with ample margins propagating through dedicated TSVs to all stacked memory

dies. Clock skew has been handled through design margins similarly to the 2D case.

For the TSVs we used via-first technology with Cu-Cu Direct Bonding technique and

a pitch of 10μm× 10μm [22] (as the state-of-the-art for high volume production-ready

TSVs). A capacitive load of 30fF [22] has been used to model them, and an extra

margin of 140 ps has been added to the output signals which are captured by flip-flops

(FFs) in the adjacent memory dies (setup time of the FFs), during the timing analysis

phase.

TSV fabrication yield is a crucial parameter in manufacturing yield and cost of the

final stack. For this reason, use of failure detection and repair mechanisms is highly

beneficial when the TSV process technology is not mature enough. In this design,

we have utilized a low overhead TSV repair mechanism capable of providing up to

95% recovery rate with an overhead of 1 TSV per each block of 25 [98]. The effect of

these TSVs on manufacturing yield and cost is studied in section 3.9. Moreover, area

overhead of the redundant TSVs along with their detection and recovery circuits are

considered in all other experiments. Due to the highly pipelined nature and enough

margins on the 3D clock networks, 3D-NUMA can easily tolerate the extra latency

introduced by the TSV repair mechanism.

Figure 3.7 illustrates a snapshot of the post place&route layouts. As can be seen,

an area of 0.31 mm2 is devoted to the TSV matrix (between LD and MD0) composed

by 3088 TSVs with a pitch of 10μm× 10μm, and for connection of LD to PE die (PD)

16 groups of 228 TSVs with areas of 0.02 mm2 are utilized. Placement and routing

under the TSVs have been avoided to prevent thermal stress during fabrication [99].

We should remind that the dies have been designed as generic as possible to be used

with different stacking configurations, therefore, in some of the configurations TSVs

can be eliminated because of face-to-face stacking (e.g. TSVs between LD and PD in

the MPI configuration in Figure 3.17.a). Each 32 KB memory array consumes about

0.062 mm2 of silicon, and the logic elements and routing channels on the memory die

add an extra overhead of 9% (apart from the area occupied by TSVs and power rings

around the memory hard macros). We would like to mention here that our 3D design is

capable of reducing die footprint by over 75% compared to its 2D counterpart. This can

provide the opportunity to improve power delivery, IR-Drops, and manufacturing yield

and cost. Of course this can happen only with enough maturity of the TSV technology

47

Logic Die (LD)

Read Buffer TSVs to PD

Req, Rsp TSVs to MD0
TSVs to MDn+1

32KB Memory Cut
(212x64bits)

Fo
rk

, J
oi

n

TSV

14
25

μm

14
30

μm

Logic Die (LD)2010μm Mem Die (MD) Mem Die (MD)1220μm

17
3μ

m

473μm

411μm

15
1μ

m

410μm

34
5μ

m

23x64bits

230μm

13
50

μm

Figure 3.7: Physical implementation of 3D NUMA in STMicroelec-

tronics CMOS-28nm Low Power Technology.

and the automated 3D CAD Tools. Lastly, post P&R timing results demonstrate that

our baseline design can operate at 500 MHz in the slow process corner (SS) with an

operating voltage of 0.9V, and a temperature of 0◦ C. This is limited by the access

time of the memory arrays, while the logic components can operate up to 1 GHz.

3.6 Performance Evaluation

This section presents the performance evaluation and design space exploration results

of the 3D-NUMA memory IP under different configurations and loads. Detailed cycle-

accurate simulation has been performed in Mentor Graphics’ ModelSim. gem5 [100]

simulation environment has been used to record memory access traces, which are then

fed to ModelSim for trace-based simulation. gem5 runs a full-system simulation of

Alpha CPUs with Linux 2.6.27 kernel executing PARSEC V2.1 benchmark suite [101]

on medium sized inputs, and a fixed number of traces are gathered only for the parallel

48

0
5

10
15
20
25
30
35
40

Variation
AMATCy

cl
es

L 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

22.03 Cycles for L=8 8.72 Cycles for L=8
L=1 (512KB)

L=2 (1MB)
L=4 (2MB)

L=8 (4MB)

Figure 3.8: Average Memory Access Time (AMAT) in cycles and its

variation (std. dev.) for PARSEC benchmarks, plotted for different

number of stacked memory dies (L). Total L2 memory sizes changes

from 512 KB to 4 MB proportional to L.

part of the benchmarks when they enter their Region of Interest (ROI).

3.6.1 Network Parameters of 3D-NUMA

For the first experiment, traces of PARSEC benchmark have been applied to the NoC

Interfaces (NIs) of the baseline system (bypassing the processing clusters and their L1

caches illustrated in Figure 3.1), and Memory Access Time (MAT) has been measured

for different number of stacked dies. Figure 3.8 plots Average Memory Access Time

(AMAT) in cycles along with variation in access time measured as the standard devi-

ation of the access time distribution. It can be seen that for the stack of 8 memory

dies, average memory access takes 22.03 cycles with a variation of 8.72 cycles. Also

an average bandwidth of 23 GB/sec. is delivered to the benchmarks, which is not

illustrated in this figure.

Next, to measure the sensitivity of Memory Access Time to requested bandwidth,

uniform random traffic with random command types (Load/Store of 1, 2, ..., 64 Bytes)

is injected to the baseline network, and packet inter-arrival time is changed based

on Random[0, T] where T is plotted on the X-axis in Figure 3.9. When T=0, full-

bandwidth is requested at the NoC Interfaces, and as T increases, requested bandwidth

decreases. Figure 3.9.a plots AMAT for different number of stacked memory dies, and

Figure 3.9.b plots delivered bandwidth of the network normalized to its upper bound

calculated as N ×W × F = 64GB/sec., where N is the number of NIs, W is width of

49

a)

b)

10

20

30

0 1 2 3 4 6 8 10 14 18 24 32 43 58 77 10
2

13
6

18
0

24
0

L=8 L=4 L=2 L=1
AMAT (Cycles)

T
10
40
70

100
L=8 L=4 L=2 L=1
Relative Bandwidth

Figure 3.9: Effect of requested bandwidth on Average Memory Access

Time (AMAT) (a) and delivered bandwidth (b) (normalized to the

ideal case: 64 GB/sec.), where uniform random traffic with packet

inter-arrival time of Random[0, T] is applied.

the data bus in bytes, and F is the operating frequency. As can be seen, when full-

bandwidth is requested, the network is able to deliver 88.2% of the bandwidth upper

bound with an AMAT of 37.2 cycles, for a stack of 8 memory dies.

Equation (3.1), shows different contributors to Memory Access Time (MAT) of a

Load command in cycles. tNST represents network stall time; tQF , tRF , and tSF are

wait times in request, response, and response selector FIFOs (inside RB), respectively;

tRE is the wait time for Read Buffer to have an empty location; tARB is the number

of cycles to wait before winning the arbitration; tJF1 and tJF2 represent the wait time

in FIFOs inside the Join module (See Figure 3.2.a); and lastly, NL is the index of the

target memory die for this command.

MAT = tNST + {tQF + tRF + tSF}+ {tRE + tARB}+
NL × {2 + tJF2}+ {tJF1 − tJF2}+ 3 (3.1)

If we assume that there are no other in-flight packets, for a Load8Bytes command

targeted to the first memory die, we can obtain a lower bound of 10 Cycles for Equa-

tion (3.1). As the packet inter-arrival time grows to infinity in Figure 3.9, AMAT

for L=1 approaches this number. Moreover, for an evenly distributed traffic among

all 8 memory dies, AMAT can be estimated from the formula as 20.5Cycles. Simi-

larly, AMAT for L=8 in Figure 3.9 approaches this number for large values of inter-

arrival time. Referring back to the experiments with typical application workload

(Figure 3.8), we note that the network delivers the requested bandwidth with less than

50

10% increase in latency with respect to an ideal banking conflict-free condition. These

experiments confirm that 3D-NUMA delivers consistent performance results suitable

for an L2 scratchpad memory. Next, we compare it with the state-of-the-art bank-level

interleaved memories and show its benefits.

3.6.2 3D-NUMA vs Memory Banks Attached to NoC

One question which needs to be answered is that, if we remove the relatively complex

wirings and arbitration trees of 3D-NUMA and attach the memory pipeline directly

to the NoC through the NIs, do we gain any benefit? In fact, we have to justify that

3D-NUMA performs better than a traditional bank-level-interleaved memory directly

attached to the NoC through its multiple ports [89][82]. For this purpose, we have

modeled a high performance NoC based on [79] using high-level constructs in Sys-

temVerilog. The linear array NoCs shown in Figure 3.10a,b have a clock frequency of

3.6 GHz, with enough flit size to fit a Load8Bytes command, and with operation rate

of 1 Flit/Cycle. NoC Link latency is considered to be 1Cycle. To maintain deadlock

free communication, multiple virtual channels are implemented, and the buffer size per

each virtual channel inside each NoC switch has been considered to be 32 flits. On the

other hand, 3D-NUMA memory system operates at the frequency of 500 MHz.

Two scenarios are compared in this experiment: the first one consists of the com-

plete 3D-NUMA IP connected to 16 traffic generators (TG) using one layer of the men-

tioned NoC switches (Figure 3.10.a). While in the second scenario (Figure 3.10.b), the

arbitration trees have been removed and memories are treated as bank-level-interleaved

(Memory pipeline operates at the same frequency of 500 MHz). Therefore, accesses

to remote banks are routed through the NoC, and the switches should handle more

pressure. Also multi-word accesses to one bank are serialized in the memory system.

All other parameters are common between the two scenarios. Figure 3.10.c compares

the total execution time for serving all memory accesses of a fixed number of traces

from the ROI region of PARSEC 2.1 benchmarks between the two scenarios. In this ex-

periment 3D-NUMA reduces total execution time by an average of 34%. This is firstly

because the word-level interleaved organization allows for parallel access to memory

banks (see next subsection for comparison with bank-level interleaving), and secondly,

the arbitration trees forming a cross-bar switch reduce the traffic and congestion in the

NoC switches.

51

0
10
20
30
40
50

(M
Cy

cl
es

) Scenario1: 3D-NUMA
Scenario2: Directly Attached Memories

c)

W0 W1 W2 W3

Load32Bytes (4 Words)

Scenario2:
Attached

Memory Banks

Scenario1:
 3D-NUMA

&

TG

&

TG

&

TG

...
...

... W
iri

ng
 &

 A
rb

itr
at

io
n

Tr
ee

s &

TG

&

TG

&

TG

...
...

...

... = Request Engine,
 Response Engine,
 Read Buffer

= NoC Switch==&

= Traffic Generator==TG

W
0

W
C

W
1

W
0

W
1

W
L

Legends

a) b)

Figure 3.10: Comparison of the execution time (MCycles) between

Scenario 1: 3D-NUMA (a), and Scenario 2: memory banks directly

attached to NIs (b), for different PARSEC benchmarks (c).

3.6.3 Effect of Memory Interleaving

Next, we study the effect of memory interleaving on different network parameters

in 3D-NUMA. Bank Level Interleaving (BLI) is the most commonly used method in

memory systems [89][82][102], while 3D-NUMA has been designed in a Word Level

Interleaved (WLI) fashion. Two scenarios are created for this purpose. WLI: the base-

line 3D-NUMA with word-level-interleaving across memory cones (Figure 3.11.a), and

BLI: a modified version of 3D-NUMA which is bank-level interleaved (Figure 3.11.b),

therefore, multi-word requests are serialized in it. Figure 3.11.c compares the two sce-

narios for four parameters (under PARSEC benchmark traces): total execution time,

Average Memory Access Time (AMAT), variation in memory access time (measured

as standard deviation), and finally, Total Network Stall Time (TNST) which shows

that amount of time that the request packets should wait before being granted into the

memory pipeline. As can be seen, in all parameters, Word-Level-Interleaving (WLI)

performs better than Bank Level Interleaving (BLI). Another experiment is performed

to show this difference more clearly. Uniform random traffic is injected into both sce-

narios and the relative values of WLI to BLI for all four parameters are plotted in

Figure 3.12. The value T on the X-axis is used to change the packet inter-arrival time

52

0

0.2

0.4

0.6

0.8

1

Execution Time AMAT Variation TNST

dedup
swaptions
blackscholes
fluidanimate
streamcluster
vips
rtview
ferret
canneal
freqmine
bodytrack
x264
facesim

-25%

-71%
-60%

-70%

Normalized (WLI/BLI)
c)

Scenario2:
BLI

Scenario1:
 WLI

&

TG

&

TG

&

TG

...
...

... W
iri

ng
 &

 A
rb

itr
at

io
n

Tr
ee

s &

TG

&

TG

&

TG

...
...

...

... = Request Engine,
 Response Engine,
 Read Buffer

= NoC Switch===&

= Traffic Generator===TG

W
0

W
C

W
1

W
0

W
1

W
L

W0 W1 W2 W3

Load32Bytes (4 Words)

Legends

a) b)

W
iri

ng
 &

 A
rb

itr
at

io
n

Tr
ee

s
Figure 3.11: Comparison of two scenarios for 3D-NUMA: Word-level-

interleaving [WLI] (a) and Bank-level-interleaving [BLI] (b); using

PARSEC benchmarks (c) (Values of WLI are normalized to BLI)

0

0.2

0.4

0.6

0.8

1

100 90 80 70 60 50 40 30 20 15 10 8 6 5 4 3 2 1 0

Variation TNST AMAT Ex. Time

T

Normalized (WLI/BLI)

Figure 3.12: Comparison of two scenarios for 3D-NUMA under uni-

form random traffic with packet inter-arrival time of Random[0, T]

(Values of WLI are normalized to BLI).

in cycles (Random[0, T]). It can be seen from this figure that in all cases, execution

time of WLI is at least 12.5% lower than BLI. Moreover, as inter-arrival time between

packets increases, contentions in WLI reduce, therefore the benefit of using WLI im-

proves, until at some point AMAT, TNST, and Variation stop improving any further.

While, relative execution time of WLI to BLI increases afterwards because it will be

dominated by the empty spaces between the request packets.

53

60

110

160

32 16 8 4 2
(K

Cy
cl

es
)

Layer=1 Layer=2
Layer=4 Layer=8

MOT

Executed Cycles

10

30

50

70

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

32 16 8 4 2

Variation
AMAT

MOT
L

(C
yc

le
s)

0

0.01

0.02

0.03

0.04

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

MOT=16
MOT=8
MOT=4
MOT=2

MAT

Di
st

rib
ut

io
n

(Cycles)

a) b)

c)

Figure 3.13: Effect of Maximum Outstanding Transactions (MOT)

on execution time (KCycles) (a), Average Memory Access Time

(AMAT), and access time variation, in cycles (b). Effect of MOT

on the distribution of Memory Access Time (MAT) in cycles (c), full-

bandwidth uniform random traffic is applied.

In addition to performance improvement, WLI offers better scalability and allows

parallel serving of multi-word requests. While in BLI designs, such operation would

require a change in the width of the data bus (W) and incurs a lot of complexity to

support parallel serving of requests with different sizes.

3.6.4 Effect of Maximum Outstanding Transactions

As we explained before, modular design of 3D-NUMA and its highly pipelined nature

result in non-uniform memory access times. In order to compensate for this behaviour,

multiple outstanding transactions (up toMOT) are supported in 3D-NUMA. In this ex-

periment, we study the effect of this critical parameter on total execution time, Average

Memory Access Time (AMAT), and variation in the access time (std. dev.), for dif-

ferent number of stacked memory dies in 3D-NUMA. Full bandwidth uniform-random

traffic with random command types is injected at the NIs. Figure 3.13 illustrates the

results. It can be seen that increasing MOT reduces the total execution time of an

8-Layer memory stack down to a 1-Layer memory stack. Also, AMAT and Variation

decrease when the network supports more number of in flight transactions. This is

54

50

150

250

350

450

550

650

50

60

70

80

90

100

110

120

32 32 32 64 128 256

2 4 8 1 1 1

32 16 8 32 16 8

Ex
ec

ut
io

n
Ti

m
e

(u
S)

Cycles

Ex. Time (us)

S

L

C

K
Cy

cl
es

Figure 3.14: Total executed cycles and execution time (μS) for differ-

ent configurations leading to the same total memory size (S×L×C =

2MB), where uniform random traffic is applied

because increasing MOT allows more in-flight requests, rather than waiting for previ-

ously issued ones to complete. Therefore, bandwidth is utilized more efficiently and

memory access time is amortized. Similar techniques are usually utilized in advanced

DMA engines and DDR memories to hide access latency. The NUMA behaviour and

the effect of MOT on it can be further shown by plotting the distribution of the mem-

ory access time for 8 stacked memory dies in Figure 3.13.c, where the same random

traffic is applied. As can be seen, increasing MOT up to 8 improves the access time

mean and variance while MOT=16 makes only a slight improvement.

3.6.5 Different Configurations with Equal Memory Size

To have a better insight about different design alternatives, under random traffic exe-

cution time (μS) and total number of execution cycles of 3D-NUMA have been plotted

in Figure 3.14 for several different configurations that lead to the same total memory

size (i.e. S × L × C = 2 MB). Clock period has been scaled based on the synthesis

results. As Figure 3.14 illustrates, the main factor which affects the clock period is the

size of the memory banks (S), while increasing the number of memory cones (C) leads

only to a slight increase in it. The best configuration in terms of total execution time is

with (S, L, C) equal to (32, 2, 32). This is because the clock period is already limited

by memory access time, and changing C up to 32 does not affect it any further. How-

55

ever, in terms of area, this configuration has the highest overhead, because the size of

the Read Buffers and the number of Arbitration Trees grow with C. The configuration

(32, 8, 8) offers reasonable execution time, low area overhead, and more importantly

better scalability and modularity, while execution cycles in this configuration is more

than the others, and this may translate into higher dynamic power consumption (see

the next section for detailed power consumption results and the techniques to reduce

it).

One last point to mention is that 3D-NUMA features similar pre-P&R latency and

clock frequency in comparison with its 2D version. This is due to the highly pipelined

nature of the proposed architecture, which in fact is also well suited for L2 implemen-

tation and provides several opportunities such as scalability, ease of timing closure and

clock distribution. However, by going vertical, wire length, routing complexity, and

synthesis effort are reduced, while in the flat design several buffers will be inserted by

the synthesis tool in the long wires, and larger channels should be allocated to avoid

routing congestion. This problem intensifies in the 2D planar designs as the size of the

memory increases.

3.7 Power and Temperature Analysis

This section presents results related to power consumption and temperature, and pro-

poses solutions to address related issues.

3.7.1 Power Analysis

Power consumption has been analysed with Synopsys Primetime in the typical cor-

ner case (TT) at 25◦C, with the switching activity recorded from ModelSim in Value

Change Dump (VCD) format. For the first experiment, full-bandwidth random traffic

with a packet inter-arrival time of Random[0, T] (Cycles) is applied to the post-layout

model of 3D-NUMA. Also, automatic clock gating has been enabled during the syn-

thesis (see the next experiment for a comparison of the clock gating schemes).

Figure 3.15.a,b illustrate the power consumption in the logic die and memory die

MD0, broken into memory macros, registers, combinational logic, and clock network.

The largest contributors to the power consumption in LD are the memory macros uti-

lized in the read buffers. Moreover, the power consumption in MD0 does not decrease

down to zero as packet inter-arrival time increases, and a residue of about 20mW

56

0

200

400

600

0 1 2 4 8 16 32 64 128 256

memory macro
register
combinational
clock network

0

20

40

60

0 1 2 4 8 16 32 64 128 256

50

500

1 10 100

NCG
ACG
PCL
PCM

mW

1

2

3

4

0 50 100 150 200 250

ACG
PCL
PCM

mW mW

T

a) b)

nJ

T

c) d)

(Cycles) (Cycles)

Figure 3.15: Power consumption breakdown in the logic die (a), and

in memory die MD0 with automatic clock gating (b), comparison of

power in the stack of 8 memory dies for four different clocking strate-

gies (c), energy/transaction (nJ) compared in the same experiment

(d). In all experiments, uniform random traffic has been applied with

a packet inter-arrival time of Random[0,T]).

remains even without existence of any useful transactions. This power is mostly con-

sumed in the clock tree and clock gating elements, and there is no easy way to remove

it automatically.

In order to further reduce this power consumption in the memory stack, we propose

Patient Clock (PC), an architectural clock gating mechanism which clocks the memory

dies only if there is a pending or in-flight request. This is done in two simple ways:

Patient Clock in Logic die (PCL) and Patient Clock in Memory dies (PCM). In PCL,

the logic die gates the input clock to the memory stack, so all memory arrays which

form a cone receive the same gated clock and are enabled together. While in PCM,

the clock to each individual memory array is gated based on requests from lower dies

and the responses from upper dies (See PC in Figure 3.2.a). To implement patient

clock, a very simple up/down counter is utilized which counts up on every request

and down on every response. As long as this counter is equal to zero, clock is gated.

Otherwise, clock is activated to serve the in-flight requests and responses. It should be

noted that patient clock is completely transparent to the 3D interface, and the gated

57

clock generated in each memory die is sent to the next memory die as its main clock.

Figure 3.15.c compares the post-layout power consumption among the four different

clocking strategies: No Clock-Gating (NCG), Automatic Clock-Gating (ACG) during

the synthesis phase, Patient Clock in Logic die (PCL), and Patient Clock in Memory

dies (PCM) (described previously). Uniform random traffic with a packet inter-arrival

time of Random[0, T] (Cycles) has been applied to the NoC interfaces. It can be

seen that the original design with no clock gating (NCG) performs poorly in all cases

(about 3.7× more power consumption than ACG), therefore, in all other experiments

(including temperature analysis) ACG mechanism is utilized. In addition, power con-

sumption in all cases drops rapidly after T exceeds almost 30 cycles. Therefore, the

clock gating methods are suitable only when long pauses exist among the packets. This

seems achievable in L2 memory, since L1 caches filter out the requests from PEs and

turn them into large packets of refill/write-back (see Figure 3.16 for real benchmark-

ing results). Furthermore, the pipelined nature of 3D-NUMA results in lower signal

activity in the upper memory dies. This way the benefit of the gated clocks increases

in the upper memory dies. Next, Figure 3.15.d compares energy/transaction among

the clock gating methods in the previous experiment. It can be seen that PCM is the

most energy efficient method among the three, and its energy consumption is almost

independent from the inter-arrival time among the packets.

In order to see how these methods perform under realistic loads, experiments are

repeated with PARSEC benchmarks. Figure 3.16.a illustrates the percentage of reduc-

tion in switching activity in the stack of 8 memory dies for each benchmark after PCL

is utilized. Figure 3.16.b illustrates this reduction in each memory die with PCM. The

benchmarks react differently to different clock gating methods, nevertheless, an average

reduction of 21% for PCL and 44% for PCM are observable. Total power consumption

in the stack of 8 memory dies with different clock gating methods is compared in Fig-

ure 3.16.c. Here, a power reduction of 18.3% for the PCL method and 38.6% for PCM

is observable (the area increase in the memory dies due to addition of PCM was less

than 1%).

One last point to mention is that, even though IR-drops and voltage droops are

the main limiting factors in power delivery to a 3D stack [81][103], and different al-

gorithms for estimation of the optimal place/size/count of TSVs and thermal diodes

have been proposed already [81][104], in the PIMD configuration utilized in our ex-

periments (illustrated in Figure 3.18 and described in the next section), they are not

much of a concern. This is because in this configuration the TSV interposer is placed

58

MD0

MD2
MD4

MD6
0

20

40

60

80

100
MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7

0

5

10

15

20

25

30

35

40

45 dedup
bodytrack
swaptions
ferret
blackscholes
x264
vips
streamcluster
freqmine
rtview
facesim
fluidanimate
canneal

Average = 21%

Switching Activity Reduction (%)

PARSEC Benchmarks

a) b)

0
50

100
150
200
250
300
350
400
450
500

ACG
PCL
PCM 38.6% Avg. Reduction

18.3% Avg. Reduction

Po
w

er
 (m

W
)

c)

Reduction(%)

Figure 3.16: Reduction in switching activity: in a stack of 8 memory

die with PCL (a), in memory dies with PCM (b), total consumed

power in the stack of 8 memory dies compared between the clock

gating methods (c)

between the PE die and the memory dies, and is responsible for power delivery to

them, independently. Moreover, the power consumption in the memory stack is quite

low (1200mW in the whole stack of 8 memory dies and one logic die, under worst

case load), therefore resistive drop in the power distribution network of 3D-NUMA is

expected to be small. In addition, in comparison with the 2D counterpart, 3D-NUMA

does not necessarily improve or worsen power consumption. Because on one hand more

power is consumed in the 3D interfaces, while on the other hand, clock trees and rout-

ing channels, which are important contributors to power consumption, are simplified

compared to the planar version.

3.7.2 Thermal Analysis

For thermal simulation, 3D-ICE (version 2.2.5) [105] has been utilized. Floorplan is

extracted from Cadence SoC Encounter and fed into 3D-ICE using automated scripts.

For generation of the power traces, Primetime is executed in small epochs of 1ms, and

again, resulting log files are analysed automatically to generate power traces for 3D-

59

MMMMMDDDDDMD

MMMMMMDDDDDDMD

LLLLLDDDDDLD

INTINT

PPPDDDPD

b) MIP

INTINT

LLLLLDDDDDLD

MMMMMMDDDDDDMD

MMMMDDDDMD

PPPPPPDDDDDDPD
c) PIMD

INTINT

LLLLLDDDDDLD

MMMMMMDDDDDDMD

MMMMDDDDMD

PPPPPDDDDDPD
d) PIMU

MMMMMMDDDDDDMD

MMMMMDDDDDMD

LLLLLDDDDDLD

PPPPPDDDDDPD

INTINT

a) MPI

TSVsT

DDD

Figure 3.17: Four configurations for 3D-stacking of 3D-NUMA:

Memory-Processor-Interposer (MPI) (a), Memory-Interposer-

Processor (MIP) (b), Processor-Interpose-Memory faced Down

(PIMD) (c), and Processor-Interposer-Memory faced Up (PIMU) (d)

Heat Sink

M
em

 Die 1 Substrate

SiO2 MA

T
S
V

T
S
V

JF

M
em

 Die 0 Substrate

SiO2 MA

T
S
V

T
S
V

JF

Substrate

Logic Die

0
Num_Diess

Memory ControllerSiO2

T
S
V

T
S
V

T
S
V

T
S
V

TSV Interposer
T
S
V

T
S
V

SubstratePE Die

SiO2 SW

PE

SW

PE

SW

PE

SW

PE

Organic
Substrate

with a
Cavity

gg

PCB

Power TSVs

Power
&

Config

PIMD

Heat Spreader

RDLStiffener

Adhesive

Solder Balls

LoLoL

Ordinary
Solder
Bumps

T
S
V

Power
Delivery

T
S
V

+1 Die_ID

T
S
V

T
S
V

T
S
V

+1 Die_ID

T
S
V

T
S
V

T
S
V

Conf.

T
S
V

T
S
V

T
S
V

Power

F2B

F2B

F2F

F2F

Figure 3.18: Cross section of the PIMD configuration

60

ICE. Four configurations have been compared from thermal point of view: MPI, MIP,

PIMD, and PIMU (see Figure 3.17.a,b,c,d). In MPI the whole 3D-NUMA memory

stack is placed over a PE die (PD) on the top of an interposer. The PE die (PD) and

the logic die (LD) are stacked face-to-face, while the memory dies (MD) use face-to-

back stacking. In the other three configurations however, the interposer separates the

PE die and the memory stack. In MIP, the PE die is placed under the interposer while

the memory stack is placed on its top. PIMD can be seen as a specular version of

MIP, and PIMU is similar to the latter configuration except that its PE die is directed

up towards the heat-sink. PE die (PD) consists of 16 STxP70 processing elements

[44] connected to a mesh NoC with 16 switches. 3D-NUMA is attached to this NoC

through its NIs.

For thermal analysis, ambient temperature is assumed to be 300◦K. A copper heat-

sink (2mm × 16mm2) with a heat transfer coefficient (HTC) of 10−7Watt/(μm2.K),

and a ceramic heat spreader (1mm × 5mm2) with a thermal conductivity of 39 ×
10−6W/(μm.K) are used on the top of the stack. On the bottom side, a PCB layer

is used with a thickness of 1mm, thermal conductivity of 2.25× 10−6W/(μm.K), and

volumetric heat capacity of 2.17 × 10−12J/(m3.K). All other sides of the stack are

considered as “adiabatic walls” in the 3D-ICE simulator. Thickness of the silicon and

BEOL materials are adopted from STM Bulk CMOS-28nm technology. Thickness of

the interposer is set to 100μm and the stacked dies are thinned down to 25μm. Heat

transfer through the TSVs has been modeled by modifying the thermal conductivity of

each layer in the stack based on the number of the TSVs passing through it, material

of the TSVs, and their pitch. For this purpose pinfins in 3D-ICE have been exploited

to model Copper TSVs with a diameter of 5μm, then for different TSV pitch values,

thermal conductivity has been plotted for each material. Finally, the obtained values

have been scaled based on the relative area occupied by the TSVs in each individual

layer in the 3D stack. This approximation method has been adopted from [9], and it has

been necessary since 3D-ICE does not support modeling TSVs. More accurate models

and analysis of the analysis of the effect of copper-filled TSVs on heat transfer has been

performed in [106] and [107]. Utilization of thermal vias [108], liquid micro-channel

cooling [109] and thermal isolation technologies [110] can improve thermal results in

hot stacks. Nevertheless, here we utilize a passive heat-sink exposed to the ambient

temperature, and to be conservative, we utilize ACG as our clocking scheme.

For the first experiment, the four configurations in Figure 3.17 are cooled down

from an initial temperature of 400◦K. As can be seen in Figure 3.19.a, PIMD cools

61

300

310

320

330

340

350

360

370

0 0.5 1 1.5 2 2.5 3

Tss = 377K Tss = 372K

Tss = 335K Tss = 338K
100

150

200

250

300

350

400

450

0 0.1 0.2 0.3

MIP
MPI
PIMD
PIMU

c)

Time (S) Time (S)

a) b)

330

340

350

360

370

2 4 8 1

2D Temperature: 338

L

d)

°K

°K °K/S

300

310

320

330

340

350

360

0.5 1.5 2.5 3.5 4.5

16
 x

 S
Tx

P7
0

@
 5

00
 M

Hz

6
x

AR
M

 C
or

te
x

A7
 @

 1
.5

 G
Hz

2
x

Co
rt

ex
 A

9
@

 2
 G

Hz

1
x

AR
M

 b
ig

.L
IT

TL
E

@
 2

 -
1.

5
G

Hz
 0

16
 x

 N
oC

 S
W

 @
 3

.6
GH

z

Watts

°K

Steady State Temperatures (t→∞)

Figure 3.19: Temperature cool down rate (◦ K/Seconds) of the PE

Die in the four configurations (a), and its transient temperature (◦

K) increase due to constant power consumption in the PE die [TSS:

steady state temperature] (b), Effect of power consumption (W) in

the PE die on its temperature (◦ K)(c), PE die temperature versus

the number of stacked memory dies [L] (d).

down faster than the three other configurations, with an average cool-down rate of

395◦K/Seconds in the first 100ms, while MIP has a rate of 317◦K/Seconds. This

can be important when dynamic temperature management techniques are utilized to

manage hotspots. In the second experiment, the processing elements on the PE die

consume a constant power of 250mW , while the NoC switches consume 100mW each.

Figure 3.19.b depicts the transient temperature change in the center of the PE die

in the four configurations along with its steady-state temperature. Here a significant

temperature difference of 42◦ is observable between the MIP and PIMD configurations.

Next, the average power consumption in the whole PE die each is changed linearly from

500mW to 5W . Figure 3.19.c plots the maximum temperature in this die in the four 3D

configurations. Moreover an estimated power consumption of four PE configurations

along with the NoC switches utilized in our experiments have been plotted in this

figure to better illustrate 3D-NUMA’s thermal performance. 16 STxP70 PEs running

62

at 500MHz, 6 ARM Cortex A7 cores at 1.5GHz, One ARM big.LITTLE with its

cores running at 1.5GHz and 2GHz, and lastly, 2 Cortex A9 cores running at 2GHz

(All configurations fit in the same area provided by the PE die) [111]. As power

consumption increases it can be seen that, temperature increases more rapidly in MIP

and MPI compared to the two other cases. Lastly, the number of stacked memory dies

is changed from 1 to 8 while each PE consumes 250mW , and the switches consume

100mW each. The maximum temperature in the PE die is plotted in Figure 3.19.d.

Also in this experiment, an estimated floorplan of the 2D counterpart of 3D-NUMA is

simulated in 3D-ICE consuming similar power profiles, and the maximum temperature

of the 2D die is plotted using a dotted line. As this figure illustrates, PIMD and

PIMU scale well with the number of stacked dies, and the temperature of the PE die

is almost independent from the number of the stacked dies in them. While in MPI

and MIP, temperatures increase linearly with the number of the stacked memory dies.

Furthermore, it can be seen that PIMD and PIMU show similar thermal results in

comparison with the 2D version.

These experiments demonstrated that placing dies over a high-power die such as PD

is not an optimal solution for 3D-stacking from the thermal point of view, especially

when the number of stacked dies on its top is high. Moreover, PIMD seems to be a

better configuration than PIMU, even though in PIMU the PE die is directed towards

the heat-sink. The reason for this phenomenon is that the thermal conductivity of

silicon (149×10−6W/μm.K) is higher than the BEOL materials (2.2×10−6W/μm.K).

Therefore, heat transfer towards the heat-sink is facilitated when the upper die is

faced down. For the same reason, the thermal performance of the PIMD configuration

is slightly better than the 2D design, while TSVs also contribute to this fact (See

Figure 3.19.d). It should be reminded that the materials utilized in the stack also have

a significant effect on the temperature. For example, with open-air as heat sink [Heat

Transfer Coefficient (HTC) of about 1e-10 Watt/(μm2.K)], all temperatures increase

to over 3000◦K, and there will be no significant difference among them, while proper

heat-sinks can increase HTC to about 1e-7 Watt/(μm2.K) and significantly improve

the heat transfer.

In the final experiment, full-bandwidth random traffic is applied to 3D-NUMA, and

gathered power traces are fed into the stack in 3D-ICE. For PEs, same as before, a

constant power consumption of 250mW is assumed (the effect of PARSEC benchmarks

on power consumption of the PEs has not been modeled), and for each NoC switch

100mW is assumed. Figure 3.20.a,b,c,d compares the temperature map in the four con-

63

386-388 384-386

382-384 380-382

378-380 376-378

374-376 372-374

370-372 368-370

366-368 364-366

362-364 360-362

358-360 356-358

354-356 352-354

350-352 348-350

346-348 344-346

342-344 340-342

338-340 336-338

334-336 332-334

330-332 328-330

326-328 324-326

322-324 320-322

318-320 316-318

314-316 312-314

310-312 308-310

306-308 304-306

302-304 300-302

3442-344

33338-340

334-3366

330-3322

326-328

322-324

318-320

314-316

310-312

306-308

302-304

386-388

382-384

378-380

374-376

370-372

366-368

362-364

358-360

354-356

350350-352

3466-348

PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE10 PE11

PE12 PE13 PE14 PE15

MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
LD
INT
PD

MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
LD
PD
INT

PD
INT
LD
MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7

PD
INT
LD
MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7

105μm
37μm

37μm
35μm

a) MIP b) MPI

c) PIMD d) PIMU

e) MIP f) MPI

g) PIMD h) PIMU

NoC
SW

TSVs

NOT TO BE SCALED

Figure 3.20: Final temperature map of the PE die in the four config-

urations: MIP (a), MPI (b), PIMD (c), PIMU (d), cross-sections of

the whole stacks (e,f,g,h).

figurations in the end of a long simulation. Again, a maximum temperature difference

of over 40◦K in the PE die is observable between MIP and PIMD. Figure 3.20.e,f,g,h il-

lustrate this situation better, by showing their cross-sections. In all of the experiments

(including all PARSEC benchmarks) the increase in temperature due to the activity in

the memory system was less than 5◦. This result is not surprising because 3D-NUMA

is composed of SRAM-based memories and a small percentage of logic. Therefore, it

consumes much less power than the PEs.

3.8 Packaging and Power Delivery

For power delivery to 3D-NUMA several factors should be considered and different

analyses such as IR-Drop, and voltage droops in 3D power distribution networks should

be performed [81][103]. However an estimation of the number of power TSVS required

can be performed as follows: The maximum power consumption in the Logic Die (LD)

and the stack of 8 Memory Dies (MDs) are 700mW and 500mW , respectively. These

values have been obtained from Primetime with ACG clocking scheme. Moreover,

assuming 16 STxP70 PEs and 16 NoC switches, PE Die (PD) consumes a maximum

power of 5.6W . Considering an operating voltage of 1V, and that each TSV can

deliver a maximum current of 20mA [112], the number of TSVs required to deliver

64

Table 3.1: Number of power TSVs required for each die, and the total

count for manufacturing one instance of each

Configuration
Power TSVs in each die Power

TSVs MD LD PD INT

MPI 25 25 340 340 730

MIP 25 25 0 60 110

PIMD 25 25 0 280 330

PIMU 25 25 280 280 610

power to the PD, LD, and MD are 280, 35, and 25, respectively. Now having in

mind that, each die is responsible for power delivery to the dies stacked over it, and

that face-to-face interfaces do not require TSVs (see Figure 3.18), we can obtain the

number of power TSVs in each die and the total number of power TSVs required for

manufacturing one instance of each in Table 3.1. It can be seen that, MIP and PIMD

have the lowest number of TSVs among all, while because of PIMD’s pleasant thermal

results we choose it as our target configuration. It should be noted that, if we use

one ground TSV per each power TSV, the numbers in Table 3.1 will double. Also, to

improve signal integrity more power and ground TSVs may be required. Lastly, by

use of new bonding techniques such as multi-tier wire-bonding [36], we may be able to

improve power delivery and reduce the number of TSVs, as well. Since a 1mm copper

wire-bond with a typical diameter of 15μm can deliver a maximum current of 600mA

[113]. We should remind that wire-bonding to the PE die is not possible in the PIMD

configuration and other configurations should be adopted for this purpose.

3.9 Manufacturing Yield and Cost

3D-NUMA can provide a good possibility for manufacturing yield improvement in com-

parison with its 2D counterpart. Equation 3.2 provides an estimation of the yield of the

3D stack (assuming that the sources of die defects and TSV failures are independent),

when Known Good Die (KGD) testing mechanisms [114] are utilized and failed dies

are discarded beforehand. Die yield (Ydie) can be estimated using Equation 3.3 with a

negative binomial model, based on wafer yield (Ywafer), die area (Adie), and the defect

density of the wafer (D0) [115]. Moreover, since a good chip stack requires all TSVs

to be successfully bonded, the bonding yield (YTSV) can be estimated from Equation

3.4, where F stands for TSV failure rate, and NTSV is the total number of TSVs in

65

the stack [98]. Now obtaining TSV failure rate from the state-of-the-art technologies

[22][116][117], and assuming that the CMOS-28nm process technology is in the fourth

learning cycle of its yield curve (D0 � 1.5cm−2[118]), we can plot the 3D manufac-

turing yield of the PIMD configuration for different TSV failure rates in Figure 3.21.

The TSV repair mechanism utilized in 3D-NUMA is able to fix up to 5 TSVs with a

probability of 95% [98], and the probability that exactly n TSVs fail can be obtained

from Equation 3.5 [98]. Now if the method is able to fix n TSVs, for failures less than

this number the stack is usable, therefore the bonding yield can be updated to Y ∗
TSV

as in Equation 3.6.

Ystack = Ydie × YTSV (3.2)

Ydie = Ywafer × [1 +D0 × Adie/α]
−α (3.3)

YTSV = (1− F)NTSV (3.4)

Pfailed=n = C(NTSV , n)× F n × (1− F)NTSV −n (3.5)

Y ∗
TSV =

∑n

i=0
Pfailed=i (3.6)

Figure 3.21 plots the manufacturing yield for 3D-NUMA without TSV redundancy

along with the repair scheme up to 5 TSV fixes. The 2D yield has been estimated

similarly using Equation 3.3. As can be seen, for a more mature TSV technology

by Honda Research Institute (HRI), even without any repair mechanism, 22% yield

improvement can be obtained in 3D-NUMA for stacking of 4MB of scratchpad memory

as 8 dies, compared to the 2D flat counterpart.

Another point to mention is that, 3D-NUMA memory IP has certain features which

benefit from the cost optimization opportunities provided by 3D-Integration. The fact

that logic and memory elements have been separated into different dies, allows for

different technological optimizations for logic and memories as well as reduction in

the number of metal layers in the memory dies (because of lower routing complexity

and more regular patterns). In addition, certain boot-time configuration circuits allow

memory dies to have completely identical layouts (see Figure 3.18). Therefore, system

integrators are allowed to stack multiple memory dies and create arbitrary L2 memory

sizes through different height stacks with identical dies, without the need for new masks

for dies at different levels in the stack.

We developed a generic cost model for the CMOS 28nm technology based on the

public information about the cost of masks and lithography. The cost model of masks

and lithography is described in [119] for the 90nm technology node. Later, it has been

66

0
10
20
30
40
50
60
70
80
90

100

2D
3D
3D [up to 1 fix]
3D [up to 2 fixes]
3D [up to 3 fixes]
3D [up to 4 fixes]
3D [up to 5 fixes] TSV Failure Rate

Yield (%)
HR

I T
SV

 (2
00

9)
 [1

15
]

TIB
M

 T
SV

 (2
00

5)
 [1

16
]

IM
EC

 T
SV

 (2
00

6)
 [2

2]

Figure 3.21: Manufacturing yield versus TSV failure rate compared

between 3D-NUMA with no TSV redundancy, TSV Repair Scheme

(Up to 5 Fixes), and the 2D counterpart

12

13

14

15

0.8 0.85 0.9 0.95 1

2D
3D

IB
M

 T
SV

 (2
00

5)
 [1

16
]

[u
p

to
 2

 T
SV

 R
ep

ai
rs

]

IB
M

 T
SV

 (2
00

5)
 [1

16
]

[u
p

to
 1

 T
SV

 R
ep

ai
r]

HR
I T

SV
 (2

00
9)

[1

15
]

[N
o

TS
V

Re
pa

ir]

TSV Yield

Cost ($)

Figure 3.22: Overall manufacturing cost of one PIMD stack compared

its 2D counterpart

extended to more recent technology nodes in [120]. The manufacturing yield model

is described in [115], and the TSV yield has been modeled as described previously.

Packaging costs and special treatments for 3D integration have not been modeled.

This is because this technology has not been industrialized yet and the supply chain

for low-cost and high-volume production of 3D-ICs still does not exist. Figure 3.22

compares the overall manufacturing cost of one stack (with 4MB of memory stacked

as 8 dies) with its 2D counterpart, for a volume production of 500,000.

It can be seen that, 3D integration has more cost reduction potentials compared to

2D as the TSV technologies become more mature. However, the cost reduction plotted

in this figure is not so high because of the small area of the memory dies in 3D-NUMA.

While, with increase in the size of the stacked memories cost reduction opportunities

67

will increase, as well. This result is based on the assumption that the memory dies

have identical layouts, therefore their non recurring costs will overlap (e.g. mask cost).

Whereas, if we use memory dies with non-identical layouts, this cost will increase by

a factor of 2.3 to 30.2$ (even with ideal TSVs). This is a significant cost reduction

offered by 3D-NUMA over the designs with non-identical memory dies. Moreover, it is

possible to use a less advanced process technology or reduced number of metal layers

for the memory dies to reduce the costs even further. While this is out of the scope

of this work, in the design of the memory dies we have reduced the number of metal

layers from 10 to 8 to save four masks.

3.10 Summary

In this chapter, we presented a synthesizable 3D-stackable L2 memory IP component

(3D-NUMA), which could be attached to a cluster-based multi-core platform through

its NIs, offering high-bandwidth memory access with low average latency. 3D-NUMA

allows stacking of multiple identical memory dies, supports multiple outstanding trans-

actions, and achieves high clock frequencies due to its highly pipelined nature. We im-

plemented 3D-NUMA with STMicroelectronics CMOS-28nm Low Power Technology

and obtained a clock frequency of 500 MHz, limited by the access time of the memory

arrays while its logic components could operate up to 1 GHz (up to 4 MB in 8 stacked

dies with a memory density loss of 9%). Benchmark simulation results demonstrate

that addition of 3D-NUMA to a multi-cluster system can lead to an average perfor-

mance boost of 34%. Further experiments and estimations confirmed that 3D-NUMA

is energy and power efficient, temperature friendly, and has unique features suitable

for low cost manufacturing: PCM architectural clock gating mechanism was proposed

to reduce power consumption by 38%. PIMD configuration was able to reduce maxi-

mum temperature by over 40◦ C in comparison with the conventional memory on top

configurations. Lastly, 2.3× cost reduction was reported because of identical memory

die layouts along with a 22% yield improvement compared to the 2D counterpart, with

the state-of-the-art TSV manufacturing technologies.

In the next two chapters (chapter 4 and chapter 5), we move towards the last level

in the memory hierarchy, and study the benefits provided by 3D integration, there.

Since, there is already industrial evidence for 3D stacked DRAMs, we take one step

further and focus on another important impact of heterogeneous 3D integration, i.e.

possibility of near memory computation.

68

Chapter 4

Near Memory Computation in the

L3 Memory Context

In chapter 2 and chapter 3 we studied the applicability of 3D integration in lower levels

of the memory hierarchy. In this chapter, we investigate its benefits in the last level of

the memory hierarchy (i.e. the main DRAM memory). There is no need to justify the

effectiveness of 3D integration in this context, as several academic and industrial ex-

ample exist, with Hybrid Memory Cube (HMC) being their most famous one. HMC is

backed by several major semiconductor companies and has promised to improve band-

width, power consumption, and density for the next-generation main memory systems.

Meanwhile, heterogeneous 3-D integration provides another opportunity for revisiting

near memory computation to fill the gap between the processors and memories. We

take advantage of this opportunity and propose the “Smart Memory Cube (SMC)”, a

fully backward compatible and modular extension to the standard HMC, supporting

near memory computation on its Logic Base (LoB). In this chapter we focus on the

architectural implications and the required infrastructure inside HMC to support this

feature. We propose a high bandwidth, low latency, and AXI-4.0 compatible inter-

connect for LoB to serve the huge bandwidth demand by HMC’s serial links, and to

provide extra bandwidth to a processor-in-memory (PIM) embedded in LoB. We also

implement a novel address scrambling mechanism which allows for reducing vault/bank

conflicts and robust operation in presence of pathological traffic patterns.

69

4.1 Motivations and Challenges

The “memory wall problem”, or the speed and bandwidth disparity between processors

and memory, has been a concern for the last thirty years [16]. Many researchers, since

the early nineties [45], have looked into the possibility to migrate some part of com-

putation closer to the memory systems. Unfortunately, the “processing-in-memory”

research efforts in the late nineties and the first decade of the new millennium (See

[45][46][17] for samples) did not lead to successful industrial platforms and products.

The main reason for this lack of success was that all these works were assuming that

significant amount of logic resources, needed for having processing elements close to

the memory arrays, could be integrated on DRAM dies (or vice versa). This could

not be achieved economically given the restrictions of DRAM processes (e.g., limited

number of metal levels, slow transistors). On the other hand, integration of DRAM in

logic processes has achieved some partial success, but it has always been plagued by

high cost and low memory density issues [18].

Starting from 2011, this situation started to change with the appearance of het-

erogeneous 3D integration of logic dies and memory dies based on through-silicon-vias

(TSV). TSV technology was brought to commercial maturity by memory manufactur-

ers (DRAM and Flash) to build “memory-cubes” made of vertically stacked thinned

memory dies which achieve higher capacity in packages with smaller footprint and

power compared to traditional multi-chip modules. The last missing piece came in

place when an industrial consortium backed by several major semiconductor compa-

nies introduced the Hybrid Memory Cube (HMC). [13] In the HMC, a memory cube

is stacked on top of a logic die. The logic die at the bottom of the hybrid stack pro-

vides advanced interface functions between the memory cube on top and the rest of the

computing system on the board. The main driver for the HMC has been bandwidth:

the high-speed logic die is used to build fast serial IO transceivers for off-chip commu-

nication, on-chip controllers and interconnects for multiplexing the vertically stacked

memory partitions (called “vaults”).

In this chapter, we leverage the recent technology breakthrough represented by

the HMC to revisit the possibility of near memory processing inside the cube, taking

advantage of the heterogeneous 3D stacking technology. We mainly focus on the ar-

chitectural implications and the required infrastructure inside HMC to support this

feature. Therefore, exploiting the high internal bandwidth provided by TSVs we pro-

pose a modular and scalable solution, called the “Smart Memory Cube (SMC)”. SMC

70

is built upon the most recent revision of the HMC specifications, and is compatible with

its interface, with no changes made to the memory dies, and no new die introduced

in the stack. In other words, SMC is fully backward compatible with the HMC IO

interface specification, and features a high performance and extensible AXI-4.0 based

interconnect on its Logic Base (LoB), carefully designed to provide high bandwidth

to the external serial links, as well as plenty of extra bandwidth to any generic and

AXI-compliant PIM device attached to its extension ports. Its also features a novel

address scrambling mechanism for reducing vault/bank conflicts and robust operation

in presence of pathological traffic patterns. Cycle accurate (CA) models for the SMC

interconnect and its interfaces have been developed, and their parameters are tuned

based on the available data from the literature on HMC.

Related works are discussed in section 4.2. In section 4.3 SMC and its CA model

are introduced. In section 4.4 calibration of the model based on the available data

on HMC is described. Experimental results are presented in section 4.5, and lastly a

summary of the obtained results is given in section 4.6.

4.2 Related Works

While the advancement of processor technology has rapidly increased computational

capabilities in logic processes, improvements in bandwidth and latency to off-chip mem-

ory have not kept up, and in fact DRAM process is drifting further away from the logic

process. As a result, an increasing portion of time and power in computing systems

is spent on data movement, especially in off-chip memory accesses [16]. A possible

solution to the memory wall problem is in-memory processing. Research in this area

started more than two decades ago. Computational RAM [45] using SRAMs or DRAMs

coupled with processing elements close to the sense amplifiers, and Intelligent-RAM

(IRAM) [46] to fill the gap between DRAM and processors, are just two examples of

the efforts in this area. It was shown in [46] that in memory processing can lead to a

memory bandwidth and energy efficiency improvement of 50X∼100X and 2X respec-

tively, along with a latency reduction of about 2X (for the SPEC benchmarks suite).

Nevertheless, the effort for PIM dried out soon after 2000’s without major commercial

adopters, due to several performance, cost, and business model obstacles [17], arising

from the incompatibility of DRAM process with logic.

With the recent advancements in process technology and emergence of 3D integra-

tion, the interest in near-memory computation has been renewed [47]. 3D memory

71

stacking has been the biggest driver for high-volume adoption of the 3D Integration

technology, providing this new context for PIM research. The most outstanding exam-

ples of 3D memory stacking as substitutes for traditional DDR devices are the Hybrid

Memory Cube [91], the High Bandwidth Memory (HBM) [26], and the Exascale Mem-

ory [27]. Among these, HMC offers higher flexibility by abstracting away the details of

DRAM control, and providing a high-level communication mechanism over serial links.

Therefore we believe that HMC is the best target for near memory computation.

Focusing on the location of the PIM device in HMC, it can be either integrated with

the existing logic [16][121][53][122] or DRAM dies [123], or it can be added as a new die

in the stack [124][49]. Introduction of a new layer to the stack would require redesign

and a complete reanalysis of the 3D stack structure and the power distribution networks

[106], affecting manufacturing yield of the stack, as well. Also, placing the PIM devices

on the memory dies still suffers from the incompatibility of logic and DRAM processes

[17] and the functionality and visibility of the PIM device to the address space will

become extremely limited. On the other hand, placing the PIM device on the logic die,

specifically behind the main interconnect in the HMC (See Figure 4.1), could lead to

a modular and scalable solution, with a global visibility of the whole memory space,

exploiting the large bandwidth provided by TSVs, and without any concerns about the

DRAM devices. Besides, this solution is the least intrusive one to the standard HMC

architecture, as it does not make any change to the 3D stack or the DRAM dies.

Address interleaving and remapping has been studied in the literature for different

purposes. [125] shows enhanced address mapping strategies for improving reliability in

3D NAND Flash Memories. Also, in [126] a randomized addressing scheme has been

proposed to improve the endurance of the phase-change-memories (PCM). [127] and

[128] propose tuning the addressing scheme to specific applications for the sake of ac-

cess conflict reduction. [127] presents the mathematical models for address interleavers

to reduce memory collision in turbo decoders and [128] proposes a conflict-free memory

addressing scheme for parallel Fast Fourier Transform (FFT) processors. Permutation-

based address interleaving for reduction in the row-buffer conflicts has been studied in

[129]. In [130], also, different addressing scheme to mitigate the performance impact of

row buffer conflicts and to improve the locality are explored. The main difference be-

tween our proposal and the state-of-the-art is that, firstly, instead of tuning the address

mapping mechanism to specific applications we present a general address scrambling

mechanism to reduce the bank and vault conflicts in the standard HMC regardless of

the address patterns of the input traffic. Moreover, as section 4.4 will describe, since

72

HPP High Priority Port Arb. Tree Legends: LPP Low Priority Port

Vault
Controller

Vault
Controller

Vault
Controller

Link
Controller

Link
Controller

St
an

da
rd

 H
M

C
In

te
rf

ac
e

TSVs

Memory Dies Logic Base (LoB)

Bank

Vault

HPP

Slaves

Main Ports

PIM Ports Masters
Main

Interco
(AXI-4.0)

LPP

HPP

HPP

LPP

LPP

PIM Cluster

DMAs PEs SPMs

Figure 4.1: Overview of the Smart Memory Cube (SMC)

the HMC has been designed with a closed-page policy and for random traffic patterns

with with very low locality, improving the row-buffer’s hit rate is not relevant in it any-

more. Plus, as we will describe in subsection 4.3.2, HMC’s addressing scheme is limited

to a small number of permutations among different portions of the input address. We

will show in subsection 4.5.2 that this makes it vulnerable to specific traffic patterns

of some real applications. These traffic patterns are studied in subsection 4.5.2 and

it will be shown that our proposal is able to operate robustly even in their presence.

Lastly, since the overhead of dynamically changing the addressing scheme is very high

requiring an invalidation of all dirty pages in the main memory, we propose a simple

region-based mechanism, to turn On/Off the scrambling feature for different regions.

One last point to mention is that, in the standard published by HMC consortium

[13], the external interface is specified in complete details, while, the implementation

details of the Logic Base (LoB), the DRAM dies, and specially the main interconnect

inside the LoB have been left open. Our main contribution in this chapter is to design

a high performance and low latency interconnect based on the AXI-4.0 standard to

serve as the main interconnect in HMC, while providing additional bandwidth to a

generic PIM device attached to it, minimizing vault and bank conflicts and ensuring

that interference on the main traffic is minimum. Next section describes our proposal

called the smart memory cube.

73

4.3 The Smart Memory Cube (SMC)

Smart Memory Cube (SMC) is an extension to HMC [13] providing the possibility of

moving part of the computation into the cube. Figure 4.1 illustrates an overview of the

proposed underlying architecture for Smart Memory Cube. As shown in this figure, the

standard interface and the 3D structure of the HMC has been left untouched, while a

generic processor-in-memory (PIM) cluster has been added to the Logic Base (LoB) be-

hind the global interconnect. It is important to guarantee that the interference caused

by PIM’s traffic on the traffic injected from the main links is bounded and negligible.

For this purpose we propose an ultra-low latency logarithmic interconnect designed

following AXI-4.0 standard and present an analysis on the role of this interconnect in

SMC. Next, our CA model for the baseline HMC system and its SMC extension are

presented. As shown in Figure 4.1, the main interconnect and the vault controllers are

two key components in design of the smart memory cube. In this section, we present

the design and calibration methodology for these two key components.

4.3.1 The Main Interconnect on LoB

We have designed our interconnect based on the ultra low-latency “logarithmic in-

terconnect” (originally designed for L1/L2 contexts in chapter 2 and chapter 3), and

modified it to support high bandwidth communication. Also, AMBA AXI 4.0 standard

[96] has been chosen, which is the most widely used standard for on-chip communi-

cation in system-on-chips. This standard divides traffic streams into 5 categories and

dedicates independent channels to each of them (AR: Address Read, R: Read Data,

AW: Address Write, W: Write Data, B: Write Response).

Figure 4.2 illustrates a high-level schematic view of our interconnect design. When

a transaction arrives at the AXI master ports, first the “Issue Logic” decides whether

it should be allowed to enter the memory system. The Issue Logic limits the maxi-

mum outstanding transactions of each master port to a certain number called MoT,

and assigns unique tags to the ones allowed into the interconnect. It will be shown in

section 4.5 that MoT has an important effect on performance and avoiding the system

from going into saturation. Next, address remapping/scrambling is performed on the

transactions based on the intended addressing scheme. WRITE and READ transac-

tions arrive through independent AXI channels. AW and W channels deliver address

and data for the WRITE transactions, and after address decoding and identifying the

destination port (inside the “Master Blocks”), WRITE address will be sent to an arbi-

74

W I R I N G

Decoders
Allocators

AR R AW W B

Dec. Dec.
Mux

AR R AW W B

Dec. Dec.
Mux

AR R AW W B

Dec. < > < >

RR RR

i i i RE
AD

W
RI

TE

A A A A A

AR R AW W B

Dec. < > < >

RR RR

i i i

RE
AD

W
RI

TE

A A A A A

MASTER
BLOCK

SLAVE
BLOCK

SLAVE
FIFOS

MASTER
FIFOS

S0 Sm

M0 Mn

HPP LPP

HPP LPP

HPP
High Priority

Port FSM

Normal
FIFO

Dem.
Demux

Mux
Multiplexer

 < >
Address
Decoder

Dec.
Decoder

Arb. Tree Address
remapper

A

Issue Logic
i

Legends
LPP

Low Priority
Port

AXI MASTER PORTS (From Serial Links)

AXI SLAVE PORTS (To Vault Controllers)

Round-robin
counter

RR

Figure 4.2: Proposed AXI 4.0 based logarithmic interconnect for SMC

tration tree. Among the master ports and separately on the PIM ports fair round-robin

arbitration is performed. However, in the last stage of the network a fixed-priority ar-

bitration scheme ensures higher priority for the main ports (hierarchical arbitration).

This way only residual bandwidth is delivered to the PIM. The winner request will

have its data delivered through multiplexers in the “Slave Block” to the FIFOs on the

slave ports. Since AW and W channels do not have to be synchronized in AXI-4.0

standard, a transaction FIFO inside the “Slave Block” associates pending addresses

to data bursts. A similar procedure takes place for READ transactions, except that

READ requests do not have any data associated with them, and they are 1 flit long. On

the other side of the network (slave side), B and R channels deliver back the response

data, and acknowledgement of the WRITE transaction, respectively. The responses

75

will arrive at the intended “Master Block” after a simple decoding, and there, they

will wait for arbitration with other responses destined to the same master. Finally, the

responses arrive at the intended master port via R and B channels. All arbitrations

performed inside this network are single-cycle, and the whole interconnect has been

developed as a synthesizable and parametric RTL model.

4.3.2 Address Remapping and Scrambling

As the memory space of an HMC device is split across multiple independent vaults, an

address mapping scheme is required that determines which address is mapped to which

vault. HMC supports different types of address mapping through its Address Mapping

Mode Register. The default address mapping in HMC is low-interleaved [13]. In

our model, address interleaving scheme can be modified through “Address Remapper”

modules illustrated in Figure 4.2. It is also possible to scramble the incoming addresses.

The baseline address mapping of HMC is [RC.BA.VA.OF] (VA: vault address, BA:

bank address inside the vault, RC: row and column addresses, and OF: offset bits of

the address). Assuming that transaction splitting is not possible in the HMC [13], a full

transaction is always directed to one bank, therefore, OF bits are always in the least

significant position. This results in 6 possible permutations for conventional address

mapping.

As the internal organization of an HMC can be hidden to its users, address mapping

schemes need not be limited to the conventional schemes. The choice of the address

mapping scheme matters because the parallelism offered by the HMC can only be fully

exploited if the memory requests are evenly spread across the vaults. Unfavorable

memory access patterns may lead to performance limitations. The primary goal of an

address mapping scheme is thus to avoid vault/bank conflicts. For sequential memory

accesses, interleaving performs very well because it spreads the requests evenly across

the vaults and therefore maximizes parallelism. But for other memory access patterns,

interleaving may not optimal because it may fail to distribute the requests evenly

across the vaults. While it is possible to come up with address mapping schemes that

are tuned to specific memory access patterns [131][128], address scrambling follows

a different idea: it tries to turn most memory access patterns into random-looking

access patterns [132]. This is motivated by the observation that while memory access

patterns may vary over time, it is difficult to change the address mapping scheme of

an HMC at runtime. Before actual implementation and cycle accurate simulation, we

evaluate our proposed address scrambling mechanism in terms of randomness. Then in

76

subsection 4.5.2 we use cycle-accurate simulation for performance analysis and discuss

about unfavorable patterns which cause troubles to the default address mapping of

HMC.

Construction Principle

We use discrete Fourier transform (DFT) as a heuristic for construction of our address

scramblers. This is motivated by three reasons: First, the DFT can be computed

efficiently, for example by the FFTW library [133]. Second, it is an invertible transform,

which means that it does not lose any information. Third, the DFT of a random vector

is expected to be flat except possibly for the DC component. In fact, calculation of

DFT is one of Spectral Density Estimation (SDE) methods for the stochastic signals

[134]. If we define the DFT of a sequence of N numbers as

Xk =
1√
N

N−1∑
n=0

xne
− 2πikn

N (4.1)

and let the xn be independent and identically distributed. Then, the expected

squared magnitude of Xk does not depend on k as long as k is nonzero:

E
[|Xk|2

]
=E

[
XkXk

]
(4.2)

=E

[
1

N

N−1∑
n=0

N−1∑
n′=0

xnxn′e−
2πik(n−n′)

N

]
(4.3)

=
1

N

N−1∑
n=0

N−1∑
n′=0

E[xnxn′] e−
2πik(n−n′)

N (4.4)

=
1

N

N−1∑
n=0

N−1∑
n′=0

(Cov(xn, xn′) + E[xn]E[xn′]) e−
2πik(n−n′)

N (4.5)

=
1

N

N−1∑
n=0

Var(xn) +
1

N

N−1∑
n=0

N−1∑
n′=0

E[xn]E[xn′]e−
2πik(n−n′)

N (4.6)

=σ2 +
μ2

N

N−1∑
n=0

N−1∑
n′=0

e−
2πik(n−n′)

N (4.7)

=

⎧⎨
⎩σ2 +Nμ2 if k = 0,

σ2 if k �= 0.
(4.8)

Here, (4.4) follows from the linearity of the expectation, (4.5) follows from a prop-

erty of the covariance, (4.6) follows because the xn are independent, (4.7) follows

77

because the xn are identically distributed with mean μ and variance σ2, and (4.8) fol-

lows from a simple calculation. The address scramblers are assessed in the following

way: Let xn be the sequence of all scrambled addresses, i.e., let xn = φ(n) for all

n ∈ {0, . . . , N − 1} where φ denotes the address scrambler and where n is interpreted

as an address. Address scramblers with a smaller peak magnitude

max
k∈{1,...,N−1}

|Xk| (4.9)

are considered to be better (the DC component X0 is intentionally left out). This is

motivated by the observation that the DFT tends to be flat if (4.9) is small. Note that

the flatness criterion itself is only a heuristic because although (4.8) makes a statement

about every single Xk, it does not say anything about their joint distribution, also the

statistical independence of the input samples assumed in (4.6) is not always true.

Construction Methodology

An address scrambling function is a permutation on the set of all addresses. One way

to obtain it is to use a substitution-permutation network as depicted in Figure 4.3.

Substitution-permutation networks are widely used in the design of cryptographic block

ciphers [135]. They are inherently parallel and can achieve good diffusion properties.

The substitution-permutation networks in our design use the 4-bit S-box from the

present cipher [136], which is optimized for hardware efficiency. Since the crypto-

graphic properties are not required and because the block size of present is larger

than the number of address bits, custom substitution-permutation networks are used.

The custom substitution-permutation networks are constructed layer by layer as

follows: Initially, the network is empty and a set of candidate permutations on the

address bits is generated at random. For every candidate permutation, a candidate

network is built consisting of the existing network, the candidate permutation, and a

layer of S-boxes. An S-box is an invertible mapping between a 4-bit input and a 4-bit

output [136]. The candidate networks are assessed according to the criterion based

on the discrete Fourier transform which was described earlier. The candidate network

with the smallest peak magnitude is selected, and the procedure is repeated until the

network has the desired number of layers. Finally, the address bits that are mapped to

the vault bits are determined: all combinations are evaluated and the combination with

the smallest peak magnitude is selected. This process is used to construct an initial

address scrambler for 22 address bits and 5 vault bits. For different number of layers,

78

S-box S-box S-box S-box S-box

S-box S-box S-box S-box S-box

S-box S-box S-box S-box S-box

S-box S-box S-box S-box S-box

S-box S-box S-box S-box S-box

row bank vault column

30 16 13 8 0

Figure 4.3: 5-layer substitution-permutation network for 22 address

bits (S.22.5.05)

1 2 3 4 5 6 7 8 9 10

104

103

102

101D
F
T

p
ea
k
m
a
g
n
it
u
d
e

Number of layers

Figure 4.4: Quality of 22-bit substitution-permutation networks vs.

number of layers.

the DFT peak magnitude for the address-to-vault mapping is shown in Figure 4.4. For

the performance evaluation, the 5-layer network depicted in Figure 4.3 is selected.

To improve the sequential read performance, the network is modified as follows.

The vault bits do not take part directly in the address scrambling. Instead, they are

left out and XORed together with some bits from the output of the address scrambler as

illustrated in Figure 4.5. The substitution-permutation network is constructed similar

to previous case. This construction guarantees that the data of an 8KB block is evenly

79

S-box S-box S-box S-box

S-box S-box S-box S-box

S-box S-box S-box S-box

S-box S-box S-box S-box

row bank vault column

⊕

⊕

⊕

⊕

⊕

30 16 13 8 0

Figure 4.5: Modified 4-layer address scrambler for 22 address bits

(S.17.5.04)

distributed across the vaults.

Further improvements are possible. The construction depicted in Figure 4.6 is a

valid address scrambler because it implements a bijective function. It has the same

address-to-vault mapping as the address scrambler shown in Figure 4.5. Since the

performance is expected to be dominated by the vault conflict behavior and because

both address scramblers have the same address-to-vault mapping, they should have

roughly the same performance (See subsection 4.5.2 for results). The construction

from Figure 4.6 has the advantage of not modifying the MSBs of an address. Address

scrambling can therefore be enabled or disabled independently for every 8KB block,

which is illustrated in the figure. It is for example possible to have an additional bit

in the incoming transactions that specifies whether scrambling is enabled or not for it.

Operating system or hardware must ensure that all users of an 8KB memory block

agree whether scrambling is enabled or not.

We would like to mention here that, a mathematical proof for bijectiveness of the

proposed scrambling schemes is out of the scope of this thesis, nevertheless, we have

verified the bijectiveness of all proposed scrambling schemes exhaustively and all map-

pings were found to be one-to-one. In this chapter, we evaluate 6 address scrambling

80

SP-network

row bank vault column

⊕

⊕

⊕

⊕

⊕

enable

30 16 13 8 0

Figure 4.6: Address scrambler for improving sequential read with

additional signal to enable or disable scrambling (S.17.5.04.T)

alternatives: S22.5.05 is the original design shown in Figure 4.3, with 22 scrambling

bits, 5 vault bits, and 5 layers. S.17.5.04 is illustrated in Figure 4.5, and S.17.5.04.T

is shown in Figure 4.6, both having 4 scrambling layers. We have created three alter-

native schemes, as well. S.14.8.04 uses 14 bits (RC) for scrambling and XORs 8 bits

with them (BA + VA bits) (Figure 4.7.a). The idea is to improve bank-level paral-

lelism in presence of linear traffic patterns. S.14.8.04.T is designed based on S.14.8.04

with the RC bits bypassed (See Figure 4.7.b). This allows for enabling/disabling the

scrambler for every 64KB block, while its performance is the same as S14.8.04. Finally

S.14.8.00 has zero scrambling layers. It only XORs random RC bits with BA and VA

bits (Figure 4.7.c). The obtained results are presented in section 4.5.

4.3.3 Vault Controllers

Design of the Vault Controllers follows a bank-parallel DRAM Channel Controller,

again with a standard AXI 4.0 interface to connect seamlessly to the main interconnect

(See Figure 4.8). The first stage in this channel controller is a round-robin arbitration

among the AXI AW and AR channels to issue one of them to the Command Queue

(CMDQ) in every cycle. In case of WRITE, the burst data is stored in the WData

FIFO. A set of Finite State Machines (FSMs) control power up/down, auto-refresh,

and configuration of the DRAM devices; and for each memory bank a Read-Write FSM

keeps track of the bank state and timings such as tRAS, tRCD, tRP , tWR using a set

81

S-box S-box S-box

S-box S-box S-box

S-box S-box S-box

S-box S-box S-box

row bank vault column

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

30 16 13 8 0a)

SP-network

row bank vault column

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

30 16 13 8 0b)

row bank vault column

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

30 16 13 8 0c)

Figure 4.7: Three additional scrambling alternatives: S.14.8.04 (a),

S.14.8.04.T (b), S.14.8.00 (c).

of counters. Bank level parallelism is implemented by the aid of these independent

FSMs and transaction queues. Finally, one Master FSM controls the main DRAM

bus and all other mentioned FSMs. Design of the vault controllers and the signalling

at the DRAM bus follows the JESD79F JEDEC standard for DDR SDRAMs [137],

in a generic and configurable way. Moreover, different techniques of pipelining and

latency hiding have been implemented to reach the highest throughput; and unlike

the standard vault controllers in HMC, this model supports both open and closed

page policies. AXI Interface returns the READ response and WRITE acknowledge

through R and B channels respectively. B channel simply acknowledges receive of full

WRITE burst. And for READ transactions, after receiving a complete response from

the DRAM device, converts it to AXI Burst in the and returned through the AXI R

channel. Since data widths and burst sizes of the AXI interconnect and the DRAM

devices do not necessarily match, this module performs burst size conversion, as well.

In addition, the clock domains of the AXI interconnect and the vault controllers have

been designed independently, therefore, Command Queues (CMDQ) and RData FIFOs

are asynchronous dual-clock FIFOs [138] to ensure data integrity.

82

FSM
Normal
FIFO

Dem.
Demux

Mux
Multiplexer Dual clock

 FIFO
Legends

R AR AW W B

Req.

Rs
p.

CM
DQ

W
Da

ta

FI
FO

Rd
at

a
FI

FO

Ph
y.

ev
en

od
d

ev
en

od
d

commit

FSMs Power

Config Refresh

Master

DDR

RR

DDR Phy. RAS, CAS, WE, …

AX
I I

N
TE

RF
AC

E

RA
S

RP

RC
D

W
R

Co
un

te
rs

RW

BA
N

K
1

RA
S

RP

RC
D

W
R

Co
un

te
rs

RW

BA
N

K
B Dem.

Mux

Mux

To DRAM Devices Via TSVs

AXI SLAVE PORT

Round-robin
counter

RR

Figure 4.8: Schematic view of a Vault Controller

The DRAM device models have been adopted from [139] and extended in terms of

number of banks, burst size, data width, etc. Detailed design of the serial-link con-

trollers is extensively studied in [140]. In this chapter, we focus on traffic management

inside the memory cube, therefore we won’t model the serial links. However, in chap-

ter 5, a higher level serial link model will be developed and utilized. One final point

is that, standard and flexible design of our main interconnect allows for connecting

any AXI-compatible device including parallel processor-in-memory clusters. There-

fore, PIM can be easily integrated in this model by simply increasing the number of

low-priority master ports of the main interconnect and attaching the PIM device to

them (See Figure 4.1).

4.4 Calibrating The CA Model

In the latest specifications [13] for a prototype of HMC, 4 to 8 Memory dies and 1 Logic

Base (LoB) have been reported, with 32 independent memory vaults each consisting of 2

DRAM banks per memory die. With a bank size of 4MB a total memory of 1GB/2GB

is provided in this configuration. Each vault is expected to deliver a bandwidth of

10GB/s to the lower LoB. This aggregates in total to a maximum of 320GB/s. On

the other side, four serial links consisting of 16+16 differential lanes for READ and

83

WRITE are provisioned [140]. With a lane bit-rate ranging from 12.5Gbps to 30Gbps

an aggregate off-chip bandwidth ranging from 200GBytes/sec to 480GBytes/sec. can

be delivered. Furthermore, in the HMC Specifications [13] it is implied that the flit

size of the link layer is equal to 16 Bytes. Given that the largest packet serialized on

an HMC link contains 16 data flits and 1 control flit (8 Bytes header + 8 Bytes tail),

the packetization overhead over the serial links can be estimated as 6.2%. We should

mention that HMC links advocate a data scrambling mechanism to avoid a run of many

consecutive zeros (or ones) for sake of clock recovery at the destination. If the scrambled

data on any lane exceeds 85 similar digits, the transaction is corrupted intentionally

and a link retry is requested. The probability of such event is approximated by 2−80.

Given these details, and that maximum down bandwidth from the vaults is 320GB/s,

HMC serial links should deliver up to 300GB/s of useful data (read+write). It is worth

mentioning here that the flits are transferred over the serial lanes in a bit-interleaved

fashion [13]. Therefore in each Unit Interval (UI) of data transfer, 16 bits of the same

flit are transferred to the destination and a whole flit would require 8UIs. This can

provide a flexibility for size conversion before the interconnect, which will be studied

in section 4.5.

In the first paper on HMC [91] 32 data TSVs were reported per each vault with

a double data rate (DDR) data transfer mechanism, this requires a clock frequency

of 1.25GHz to deliver 10GB/s [54]. Also, unlike existing DDR memories, HMC uti-

lizes Closed-Page policy and its DRAM devices have been redesigned to have shorter

rows (256 Bytes matching the maximum burst size of serial links, rather than 8-16KB

in a typical DDR3 device) [91]. This is because HMC has been mainly designed for

High Performance Computing (HPC) and server workloads which typically exhibit lit-

tle or no locality, either due to the underlying algorithm (e.g., pointer chasing or sparse

floating point computations) or the execution model (e.g., highly threaded server work-

loads). The reduced row length helps save power by alleviating the over-fetch problem,

however, reduces the row buffer hit probability, which makes open page mode imprac-

tical. In addition, open page policy exhibits additional overheads for little locality

workloads, due to delaying the precharge between accesses to different rows [54][121]

(See subsection 4.5.1 for experiments). Open page row buffer models also impose a logic

cost as the scheduling hardware is typically more complex [54]. As a result, with the

large number of banks in HMC, it is more efficient to utilize memory-level parallelism

to achieve high performance rather than relying on locality which may or may not be

present in a given memory access stream. This also motivates our address scrambling

84

proposal to increase the randomness of the incoming address patterns.

The specifications of the DRAM devices utilized in HMC are proprietary. How-

ever, to the best of our knowledge [141] contains the most comprehensive set of pa-

rameters that currently published for HMC: {tRP=13.75ns, ttCCD=5ns, tRCD=13.75ns,

tCL=13.75ns, tWR=15ns, tRAS=27.5ns}. Moreover, we assume that the DRAM devices

have the same clock frequency (tCK = 0.8ns) as the TSVs, while the interconnect and

the rest of the cube work in different clock domains. Besides, we assume the internal

Data Width of the DRAM devices to be 32 bits, matching the TSV count. These as-

sumptions simplify the 3D interface allowing for direct connection between TSVs and

the DRAM devices. Similar approach has been taken in [54].

The main interconnect in HMC should connect 4 serial links to 32 memory vaults.

This asymmetry makes the cardinality of this interconnect non-trivial. For example

with a typical clock frequency of 1GHz and a flit size of 128-bits, a total of 128GB/s

bandwidth can be delivered with a cardinality of 4x32 (which is below the intended

limit). To cope with this problem, we increase in the number of master ports in

the main interconnect from 4 to 8, connecting each Link Controller to two of them.

Moreover, we increase the flit-size of the main interconnect from 128 to 256 bits. This

way can achieve a theoretical aggregate bandwidth of 512GB/s at the master side

(which is beyond the requirements of current and future HMC systems). Therefore,

each serial link breaks the incoming transactions into two chunks and forwards them

via 2 AXI Master ports. Size conversion from 128-bit to 256-bits flits is also done

easily in the Link Controllers where serial data is being converted to parallel. The

only issues which should be considered are the clock frequency of the interconnect

and the increase in its area due to increased flit-size. Throughout this chapter the

interconnect has a cardinality of 8x32 with a flit-size of 256, unless otherwise stated.

With this assumption, the maximum burst size inside the interconnect will be reduced

to 8. Next section presents the experimental results.

4.5 Experimental Results

Our baseline HMC model has been described using SystemVerilog HDL in a cycle-

accurate and fully synthesizable style. ModelSim has been utilized for simulation, and

logic synthesis has been performed using Synopsys Design Compiler using STMicroelec-

tronics Bulk CMOS-28nm Low Power technology library. Area of each vault controller

was found to be 0.62mm2, and the AXI interconnect less than 0.4mm2. Summing to

85

a total of about 20.3mm2 which is even less than the DRAM area reported for HMC

(68mm2) [91] for 16 vaults. For 32 vault, DRAM area will be even larger, so there will

be even more space for near memory computation. Power consumed in the interconnect

was found to be less than 5mW up with a clock frequency up to 1GHz.

Three groups of memory access traces are used to characterize the designed system:

Synthetic traffic generated in ModelSim (random, linear, localized to banks/vaults),

Sparse Graph Traversal computation kernels (Average Teenage Follower, Bellman-Ford

Shortest Path, and Page-Rank [122]), and PARSEC V2.1 benchmark suite [101]. Dense

matrix addition is utilized as well, for its high bandwidth demand and low memory

access time sensitivity. The non-synthetic traces are gathered in gem5 [100] running a

full-system simulation of eight x86 CPUs with Linux 2.6.22.9 kernel, at the last level

cache (LLC) port. As previously observed in [54], we noticed that current benchmarks

cannot easily utilize the full bandwidth provided by HMC. To increase the bandwidth

demand of the traces, we used trace time compression. This is representative of future

systems with much more bandwidth requirements (a common trend).

4.5.1 HMC Exploration

First we adjusted the size of all buffers along with the MoT parameters to achieve the

maximum bandwidth requirement of HMC with a reasonable access latency, measured

as Average Memory Access Time (AMAT). Through several experiments we realized

that only the size of the CMDQ FIFOs in the vault controllers (Figure 4.8) and MoT

(Figure 4.2) affect the delivered bandwidth and latency significantly, while the size of

the other FIFOs can be minimized. We found that with CMDQ Size=32 elements,

and MoT=44 up to 205GB/s (READ) can be achieved for maximum pressure uniform

random traffic and up to 255GB/s for synthetic linear traffic. With these numbers,

Figure 4.9.a,b illustrate delivered bandwidth and AMAT versus requested bandwidth,

in one vault and in the baseline HMC model, respectively. Uniform random read

transactions have been applied to the ports, and AMAT has been measured at the

response master ports of the interconnect. As this figure shows, when the network is

not saturated, delivered bandwidth is over 99% of the requested bandwidth (199GB/s),

beyond HMC’s intended read bandwidth (160GB/s). While AMAT is bounded and

less than 300 ns, which is about 4X of the zero load read latency (76ns) illustrated

in Figure 4.9.c. Note that 83% of the zero load latency is related to internal DRAM

timings, also since a write transaction is immediately acknowledged without waiting for

completion, zero-load latency of a write transaction does not include DRAM timings

86

0

2

4

6

8

10

12

14

MASTER-B-LINK

MASTER-B-FIFO

ARBITRATION

SLAVE-B-FIFO

SLAVE-B-LINK

AXI-DRAM-IF

SLAVE-AW-LINK

SLAVE-AW-FIFO

ARBITRATION

MASTER-AW-FIFO

MASTER-AR-LINK

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5.5

6

6.5

7

7.5

8

5.5 6 6.5 7 7.5 8

Delivered Bandwidth

Ideal Bandwidth

AMAT

0

200

400

600

800

1000

1200

1400

1600

1800

2000

80

120

160

200

80 120 160 200

Delivered Bandwidth

Ideal Bandwidth

AMAT

0

10

20

30

40

50

60

70

80

MASTER-R-LINK
MASTER-R-FIFO
ARBITRATION
SLAVE-R-FIFO
DRAM-AXI-IF
DRAM-PHY-RESP
DATA-RETURN
RAS-ISSUE
CAS-ISSUE
DRAM-ADDR-FIFO
AXI-DRAM-IF
SLAVE-AR-LINK
SLAVE-AR-FIFO
ARBITRATION
MASTER-AR-FIFO
MASTER-AR-LINK

Zero Load Read
Latency (Cycles)

Zero Load Write
 Latency (Cycles)

c)

d)

a)

b)

Requested Bandwidth (GB/s)

De
liv

er
ed

 B
an

dw
id

th
 (G

B/
s)

De

liv
er

ed
 B

an
dw

id
th

 (G
B/

s)

Requested Bandwidth (GB/s)

AM
AT

 (n
s)

AM

AT
 (n

s)

199GB/s

7.6GB/s
@266ns

192ns

DR
AM

AX

I
AX

I
AX

I

83
%

13

%

4%

One Vault

Baseline HMC

Figure 4.9: Delivered bandwidth of one vault only (a) and the baseline

HMC (b). Zero load latency breakdown for READ (c) and WRITE

(d) commands.

0
50

100
150
200
250
300

Closed OpenGB/s Total Bandwidth
DRAM Page Policy SYNTHETIC GRAPH & MATRIX PARSEC

Figure 4.10: Effect of page policy on delivered bandwidth from SMC

(Figure 4.9.d).

87

200

220

240

260

280

300
1/32 1/16 1/8 1/4 1/2 1

Read to Write Ratio of the Synthetic Random Traffic

De
liv

er
ed

 B
an

dw
id

th
 (G

B/
s)

 Slower Faster

tRP =13.75ns, tCCD=5ns, tRCD=13.75ns,
tCL=13.75ns, tWR=15ns, tRAS=27.5ns

Figure 4.11: Effect of R/W ratio of random traffic on total bandwidth

delivered from SMC

To study the effect of page policy on delivered bandwidth, different traffic pat-

terns have been applied to the baseline model changing only the page policy, with

results plotted in Figure 4.10.a. synth rand is a uniform random read traffic with

only read transactions of maximum burst size. synth linear is a synthetic linear read

traffic pattern with steps of 256Bytes. synth lb, synth ch, and synth lb ch are spe-

cial read random traffic patterns with address bits set to zero except for bank bits,

vault bits, and bank+vault bits, respectively. These traffics are designed to exercise

banks/vaults/banks+vaults respectively. It can be seen that synth linear can achieve a

read bandwidth of 255GB/s regardless of the page policy. This is the maximum band-

width which can be extracted from the system, and as explained later, it is limited by

the row-cycle time of the DRAM devices. Interestingly, when synth rand traffic is ap-

plied, closed-page policy operates better than open-page, with a delivered bandwidth

beyond requirement of HMC (i.e. 205GB/s for READ). And even in PARSEC bench-

marks which have a lot of locality, still open page does not provide superior benefits

to cover for its implementation cost.

Next, synthetic random traffic has been injected and read to write ratio has been

changed to study the effect of mixing reads and writes. Results are shown in Fig-

ure 4.11. In this plot, DRAM timings have been scaled down artificially from 1X down

to 1/32X. This is to show how much performance is lost due to the internal timings

of the DRAM devices. For 1/32 scale value DRAM latencies become negligible. It

can be seen that injecting mixed read and write traffics does not improve the deliv-

ered bandwidth, in comparison to “All Read” and “All Write” traffics. This is due

to the serialization bottleneck of the read and write transactions in the DRAM Bus

88

0
50

100
150
200
250
300
350

128 256 512

0
50

100
150
200
250
300
350

32 64 128

AXI Data Width (bits)

DRAM Bus Width (bits)

GB/s

Total Delivered Bandwidth
GB/s

C: Closed Page Policy
O: Open Page Policy

a)

b)

SYNTHETIC GRAPH & MATRIX PARSEC

SYNTHETIC GRAPH & MATRIX PARSEC

Figure 4.12: Effect of AXI data width (a) and DRAM bus width (b)

on delivered bandwidth from SMC

and FSMs. Also, looking at two corners of the plot reveals that “All Read” traffic

achieves a slightly higher bandwidth than “All Write” (when DRAM timings are not

scaled down). This is because the minimum distance between two subsequent read

transactions is limited by the row-cycle-time which is (tRAS + tRP), while for write

transactions write-recovery time (tWR) should be satisfied, as well.

Next, we analyze the effect of different architectural parameters on the delivered

bandwidth. This is to find the minimum parameters meeting the performance re-

quirements of current and future HMC releases. Figure 4.12.a illustrates delivered

bandwidth when the flit size of the AXI interconnect is changed from 128 to 512. We

can see that, 128-bit flits are not enough (specially for the random traffics), while,

512-bits is not necessary for closed-page policy. Moving from 256 to 512 flits results in

7% average performance improvement for PARSEC and less 1% for the graph bench-

marks. Note that graph benchmarks exhibit almost random traffic patterns with a

very low locality. Figure 4.12.b illustrates the effect of DRAM Bus Width (i.e. number

of TSVs per each vault). For closed-policy, changing the TSVs from 32 to 64 results

in an average performance improvement of 23% for PARSEC and 31% for the graph

benchmarks. This suggests that designing smaller TSVs to have wider links between

DRAM dies is an interesting direction in evolution of 3D integration, and can result in

further performance improvements.

Next, the clock period of the DRAM devices (tCK) and the AXI interconnect have

been swept and Figure 4.13.a,b illustrate their effect on delivered bandwidth. The

goal is to find their optimal clock frequency. Increasing DRAM clock frequency from

89

0

50

100

150

200

250

300
0.4 0.6 0.8 1

GB/s a) Total Bandwidth AXI Clk Period (ns)

0

50

100

150

200

250

300

0.6 0.8 1 1.2

DRAM tCK (ns)

GB/s b)

SYNTHETIC GRAPH & MATRIX PARSEC

SYNTHETIC GRAPH & MATRIX PARSEC

Figure 4.13: Effect of DRAM tCK (a) and AXI Clk period (b) on

bandwidth delivered by SMC

830MHz to 1.6GHz can improve delivered bandwidth by over 40% for PARSEC, 50%

for graph benchmarks, and 30% for synthetic random traffic, while the clock period of

AXI Interconnect does not have much effect (less than 2% performance improvement

by increasing interconnect’s clk frequency from 1GHz to 2.5GHz). Again this shows

that the main bottleneck of the system is the DRAM and not the AXI interconnect.

To further confirm this result we have scaled down all the timing parameters of the

DRAM devices from their default values by the scale factors illustrated in Figure 4.14.a,

where the same traffic set has been applied. Interestingly, the delivered bandwidth to

PARSEC and graph benchmarks can be highly improved when DRAM timings are

very small and close to an ideal SRAM (37% and 52% improvement when timings are

scaled by 16). This is while, random patterns are less sensitive to DRAM timings (less

than 15% on average).

Figure 4.14.b depicts the effect of the number of banks per each vault on the de-

livered bandwidth. When there is only one bank per each vault, closed-page behaves

almost similarly to the open-page, while as this number increases, closed-page performs

slightly better. Overall, an average performance improvement of 15% for PARSEC and

58% for the graph benchmarks is achieved for closed-page by increasing the number of

90

0
50

100
150
200
250
300 1/16 1/8 1/4 1/2 1

0
50

100
150
200
250
300 1 2 4 8

GB/s Total Delivered Bandwidth

GB/s

DRAM Banks

DRAM Timing Scale

b)

a)

C: Closed Page Policy
O: Open Page Policy

SYNTHETIC GRAPH & MATRIX PARSEC

SYNTHETIC GRAPH & MATRIX PARSEC

Figure 4.14: Effect of scaling down the timing parameters of DRAM

(a) and number of banks per vault (b) on bandwidth delivered by the

SMC

0
50

100
150
200
250
300

RC.VA.BA.OF RC.BA.VA.OF BA.RC.VA.OF VA.RC.BA.OF BA.VA.RC.OF VA.BA.RC.OF

0
50

100
150
200
250
300

LOW.INTLV S.14.8.00 S.14.8.04 S.14.8.04.T S.17.5.04 S.17.5.04.T S.22.5.05

GB/s a)

Total Delivered Bandwidth

GB/s b)

Conventional Address Mapping

Address Scrambling

Figure 4.15: Effect of conventional address remapping (a), and ad-

dress scrambling (b) on delivered bandwidth of SMC

banks in each vault from 1 to 8. This can be explained using the fact that graph bench-

marks exhibit more random access patterns, therefore can benefit more from bank-level

parallelism.

4.5.2 Address Remapping

For traffics which exhibit locality, address mapping was found to have an extremely

important effect on the delivered bandwidth and total execution time. Figure 4.15.a

illustrates the effect of conventional address mapping on total delivered bandwidth to

91

different benchmarks. Benchmarks starting with mix prefix are a mix of different graph

and PARSEC benchmarks simulating a multi-programmed workload. Interestingly,

address mapping scheme affects the benchmarks differently. For x264 the best address

mapping is RC.BA.VA.OF (HMC’s default mapping [13], explained in subsection 4.3.2),

while in rtview VA.BA.RC.OF achieves the highest performance. In dense matrix

addition RC.VA.BA.OF achieve the highest bandwidth.

In the next experiment, conventional address remappers have been replaced with

address scramblers. Results are plotted in Figure 4.15.b. LOW-INTLV is the de-

fault address mapping of HMC (i.e. RC.BA.VA.OF), and all scrambling methods have

been described in subsection 4.3.2. On average for PARSEC, address scrambling al-

ternatives improve bandwidth over the LOW-INTLV by a factor of 88% (note that

most of this improvement is related to blackscholes, which we will investigate later).

For graph benchmarks this improvement is around 24%. Also, looking at the mixed

benchmarks, reveals that multiprogramming slightly reduces the benefits achieved by

scrambling (84% average bandwidth improvement). This shows that mixing different

traffics slightly improves their randomness. Lastly, all proposed scrambling mechanism

perform better than the baseline LOW-INTLV on average. Original S.22.5.05 results in

an average performance improvement of 7%, while the two improved versions S.17.5.04

and S.17.5.04.T lead to 20% and 16% improvement on average over all benchmarks.

One last point to mention is that even though S.14.8.00 delivers a reasonable band-

width in Figure 4.15.b, it will be shown later in Figure 4.18 that it is vulnerable to

adverse traffic patterns, and therefore, it is not a suitable candidate.

In the next set of experiments, we aim to analyze the traffic patterns which are

specifically unfavorable for the LOW-INTLV addressing and present examples of real

applications generating these patterns. In Figure 4.16, a synthetic linear traffic pattern

has been applied to the baseline HMC model (with LOW-INTLV addressing scheme)

and the step size of the traffic has been changed from 1 DRAM row (256Bytes) to

2048 DRAM rows (512KBytes). It can be seen that increasing the step size drops

the delivered bandwidth severely and increases total execution time. The reason is

that by increasing the step from 256 to 512 we are skipping half of the memory vaults

and using only the even indexed ones. This happens also for further increase in the

step size. This suggests that the size of the nodes in the data structures can be as

important as their traversal pattern. Next, we created a set of data-structures with

different node sizes (ranging from 256Bytes to 4096Bytes), and traversed them linearly

using a single computation loop. Delivered bandwidth for different addressing schemes

92

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

50

100

150

200

250

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Bandwidth
Execution Time m

s

Step size (number of rows)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

De
liv

er
ed

 B
an

dw
id

th
 G

B/
s

Figure 4.16: Effect of changing the step size of synthetic linear traffic

on delivered bandwidth and execution time.

is plotted in Figure 4.17.a. As can be seen, LOW.INTLV ’s bandwidth drops severely

with the increase in the walk-step, while all scrambling mechanisms seem to be robust

and insensitive of the walk-step.

In Figure 4.17.b, a random walk has been performed on the same data structures.

Again, the LOW.INTLV ’s bandwidth drops with a similar trend. These two exper-

iments suggest that, regardless of the pattern of traversing a data-structure, size of

its nodes has a crucial impact on the bandwidth extracted from HMC in the base-

line LOW.INTLV addressing scheme. In particular, data structures composed of “fat”

nodes with sizes equal to powers of two, seem to be dangerous to low-interleaved ad-

dressing, no matter how one traverses them. We would like to remind that fat structures

are not uncommon. Some example includes descriptors in computer vision [142], and

nodes in file-systems and databases [143].

To illustrate this issue better, Figure 4.18 plots the bank-access heat-map for all 256

DRAM banks present in HMC over time, where a linear walk has been performed on the

data structure elements. Three addressing schemes are used in this plot: LOW.INTLV,

S.14.8.00, and S.17.5.04.T. It can be clearly seen that, many of the DRAM banks

remain unused for LOW.INTLV and more bank and vault conflicts happen with the

increase in the walk step. This is issue does not occur in S.17.5.04.T. Also, it can be

seen that S.14.8.00 is not able to evenly distributing the memory accesses and still

93

10

40

160

Ba
nd

w
id

th
 (G

B/
s)

10

40

256 512 1024 2048 4096

LOW.INTLV S.14.8.00
S.14.8.04 S.14.8.04.T
S.17.5.04 S.17.5.04.T
S.22.5.05

a)

b)

Linear Walk

Element Size (B)

Random Walk

for (i=0; i<Max; i++)
 datastructure[i].key = value;

Figure 4.17: Delivered bandwidth compared between different ad-

dressing schemes, compared for linear walk (a), and random walk

(b). The nodes size of the data structure has been changed from

256Bytes to 4096Bytes.

suffers from many bank conflicts. For this reason deeper scramblers like S.17.5.04.T

are more desirable.

Similar plots have been shown in Figure 4.19 for three representative benchmarks:

blackscholes, dense-matrix-add, and streamcluster. In all three cases, the address

scrambling scheme evenly distributes the traffic over the banks and reduces bank and

vault conflicts, and performs better than the conventional low-interleaving. The worst

pattern belongs to blackscholes which is a numerical solver for Partial Differential

Equations (PDE) [101].

One last experiment is performed to show another possibly inconsistent traffic pat-

tern with low-interleaving. A medium sized dense matrix (512 x 512 x UInt64) is

traversed once in the Row-Major (RM) order and then in Column Major (CM) order.

The delivered bandwidth under different addressing schemes is plotted in Figure 4.20.

RM traversal is insensitive to the underlying addressing scheme, since it is simply a

linear walk with small walk steps. However, CM traversal is highly sensitive to the

addressing scheme and its bandwidth drops severely with LOW.INTLV addressing.

94

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

ds-walk-l256-LOW.INTLV

"heat_map.txt" matrix

 0

 20

 40

 60

 80

 100

 120

 140

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

ds-walk-l512-LOW.INTLV

"heat_map.txt" matrix

 0

 20

 40

 60

 80

 100

 120

 140

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

ds-walk-l1024-LOW.INTLV

"heat_map.txt" matrix

 0

 20

 40

 60

 80

 100

 120

 140

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

ds-walk-l256-S.14.8.00

"heat_map.txt" matrix

 0

 20

 40

 60

 80

 100

 120

 140

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

ds-walk-l512-S.14.8.00

"heat_map.txt" matrix

 0

 20

 40

 60

 80

 100

 120

 140

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

ds-walk-l1024-S.14.8.00

"heat_map.txt" matrix

 0

 20

 40

 60

 80

 100

 120

 140

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

ds-walk-l256-S.17.5.04.T

"heat_map.txt" matrix

 0

 20

 40

 60

 80

 100

 120

 140

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

ds-walk-l512-S.17.5.04.T

"heat_map.txt" matrix

 0

 50

 100

 150

 200

 250

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

ds-walk-l1024-S.17.5.04.T

"heat_map.txt" matrix

 0

 50

 100

 150

 200

 250

Figure 4.18: Heat map for the DRAM banks plotted over time, for

linear walk on data structure nodes with different node sizes. In the

upper plots address mapping is LOW.INTLV. In the middle plots the

addressing scheme is S.14.8.00, and in the bottom ones S.17.5.04.T is

utilized.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

blackscholes-LOW.INTLV

"heat_map.txt" matrix

 0

 50

 100

 150

 200

 250

 300

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45

dense-matrix-add-LOW.INTLV

"heat_map.txt" matrix

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

streamcluster-LOW.INTLV

"heat_map.txt" matrix

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

blackscholes-S.17.5.04

"heat_map.txt" matrix

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

dense-matrix-add-S.17.5.04

"heat_map.txt" matrix

 0

 50

 100

 150

 200

 250

 300

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

streamcluster-S.17.5.04

"heat_map.txt" matrix

 0

 50

 100

 150

 200

 250

 300

 350

Figure 4.19: Heat map for the DRAM banks plotted over time, for

three benchmarks: blackscholes, dense-matrix-add, and streamclus-

ter. In the upper plots address mapping is LOW.INTLV, and in the

bottom ones address mapping is S.17.5.04.

Again, size of the matrix and being aligned to powers of 2 have an important impact

on the obtained results. Also, it should be noted that CM traversal is not uncommon

95

0
20
40
60
80
100
120
140
160

0

50

100

150

200

250

300

LO
W

.IN
TL

V

S.
14

.8
.0

0

S.
14

.8
.0

4

S.
14

.8
.0

4.
T

S.
17

.5
.0

4

S.
17

.5
.0

4.
T

S.
22

.5
.0

5

RM CM

Co
lu

m
n

M
aj

or
 B

an
dw

id
th

Ro
w

 M
aj

or
 B

an
dw

id
th

GB/s

Figure 4.20: Effect of Row-major (RM) and Column-Major (CM)

matrix traversal methods on delivered bandwidth.

in linear algebra and matrix transposition is a very simple example requiring it.

These experiments demonstrate that the default addressing scheme of HMC is not

robust enough to be trusted for all traffic patterns. We would like to remind that the

goal behind the design of HMC has been to abstract away the internal details of the

memory system and hide them from the host processors. With this goal, we believe a

more robust addressing methodology similar to the proposed scrambling schemes should

be utilized to be able to serve a wide range of traffic patterns efficiently. Finally, the

address scrambler illustrated in Figure 4.6 was synthesized using the same technology

library and its combinational delay was found to be less than 0.6ns for an area of 600

Gate Equivalent (GE). This shows that the overhead of address scrambling is very

small. Therefore it is sensible for each master port to have an instance of the address

scrambler. The power consumption associated with the address scramblers were found

to be negligible, as well.

4.5.3 Handling PIM Traffic

As stated earlier, the proposed architecture allows for integration of PIM devices by

simply connecting them to the main crossbar switch. Yet, the main concern is the

side-effects of PIM traffic on the traffics from the main links. Assuming a dual-port

PIM device is connected through two additional links (we study the effect of number

of ports later in this section), we aim to find the upper bound on the bandwidth that

96

90

100

110

120

130

140

150

72 69 66 63 60 57 54 51 48 45 42 39 36
30

35

40

45

50

55

60

65

72 69 66 63 60 57 54 51 48 45 42 39 36

141

131

121

112

105

99

Delivered Bandwidth
 (PIM Ports)

100

140

180

220

260

300

340

72 69 66 63 60 57 54 51 48 45 42 39 36
300

700

1100

1500

1900

2300

72 69 66 63 60 57 54 51 48 45 42 39 36

MAT Max
 (Main Links & PIM)

PIM AMAT

PIM AMAT

AM
AT

 (n
s)

M
AT

 M
ax

 (n
s)

Ba
nd

w
id

th
 (G

B/
s)

Ba
nd

w
id

th
 (G

B/
s)

Requested Bandwidth of PIM (GB/s)

a) b)

c) d)

Requested Bandwidth
On the main links (GB/s)

AMAT (Main Links & PIM)

Delivered Bandwidth (Main Links)

Figure 4.21: Increase in average (a) and maximum (b) memory ac-

cess time caused by PIM. Delivered bandwidth to PIM as a function

of requested bandwidth on PIM port (c), Drop in main bandwidth

caused by interference of PIM (d)

it can request without disrupting the main traffic. We assume that PIM can process

received data instantaneously, and on the main links as well as the PIM link we in-

ject synthetic random transactions with various bandwidth profiles. Figure 4.21.a,b

illustrate the average and maximum Memory Access Time (MAT), respectively. Fig-

ure 4.21.c shows delivered bandwidth to the PIM device, and Figure 4.21.d shows total

delivered bandwidth on the main links. All plots have been characterized based on

the amount of requested bandwidth on the main links (from 99GB/s to 141GB/s),

and the X-axis shows requested bandwidth by the PIM device. It can be seen that, a

dual-port PIM device can request up to its theoretical limit (64GB/s) without pushing

the system into saturation, and without observing any drop in the bandwidth of the

main links. However, to keep the AMAT of the main links below 200ns (3X of zero

load AMAT), and avoid saturation of the PIM links, more than 55GB/s should not

be delivered to PIM. This leads to an aggregate bandwidth delivery of 195GB/s which

is 95% of the 205GB/s limit found in subsection 4.5.1. It is also worth mentioning

97

100

400

1600

0

20

40

60

80

100

120

73 67 61 55 50 44 38 32 26 21 15

PIM BW

Main Links BW

PIM AMAT

Main Links AMAT

Main Links MAT (Max)

10

100

1000

0

10

20

30

40

50

60

70

256 512 1024 2048 4096 8192 16384 32768 65536 131072

PIM BW
Main Links AMAT
Main Links MAT (Max)
PIM AMAT
PIM MAT (Max)

a)

b) Buffer Size (Bytes)

PIM’s Requested Bandwidth (GB/s)

AM
AT

 (n
s)

D
el

iv
er

ed
 B

an
dw

id
th

 G
B/

s
D

el
iv

er
ed

 B
an

dw
id

th
 G

B/
s

AM
AT

 (n
s)

Figure 4.22: Effect of requested bandwidth by ideal PIM on x264 (a),

and effect of buffer size of double-buffering PIM on x264 (b).

that, Average Memory Access Time (AMAT) is always below 350ns (5X of zero load

AMAT). Since for typical general purpose servers, the traffic on the main links mostly

consists of cache refill requests, they are very sensitive to latency. Therefore not only

AMAT but also the worst-case MAT should be small. This also, limits the bandwidth

delivered to PIM to 55GB/s. 1

To demonstrate this fact better, instead of random traffic, real traces of the high

bandwidth demanding x264 benchmark with time compression are applied on the main

port, and interference caused by random traffic from a PIM device with two ports has

been plotted in Figure 4.22.a. This plot again shows that the full bandwidth delivered

to the dual-port PIM does not cause any disruption to the bandwidth or AMAT of the

main links. Also, the PIM port can receive 40GB/s without saturating itself with an

1A less conservative bandwidth partitioning could be speculated for accelerator-dominated traffics

(e.g. GPGPU) which are much less latency-sensitive.

98

80

100

120

140

160

180

167 152 138 126 119 111

1

2

3

4

Bandwidth (Main Links)

0
20
40
60
80

100
120
140

167 152 138 126 119 111

Bandwidth (PIM)

200

800

3200

167 152 138 126 119 111

AMAT (Main Links)

1000

4000

16000

167 152 138 126 119 111

MAT Max (Main Links)

Bandwidth Requested by the main links (GB/s)

G
B/

s
G

B/
s

(n
s)

(n

s)

a) b)

c) d)

Figure 4.23: Effect of increasing the number of PIM ports on delivered

bandwidth (a) to the main links, AMAT of the main links (b), PIM’s

delivered bandwidth (c), maximum MAT (b)

increased AMAT of below 400ns (5X of zero load AMAT). Execution time increase in

the x264 application was found to be less than 5%.

Next, we assume that PIM uses two Direct Memory Access (DMA) engines each

working with double-buffering mechanism, working on one buffer, while the other one

is being fetched from the memory. Again, x264 is played on the main links. Results are

shown in Figure 4.22.b. This plot identifies the maximum amount of time that PIM

can spend computing on the data, to effectively hide the DRAM access latency. Buffer

size larger than 8KB does does not seem to be desirable due to super-linear increase

in the AMAT of the PIM link itself.

Figure 4.23 shows the maximum bandwidth that a multi-ported PIM can request

based on different bandwidth demands by the main links. The requested bandwidth on

the main links has been characterized from 111GB/s to 167GB/s and PIM’s number

of ports has been increased up to 4. We can see that, when host is demanding less than

120GB/s, PIM can use the remaining bandwidth safely without pushing the system

into saturation. Also, a dual-port PIM can request up to 64GB/s without any disrupt

to the main links regardless of the demand on the main links, while beyond 2 ports

99

careful bandwidth throttling is required. This is because, AMAT on the main links

becomes more sensitive to PIM’s traffic as the number of its ports increases.

4.6 Summary

In this chapter, we presented a high performance AXI-compatible interconnect to sup-

port near memory computation on the LoB die of SMC. Cycle accurate simulation

results demonstrated that, the proposed interconnect can easily meet the demands of

current and future projections of HMC (Up to 205GB/s READ bandwidth with 4

serial links and 32 memory vaults). Moreover, the interference between the PIM traf-

fic and the main links was found to be negligible when PIM has up to 2 ports, and

64GB/s bandwidth can be delivered to it without any major disrupt on the main links.

It was shown that low-interleaved addressing is not reliable enough for an abstracted

memory such as HMC. Fat data structures with power-of-two node sizes were partic-

ularly identified as unfavorable patterns for low-interleaving. A more robust address

scrambling mechanism was proposed and it was shown to effectively reduce bank/vault

conflicts. Finally, logic synthesis confirms that our proposed models are implementable

and effective in terms of power, area, timing (power consumption less than 5mW up

to 1GHz and area less than 0.4mm2).

In chapter 5 we design a high-level full-system simulation model based on the pa-

rameters and calibration results obtained in this chapter. We will design an actual

processor in memory architecture and evaluate it in a full system context in presence

of all offloading and dynamic overheads.

100

Chapter 5

Processor-in-Memory Design for

the Smart Memory Cube

In chapter 4 we introduced SMC’s concept and evaluated its architectural implications

and requirements using cycle accurate models and different traffic patterns. In this

chapter we take one step further and present the first exploration steps towards de-

sign of a Processor-in-Memory (PIM) architecture for SMC. An accurate simulation

environment is developed, along with a full featured software stack. All offloading

and dynamic overheads caused by the operating system, cache coherence, and memory

management are considered. Also, a zero-copy pointer passing mechanism has been

devised, to allow low overhead data sharing between the host and the PIM.

5.1 Motivations and Challenges

Near memory computation can provide two main opportunities: (1) reduction in data

movement by vicinity to the main storage resulting in reduced memory access latency

and energy, (2) higher bandwidth provided by Through Silicon Vias (TSVs) in com-

parison with the interface to the host which is limited to the pins. Most recent works

exploit the second opportunity by trying to accelerate data-intensive applications with

large bandwidth demands ([51][15][122]). In [50] and [53] also, networks of 3D stacked

memories are formed and host processors are attached to their peripheries, providing

even more hospitality for processing-in-memory (PIM) due to huge bandwidth internal

to the memory-centric network. These platforms, however, are highly costly and suit-

able for high-end products with extremely high performance goals [53]. Also, a look at

the latest HMC Specification [13] reveals that its ultra-fast serial interface is able to

101

deliver as much bandwidth as is available in the 3D stack. Four serial links each with 32

lanes operating from 12.5Gb/s to 30Gb/s serve for this purpose [13]. For this reason,

the same bandwidth available to a PIM on the logic die is also theoretically available

to the external host, and high-performance processing clusters or GPU architectures

executing highly parallel and optimized applications can demand and exploit this huge

bandwidth [144][145]. This puts PIM in a difficult but realistic position with its main

obvious advantage over the external world being vicinity to the memory (lower access

latency and energy) and not an increased memory bandwidth.

In this chapter, we focus on this dark corner of the PIM research, and try to

demonstrate that even if delivered bandwidth to the host can be as high as the internal

bandwidth of the memory, PIM’s vicinity to memory itself can provide interesting

opportunities for energy and performance optimization. We focus on a worst-case

scenario where a single PIM processor is trying to compete with a single thread on host.

In our experiments caches are not thrashed, the memory interface is not saturated, and

the host can demand as much bandwidth as it requires.

As explained in chapter 4, our PIM proposal (called the Smart Memory Cube)

is built on top of the existing HMC standard with full compatibility with its IO in-

terface specification. We have developed a full-system simulation environment called

SMCSim and verified its accuracy against the Cycle-Accurate (CA) model described

in chapter 4. SMCSim models the complete software and hardware stack ranging from

high-level user application to low-level firmware and hardware layers. It takes into

account the offloading and dynamic overheads caused by the operating system, cache

coherence, and memory management, as well. We devised an optimized memory vir-

tualization scheme for zero-copy data sharing between host and PIM; enhanced PIM’s

operations by the aid from atomic in-memory operations; and improved PIM’s mem-

ory access by means of a flexible Direct Memory Access (DMA) engine. Our proposal

is not dependent on the ISA of the host processors and provides high flexibility and

programmability by means of a full-featured software stack. After presenting the re-

lated works in this area, in section 5.3 and section 5.4 the SMCSim environment is

introduced and design of the PIM is described. Next, the software stack is presented in

section 5.5. Finally, experimental results are presented and a summary of the obtained

results and conclusions are given in Sections section 5.6 and section 5.7.

102

5.2 Related Works

The design space for near memory computation is enormous, and several different con-

cerns need to be addressed such as the micro-architecture of the PIM processor, support

for memory management and cache coherence, and communication mechanisms with

the host processors [146].In [49] a CGRA is located on a separate die and connected

to the DRAM dies through Through Silicon Vias (TSVs). Segmented memory with-

out caching is used and 46% energy saving along with 1.6X performance gain for Big

Data applications are achieved. In [15], 64 Cortex-A5 processors form a PIM cluster.

Memory is preallocated in contiguous regions, and two levels of caches with on demand

software flushing are available. For Big Data workloads 1.1X and 23% and performance

and energy gain are reported. The main difference between our work in this chapter

and these two papers is flexible support for virtual memory as well as considering the

offloading overheads in our analysis.

Active Memory Cube (AMC) [50] extends the logic layer of the HMC with clus-

ters of vector processors without caches. Hardware coherence is maintained with the

host and virtual memory support has been provided. 2X performance improvement

has been reported for dense matrix operations, increasing to 5X when vicinity aware

memory allocation schemes are utilized. In [51], PIM is comprised of CPUs and GPUs.

Memory is preallocated to the PIM, and analytical evaluations show 85% energy saving

with minor performance improvements for graph, HPC, and GPGPU workloads. [52]

augment the logic die with 16 light-weight general purpose cores with 2 levels of caches,

hardware cache coherence, and preallocated memory. For scientific applications up to

2X performance gain has been reported. Tesseract [53] features a network of mem-

ory cubes each accommodating 32 in-order cores with L1 caches and two prefetchers,

optimized for parallelizing the PageRank algorithm. Uncacheable regions are shared

with PIM and segmented memory without paging is supported. Up to 10X perfor-

mance improvement and 87% energy reduction has been provided in comparison with

high-performance server hosts. Unlike these three works, we focus on a context which

external memory interface is not bandwidth saturated and PIM’s benefits are not de-

termined by the delivered bandwidth. In addition, we utilize atomic commands and

consider the offloading overheads in our studies, as well.

In [122], the memory stack has been augmented with low level “atomic” in-memory

operations. Host instructions are augmented, and full virtual memory support and

hardware cache coherence is provided. for Big Data workloads up to 20% performance

103

and 1.6X energy gain is obtained. The main difference between our proposal and this

work is that our PIM supports flexible execution of different computation kernels and

its acceleration is not limited to the atomic operations only. Moreover, our solution

is not dependent on the ISA of the host and with a proper software stack any host

platform can communicate with it through its memory-mapped interface. Lastly, in

[121] up to 15X performance gain, and in [124] up to two orders of magnitude energy

and performance gain compared to the host are reported. However, use of open-loop

trace-based simulation, without considering the feedback effects and dynamic overheads

makes their results highly optimistic.

In this chapter we present design and exploration of a PIM architecture for SMC.

The goal is to provide flexible computational capabilities by means of full virtual

memory support and a full-featured software stack compatible with the Parallel Pro-

gramming Application Programming Interfaces (API). This is the first PIM effort to

accurately model all layers from high-level user applications, to low level drivers, op-

erating system (OS), and hardware, considering all dynamic overheads related to the

OS, caches, and memory management. Besides, a comprehensive accuracy verification

versus a cycle-accurate model has been performed which improves the quality of the

obtained results.

5.3 The SMC Simulation Environment

SMCSim is a high-level simulation environment developed based on gem5 [100], capa-

ble of modeling an SMC device attached to a complete host System on Chip (SoC).

Figure 5.1 illustrates an example of one such platform modeled in this environment.

SMCSim has been designed based on gem5’s General Memory System model [147] ex-

ploiting its flexibility, modularity, and high simulation speed, as well as, features such

as check-pointing and dynamic CPU switching.

Figure 5.1 highlights the most important components in this environment: The

host is an ARMv7 SoC capable of booting a full-featured operating system. Caches

and interconnects are adopted from gem5, as well, without modifications. Inside the

SMC, the vault controllers and the main interconnect are modeled using pre-existing

components and tuned based on the CA model. A PIM is located on the LoB layer

with flexible and generic computational capabilities. This configuration is completely

consistent with the current release of the HMC Specification [13]. Also, SMC is not

dependent or limited to any ISA and it is exposed to the host via memory mapped

104

L2 $

SMC Controller
Queue Queue

L2 $$$
Interconnect 2

L2 $$$
Interconnect 1

Vault
Ctrl 1

Vault
Ctrl 1

Vault
Ctrl 1

DMA

ARM Peripherals

ARM

I$ D$
ARM

I$ D$

Smart Memory Cube (SMC)

Host SoC

V lt V lt V lt

DRAM DRAM DRAM

Memory Dies

Logic-Base (LoB)

PIM

(LoB)gLogicg -Base Logic Base

Main SMC Interconnect

PIM Interco. PIM Inteercnte

Serial Links

t o.o.
TLB TLB

MMU

M

MMU

MM
PIM

Processor

PIM

SPM

Figure 5.1: An overview of the SMCSim Environment for Design

Space Exploration of the Smart Memory Cube (SMC)

regions. Therefore, any host platform should be able to communicate with it by the

aid from a proper software stack. For the serial links: bandwidth, serialization latency,

and packetization overheads are obtained from [13]. SMC/HMC controller, in general,

is responsible for translating the host protocol (AXI for example) to the serial links

protocol. Plus, it should have large internal buffers to hide the access latency of the

cube. More advanced global scheduling policies and reordering and steering of trans-

actions can be implemented if required [148]. However in our simulation environment,

the SMC Controller simply queues the incoming transactions and schedules them to

serial links using a simple round-robin mechanism to balance the load among them.

Serial links accept the same address ranges and each packet can travel over any of them

[140][13]. Different sources of latency are modeled in this environment and calibrated

in subsection 5.6.1.

105

5.4 Design of the Processor-in-Memory

We have chosen an ARM Cortex-A15 core without caches or prefetchers (See subsec-

tion 5.4.2 for motivation and reasoning), and augmented it with low cost components

to enhance its capabilities as a Processor-in-Memory. Our choice of ARM is because

it offers a mature software stack, its system bridges (AXI) are well understood, and

it is an energy-efficient architecture. Nevertheless, the architecture is not limited to

it. As shown in Figure 5.1, PIM is attached to the main interconnect on the LoB

through its own local interconnect, and features a Scratchpad Memory (SPM), a Di-

rect Memory Access (DMA) engine, a Translation Look-aside Buffer (TLB) along with

a Memory Management Unit (MMU). In this section we will describe the role of these

components.

5.4.1 PIM’s Memory Model

PIM has been designed to directly access user-space virtual memory. The TLB illus-

trated in Figure 5.1 serves for this purpose. Apart from memory protection benefits,

this replaces memory-copy from user’s memory to PIM with a simple virtual pointer

passing. Scalability and programmability are improved, and offloading overheads are

reduced to a great extent. Since user’s memory is paged in conventional architectures,

PIM should support this, as well. To add more flexibility we introduce the concept of

slices as a generalization to memory pages: slice is a region of memory composed of 1 or

more memory-pages which is contiguous in both virtual and physical memory spaces.

With this definition, contiguous memory pages which map to contiguous page-frames

can be merged to build larger slices, with arbitrary sizes.

PIM’s memory management is done at the granularity of the slices. The first slice

is devoted to PIM’s scratchpad memory, and the rest of the memory space is mapped

immediately after this region. Upon a TLB miss, a data structure in DRAM called

the slice-table is consulted and the translation rules are updated on a Least Recently

Used (LRU) basis. Slice-table is similar to page-tables and contains all translation

rules for the computation kernel currently executing on PIM. It is built during the task

offloading procedure by PIM’s device-driver (section 5.5). Since the slices can have

arbitrary sizes, implementing the slice-table as a simple table of slices can complicate

the lookup procedure. In order to minimize the number of DRAM access required to

fetch rules from this table, in this table, we keep entries for the underlying pages rather

than the slices. Therefore, for pages in the same slice, we store the same translation

106

typedef struct {
 unsigned long vaddr; // Start address of the slice (Virtual)
 unsigned long paddr; // Start address of the slice (Physical)
 unsigned long size; // Size of the slice (multiple pages)
} Slice;

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Virtual Page Number Physical Page Frame Number

Slice 0
Slice 1

Slice 2

Slice 3

PIM V.A vaddr paddr Size (Pages)

0 0 0 1

1 1 2 4

2 1 2 4

3 1 2 4

4 1 2 4

5 5 1 1

6 6 6 2

7 6 6 2

a)

b)

c)

Figure 5.2: A sample page to frame mapping highlighting the merged

pages (a), The slice-table data structure (b), values stored in the slice-

table for current example (c)

rule (See Figure 5.2). This simplifies the lookup procedure at the cost of redundant

rules in the slice-table. For example if PIM accesses the virtual address 3 (highlighted

in Figure 5.2.c), using a single DRAM burst of 3 words (12Bytes for 32bit architectures)

it is possible to fetch the rule completely for Slice 2. This way, there is no need to

access the slice-table twice, regardless of the size of the slices.

Most host-side accelerators with virtual memory support rely on the host processor

to refill the rules in their TLB. The OS consults its page-table to reprogram the IO-

MMU of the device, and then wakes up the accelerator to continue its operation. Since

PIM is far from the host processors, asking them for a refill upon every miss can result

in a large delay. As an alternative, PIM’s TLB contains a simple controller responsible

for fetching the required rule from the slice-table. Apart from the performance benefits,

this allows for fully independent execution of PIM.

107

5.4.2 Enhancing PIM’s Functionality

A simple zero-load latency analysis (subsection 5.6.1) reveals that the latency of di-

rectly accessing DRAM by PIM is harmful to its performance, therefore latency-hiding

mechanisms are required. Caches and prefetchers provide a higher-level of abstrac-

tion without much control. This is desired for SoCs far from the memory and flexible

enough to support different main memory configurations. DMA engines, on the other

hand, provide more control, making more sense in a near-memory processor. We have

augmented PIM with a DMA engine capable of bulk data transfers between the DRAM

vaults and its SPM (See Figure 5.1). It allows multiple outstanding transactions by hav-

ing several DMA resources, and accepts virtual address ranges without any alignment

or size restrictions, on top of the functionalities provided by gem5’s DMA component.

A complementary way to address this problem is to move some very specific arith-

metic operations directly to the DRAM dies and ask the vault controller to do them

“atomically”. Abstracted memory interface provided by the HMC facilitates imple-

mentation of these operations and the atomic HMC commands [13] are good examples

but for synchronization purposes. In-memory operations can reduce data movement

when computation is local to one DRAM row [122]. We have augmented our vault con-

trollers with three types of atomic commands suitable for the benchmarks under our

study. On the other side, instead of modifying PIMs ISA to support these commands,

we added specific memory mapped registers to the PIM processor. By configuring

these registers PIM is able to send atomic operations towards the SMC vaults. Here is

a list of the implemented atomic commands: (See subsection 5.6.2 for their usage)

• atomic-increment : interprets the value stored in the intended address in DRAM

as an integer and increments it by 1.

• atomic-min: sends an Immediate value to the intended DRAM location. If Im-

mediate is less than the value currently available in that address, the value will

be replaced with Immediate, otherwise it will be left untouched.

• atomic-add-immediate: interprets the value stored in the intended address as a

single precision floating-point and add the Immediate value to it.

These commands can be implemented either in the vault controllers, or in the

DRAM dies due to their low computational complexity. Also, their execution latency

is very low, so they can be easily hidden behind DRAM timings.

108

root
: Root

system
: LinuxArmSystem

membus
: MemBus

badaddr_responder
: BadAddr

smcxbar
: NoncoherentXBar

realview
: VExpress_EMM

hdlcd
: HDLcd

mmc_fake
: AmbaFake

rtc
: PL031

watchdog_fake
: AmbaFake

vgic
: VGic

local_cpu_timer
: CpuLocalTimer

realview_io
: RealViewCtrl

l2x0_fake
: IsaFake

usb_fake
: IsaFake

cf_ctrl
: IdeController

uart3_fake
: AmbaFake

gic
: Pl390

timer1
: Sp804

timer0
: Sp804

uart2_fake
: AmbaFake

energy_ctrl
: EnergyCtrl

lan_fake
: IsaFake

aaci_fake
: AmbaFake

pciconfig
: PciConfigAll

uart1_fake
: AmbaFake

vram
: SimpleMemory

nvmem
: SimpleMemory

clcd
: Pl111

uart
: Pl011

kmi1
: Pl050

kmi0
: Pl050

sp810_fake
: AmbaFake

ethernet
: IGbE_e1000

ide
: IdeController

iocache
: IOCache

smccontroller
: ethz_SMCController

tol2bus
: CoherentXBar

pim_sys
: PIMSystem

p2s
: Bridge

dma
: ethz_DMA

itlb
: ethz_TLB

stlb
: ethz_TLB

dtlb
: ethz_TLB

cpu
: TimingSimpleCPU

s2p
: Bridge

pim_memory
: ethz_PIMMemory

pimbus
: NoncoherentXBar

bridge
: Bridge

smccontroller_pipeline
: Bridge

seriallink0
: Bridge

seriallink1
: Bridge

seriallink2
: Bridge

seriallink3
: Bridge

l2
: L2Cache

Lmon0
: CommMonitor

Lmon1
: CommMonitor

Lmon2
: CommMonitor

Lmon3
: CommMonitor

mem_ctrls00
: HMCVault

mem_ctrls01
: HMCVault

mem_ctrls02
: HMCVault

mem_ctrls03
: HMCVault

mem_ctrls04
: HMCVault

mem_ctrls05
: HMCVault

mem_ctrls06
: HMCVault

mem_ctrls07
: HMCVault

mem_ctrls08
: HMCVault

mem_ctrls09
: HMCVault

mem_ctrls10
: HMCVault

mem_ctrls11
: HMCVault

mem_ctrls12
: HMCVault

mem_ctrls13
: HMCVault

mem_ctrls14
: HMCVault

mem_ctrls15
: HMCVault

Hmon
: CommMonitor

iobus
: NoncoherentXBar

cpu0
: TimingSimpleCPU

icache
: L1Cache

dtb
: ArmTLB

walker
: ArmTableWalker

itb
: ArmTLB

walker
: ArmTableWalker

istage2_mmu
: ArmStage2IMMU

stage2_tlb
: ArmStage2TLB

walker
: ArmStage2TableWalker

dstage2_mmu
: ArmStage2DMMU

stage2_tlb
: ArmStage2TLB

walker
: ArmStage2TableWalker

dcache
: L1Cache

cpu1
: TimingSimpleCPU

icache
: L1Cache

dtb
: ArmTLB

walker
: ArmTableWalker

itb
: ArmTLB

walker
: ArmTableWalker

istage2_mmu
: ArmStage2IMMU

stage2_tlb
: ArmStage2TLB

walker
: ArmStage2TableWalker

dstage2_mmu
: ArmStage2DMMU

stage2_tlb
: ArmStage2TLB

walker
: ArmStage2TableWalker

dcache
: L1Cache

system_port

slavedefault

pio

master

piopio pioport

slave

slave

master

slave

port port port port port port port port port port port port port port port port

slave

dma pio piopiopiopiopiopioconfig dma

slave

piopiopio piopiopiopiopiopiopioportdmapiopiopiopiopioconfig dmapioconfig dmapiomem_side cpu_side

master

slave slaveslave slave

slave

master

cpu_side

slave

system_port

slave

masterslave

dma

slave

piomasterslave mastermasterslave

icache_port dcache_port

master

port

default master

master

masterslave

masterslave masterslavemasterslave masterslave

mem_side

master mastermaster master

master

defaultmaster

icache_port

cpu_side

dcache_port

cpu_side mem_side

port port port port

mem_side

icache_port

cpu_side

dcache_port

cpu_side mem_side

port port port port

mem_side

PIM Subsystem

Memory Vaults

Smart Memory Cube (SMC)

SMC Controller

Serial
Links

Host Processors

L2 Cache

Peripheral Devices

Main LoB Interconnect

Figure 5.3: Visualization of the simulated system in SMCSim com-

posed of the host processors, the interconnects, SMC controller and

the serial links, the SMC model, and the PIM subsystem.

For computations that need to gather information not fully localized to a single

memory vault, DMA can be more beneficial. While, highly localized computations with

low computational intensity are better performed as close as possible to the memory

dies, by means of the atomic commands. A visualization of the whole simulated system

in gem5 is illustrated in Figure 5.3.

5.5 Design of the Software Stack

A software-stack has been developed for the user level applications to view PIM as a

standard accelerator (See Figure 5.4). At the lowest level, a resident program runs on

PIM performing the required tasks. A dynamic binary offloading mechanism has been

designed to modify this code during runtime. PIM also features a set of configuration

registers (Figure 5.4) mapped in the physical address space and accessible by the host.

Plus a few kilobytes of scratchpad space is provided supporting flexible DMA transfers.

PIM’s device driver has been adopted from Mali GPU’s driver [149] and is compatible

with standard accelerators as well as parallel programming APIs such as OpenCL.

This light-weight driver provides a low-overhead and high-performance communication

mechanism between the API and PIM. An object-oriented user-level API has been

provided, as well, to abstract away the details of the device driver and to facilitate

109

User App 1

PIM API

PIM Driver

Resident Code

Configuration Registers

 PI

M
 Status Command

Interrupt
DMA Slice-Table

Atomic Cmd
SPM

User App 2 User App n

Kernel
Space

User
Space

H
os

t

Figure 5.4: PIM’s software stack

user’s interface. Offloading and coordinating the computations on PIM are initiated

by this API.

5.5.1 Offloading Mechanisms

PIM targets execution of medium sized computation kernels having less than a few

kilobytes of instructions. The host processor parses the binary Executable and Link-

able Format (ELF) file related to a precompiled computation kernel, and dynamically

offloads .text and .rodata sections to PIM’s memory map by the aid from the API. This

procedure is called the kernel-offloading. On the other hand, the virtual pointer to pre-

allocated user level data structures need to be sent to PIM for the actual execution to

take place (task-offloading). PIM’s API sends the page numbers associated with user

data structures to the driver, and the driver builds the slice-table in the kernel memory

space using the physical addresses. Next, caches are flushed and the virtual pointers

are written to PIM’s memory mapped registers. An interrupt is then sent to PIM

to wake it up for execution. This mechanism prevents PIM from accessing unwanted

physical memory locations, and allows it to traverse user-level data structures without

any effort. A polling thread in PIM’s API waits for completion of the offloaded task.

110

Traffic
Gen.

Trace
Traffic
Gen.

BURST IDLE BURST IDLE
Burst Time Idle Time

High-level SMC Model

ic
.

ic
.

Traffic

Cycle Accurate SMC Model

Figure 5.5: An overview of the accuracy comparison methodology

between the high-level SMC model developed in gem5 and the cycle-

accurate SMC model.

5.6 Experimental Results

Our baseline host system is composed of two Cortex-A15 CPU cores @2GHz with 32KB

of instruction cache, 64KB of data cache, and a shared 2MB L2 cache with associativity

of 8 as the last-level cache (LLC). The block size of all caches is increased to 256B to

match the row buffer size of the HMC model (effect of cache block size is studied in

subsection 5.6.2). The memory cube model provides 512MB of memory with 16 vaults,

4 stacked memory dies, and 2 banks per partition. PIM has a single core processor

similar to the host processors running at the same frequency, with the possibility of

voltage and frequency scaling by means of dedicated clock and voltage domains on the

LoB. Maximum burst size of PIM’s DMA has been set to 256B by default.

5.6.1 Accuracy Verification and Calibration

For the high-level simulation results to be trusted, verification is required against a CA

simulation model. We performed a detailed accuracy comparison of the high-level SMC

against the CA model presented in chapter 4. We applied identical traffic patterns with

various bandwidth demands to both CA and gem5-based models, and compared their

delivered bandwidth and total execution time over a large design space defined by the

architectural parameter. An overview of this procedure is illustrated in Figure 5.5.

111

Table 5.1: Zero-load latency of memory accesses
HOST: L2 cache refill latency - Size:256Bytes [Total: 102.3ns]
Membus 1Cycle@2GHz (FlitSize=64b)
SMCController 8Cycles@2GHz (Pipeline Latency) [150]
SERDES 1.6ns (SER=1.6 DES=1.6) [141]
Packet xfer 13.6ns (128b hdr 16x10Gbits/s) [13]
PCB Trace 3.2ns + 3.2ns (Round Trip)
SMCXBar 1Cycle@1GHz (FlitSize=256b)
VaultCtrl.frontend 4Cycles@1.2GHz Request Processing [139]
tRCD 13.75ns Activate [141]
tCL 13.75ns Issue Read Command
tBURST 25.6ns (For 256Bytes packet)
VaultCtrl.backend 4Cycles@1.2GHz Response Processing [139]
SERDES 1.6ns (SER=1.6 DES=1.6)
Packet Transfer 13.6ns (128b hdr 16x10Gbits/s)
SMCController 1Cycles@2GHz (Pipeline Latency)
Membus 1Cycle@2GHz (FlitSize=64b)
PIM: Latency of a 4Bytes read access (No caches) [Total: 39.1ns]
PIM Interco. 1Cycle@1GHz (FlitSize=32b)
SMCXBar 1Cycle@1GHz (FlitSize=256b)
VaultCtrl.frontend 4Cycles@1.2GHz
tRCD 13.75ns
tCL 13.75ns
tBURST 3.2ns (1 Beat only)
VaultCtrl.backend 4Cycles@1.2GHz
PimBus 1Cycle@1GHz

Several experiments demonstrated that total execution time and delivered bandwidth

of the gem5-based model correlate well with the CA model: with low or medium traffic

pressure, the difference was less than 1%, and for high pressure saturating traffic the

difference was bounded by 5%, in all cases. A small subset of the accuracy comparison

experiments is brought in Appendix A. Next, we calibrated the latency of the individual

components based on the available data from the literature and the state-of-the-art.

Results are shown in Table 5.1. As can be seen, the zero-load memory access latency

of a cache refill request packet from the L2 cache port of the host to the SMC was

estimated to be about 100ns, while a single-word memory read from PIM towards the

memory vaults has a latency of about 40ns.

5.6.2 Benchmarking Results

Data intensive applications often categorized as “Big Data” workloads are widely cho-

sen in the literature as the target for near memory acceleration [49][15][122][53]. The

common trait shared by most of these applications is sensitivity to memory latency

and high bandwidth demand. Graph traversal applications are an interesting exam-

ple in this group due to their unpredictable memory access patterns and high ratio of

memory access to computation [122]. A common use for these benchmarks is social

network analysis. We have chosen four large-scale graph processing applications, and

try to accelerate their main computing loop (i.e. the computation kernel) by offloading

112

it to PIM for execution. Here is the list of the benchmarks studied in this chapter:

(The source codes of these kernels are brought in Appendix B)

Average Teenage Follower (ATF)

ATF counts for each vertex the number of its teenage followers by iterating over all

teenager vertices and incrementing the “follower” counters of their successor vertices

[122]. This generates a very large amount of random memory accesses over the entire

graph, for this reason, we have implemented an atomic-increment command inside the

memory cube for this purpose, which is able to increment a location in the DRAM

using a single command.

Breadth-First Search (BFS)

BFS visits the vertices closer to a given source vertex first by means of a FIFO queue

[122]. No atomic operations were utilized to accelerate this kernel, however, the queue

for visiting the nodes has been implemented in PIM’s SPM, given that in sparse graphs

its size is determined by the maximum outage degree of the nodes and not the number

of nodes.

PageRank (PR)

PR is a well-known algorithm that calculates the importance of vertices in a graph

[53]. We have implemented a single-precision floating point version of this kernel, plus

an atomic floating-point add-immediate on the vault side.

Bellman-Ford Shortest Path (BF)

BF finds the shortest path from a given source vertex to other vertices in a graph [122].

Vault controllers have been augmented with atomic-min to facilitate its execution.

As described before, in this chapter we focus on the single threaded version of these

kernels, and study the performance and energy impact of offloading a single execution

thread to PIM. This is a worst-case scenario to see if still PIM operates better than

the host. It can be easily verified that the choice for underlying representation of the

graphs is as important as the functionality of the kernel itself. While Adjacency-Matrix

leads to simplest implementations, it is not scalable to millions of nodes and traversing

adjacent nodes in large sparse graphs is costly. Compressed-Sparse-Row (CSR) [151]

representation and List of Lists (LIL) [152][153] are more widely used and suitable

113

Nodes

Successors

PING PONG

PIN
G

PO
N

G

PPP

O
N

G
POOO

DMA1

DMA2

Figure 5.6: Traversing the sparse graphs represented using LIL format

using two DMA resources

0.01

0.1

1

10

100

1

10

100

4000 8000 16000 32000 64000 128000 256000 512000

kernel-offload
task-offload
host-execution
relative-kernel
relative-task

Average Teenage Follower (ms) %

nodes

Re
la

tiv
e

O
ve

rh
ea

d
(%

)

Ab
so

lu
te

 T
im

e
(m

s)

Figure 5.7: Offloading overheads in execution of the ATF kernel

for graph traversal benchmarks. We have chosen LIL as it is easily parallelizable and

scalable to multiple processing nodes. We have used randomly generated sparse graphs

ranging from 4K node to 512K nodes with characteristics obtained from real world data

sets [154]. We use two DMA resources to efficiently hide the latency of traversing the

LIL as illustrated in Figure 5.6.

First we study offloading overheads. ATF has been executed on the host side and

then offloaded to PIM. In Figure 5.7, kernel-offload represents the overhead associated

with reading the ELF file from the secondary storage of the host, parsing it, and of-

floading the binary code (as explained in subsection 5.5.1). task-offload is all overheads

associated with virtual pointer passing to PIM for the graph to be analyzed, and host-

execution is the absolute execution time of the kernel on host. It can be seen that the

task-offload overhead decreases with the size of the graph and is always below 5% of

the total execution time of the ATF. Most of this overhead is due to cache flushing and

114

%

0

10

20

30

40

50

60

70

80

90

100

0.5

1

1.5

2

2.5

3

4000 8000 16000 32000 64000 128000 256000

BFS ATF
BF PR
Average L2.hit-rate(cpu1.data)

Without Atomic HMC Commands
With Atomic HMC Commands

BFS ATF BF PR

nodes

PI
M

’s
 S

pe
ed

up
 R

el
at

iv
e

to
 H

os
t

L2
 C

ac
he

 H
it

Ra
te

 (%
) o

f t
he

 H
os

t

Figure 5.8: PIM’s speed-up with/without SMC Atomic Commands

(left axis), LLC hit-rate associated with the data port of the executing

CPU (right axis)

less than 15% of it belongs to building the slice-table and pointer passing. It should be

noted that, kernel-offload is usually performed once per several executions, therefore,

its cost is amortized among them. Plus, for kernels like PR with several iterations

relative overheads becomes even lower. Another point to mention is that, the overhead

of the polling mechanism on the host to check for completion of the offloaded task

was found to be negligible. This shows that an interrupt mechanism is not necessary

and polling results in acceptable performance for execution of medium sized kernels.

One should note that in current release of the HMC specifications [13] no interrupt

mechanism from the cube towards the host is provisioned.

Next, we analyze the speed-up achieved by PIM in terms of host’s execution time

divided by PIM’s. The number of graph nodes has been changed and Figure 5.8

(left vertical axis) illustrates the results. Lightly shaded columns represent PIM’s

execution without any aid from the atomic HMC commands, while the highly shaded

ones use them. PIM’s frequency is equal to the host (2GHz). An average speed-up

of 2X is observable across different graph sizes, and as the size increases, speed-up

increases as well. This can be associated with increase in cache misses in the LLC of

the host (plotted on the right vertical axis). Furthermore, the average benefit of using

atomic-increment, atomic-min, atomic-float-add is obtained as 10%, 18%, and 35%,

respectively.

A cache line size of 256 Bytes was mentioned before for both cache levels in the host.

We can see in Figure 5.9 that this choice has been in favor of the host in terms of per-

formance, leading to an increase in the LLC hit-rate. This is mainly due to sequential

115

0

10

20

30

40

50

60

0.5

1

1.5

2

2.5

3

64 128 256

MAT BF

ATF PR

BFS avg

l2.hitrate

PI
M

 S
pe

ed
-u

p
Re

la
tiv

e
to

 H
os

t

%

Hi
t R

at
e

(a
ve

ra
ge

) %

Cache Block Size (B)

Figure 5.9: PIM’s speed-up versus cache block size of the host

0

10

20

30

40

50

60

70

80

90

100

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 3 4 5

MAT

BF

BFS

PR

ATF

avg

avg-hitrate

%

PI
M

 E
xe

c.
 T

im
e

N
or

m
al

iz
ed

 to
 Id

ea
l T

LB

TLB
Elements

Av
er

ag
e

TL
B

H
it

Ra
te

 (%
)

Figure 5.10: Effect of PIM’s TLB size on hit-rate and speed-up

traversing of the graph nodes which results in a relatively high spatial locality (MAT in

this plot represents simple 1000x1000 matrix addition as a reference for comparison).

In our single-threaded experiments, the increase in the power consumption of the LLC

cache was negligible, nevertheless in multi-programmed and parallel environments, the

increased energy-per access for the increased cache block size can become critical.

Two additional experiment on PIM identify its optimal TLB size (Figure 5.10)

and the required DMA transfer size (Figure 5.11). Four TLB elements were found

enough for the studied computation kernels and a nearly perfect TLB hit-rate was

116

0.7

0.75

0.8

0.85

0.9

0.95

1

1

1.05

1.1

1.15

1.2

32 64 128 256 512

BF
PR
ATF
totalQlatency

DMA Transfer Size

PI
M

’s
 S

pe
ed

up
 R

el
at

iv
e

to
 H

os
t

Q
ue

ue
in

g
La

te
nc

y
in

 V
au

lt
Ct

rls
 (N

or
m

al
ize

d)

Figure 5.11: Effect of DMA transfer size on PIM’s execution time

achieved. Also, transfer size for DMA Resource 1 in Figure 5.6 was changed from 32B

to 512B and the optimal point was found around 256B transfers. This is because small

transfers cannot hide memory access latency very well, and too large transfers incur

larger queuing latency in the vault controllers, as the size of the row buffers is fixed at

256B.

We accounted for the energy consumption of each component type differently (as-

suming 28nm Low Power technology as the logic process). For the interconnects,

energy/transaction was extracted from logic synthesis of the AXI-4.0 RTL model (See

chapter 4) Cache power consumption was extracted from the latest release of CACTI

[155] using low-power transistor models. Power consumed in the DRAM devices was

extracted from DRAMPower [156], and verified against Micron’s excel sheets. The

energy consumed in the vault controllers was estimated to be 0.75pJ/bit [157]. SMC

Controller was estimated to consume 10pJ/bit by scaling values obtained in [150]. For

serial links, energy per transaction was considered 13.7pJ/bit [158], and an idle power

consumption of 1.9Watts (for transmission of the null flits) was estimated based on

the maximum power reported in [91] and link efficiency in [54]. Also, since power state

transition for the serial links introduces long sleep latency in the order of a few hun-

dred nanoseconds, and a wakeup latency of a few microseconds [140], we assumed that

during host’s computations, links are fully active, while when PIM starts computing,

links can be power gated [140]. For the processors, percentage of active/idle cycles were

extracted from gem5, and the power consumption for each one were estimated based on

117

0

1000

2000

3000

4000

5000

6000

host-cpus
smc-controller
host-intercos
caches
link
smc-xbar
vault-ctrl
dram/task 0

1000

2000

3000

4000

5000

6000

pim-periph

pim-cpu

atomic-ops

smc-xbar

vault-ctrl

dram/task

(mW)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

128 256 512 1024 2048 4096

a) b) c)

MB

(mW)

Total Memory Size

PI
M

’s
 e

ne
rg

y
re

du
ct

io
n

ra
tio

Po
w

er
 b

re
ak

do
w

n
Fo

r t
he

 h
os

t

Po
w

er
 b

re
ak

do
w

n
Fo

r P
IM

Figure 5.12: Achieved energy efficiency for using PIM versus total

stacked memory size (a), power breakdown for execution of the host

(b) and PIM (c)

[159][160]. Lastly, the energy consumptions associated with atomic commands, PIM’s

TLB, and its DMA engine were estimated based on logic synthesis and were found to

be negligible.

To perform a fair analysis of the energy efficiency achieved by PIM, we omitted

the system-background power and only considered the energy consumption related to

the execution of tasks. Background power consists of all components which consume

energy whether host is active or PIM, and can range from system’s clocking circuits to

peripheral devices, the secondary storage, the cooling mechanism, as well as, unused

DRAM cells. One important observation was that for typical social graphs with less

than 1 million nodes the total allocated DRAM size was always less than 100MB

(Using LIL representation). While, a significant amount of power is consumed in the

unused DRAM cells. In fact, increasing stacked DRAM’s size is one of the background

sources which can completely neutralize the energy efficiency achieved by PIM (See

Figure 5.12.a). For this reason, we only consider the energy consumed in the “used”

DRAM pages, all components in LoB of the memory cube, the serial links, the host

processors, and their memory interface including the interconnects and the caches.

Power consumption breakdown for execution of the task on PIM and the host are

illustrated in Figure 5.12.b,c. The main contributors were found to be DRAM, the

processors, and the serial links. The voltage and frequency of PIM’s processor (on

LoB) have been scaled down from 2GHz@1.05V to 1GHz@0.76V [159]. Under these

circumstances, PIM can reduce power consumption by 3X.

To find the optimal point in terms of energy efficiency we scaled the voltage and

frequency of PIM’s processor and plotted PIM’s performance per watts normalized to

118

0

0.5

1

1.5

2

2.5

3

3.5

4

2.2

2.7

3.2

3.7

4.2

4.7

1 1.2 1.4 1.6 1.8 2

MAT BF BFS
PR ATF power-red.
perf-impr.

BF
ATF

1.05V 0.76V

 P
er

f./
W

at
ts

Re

la
tiv

e
to

 H
os

t

 P

er
f.

an
d

Po
w

er
 R

el
at

iv
e

to
 H

os
t

(GHz)

b)

PIM CPU’s Clk

Figure 5.13: PIM’s energy efficiency versus its clock frequency.

L2 $

ARM
64b

I$
D$

ARM
64b

I$
D$

ARM
64b

I$
D$

ARM
Peripherals

Cr
os

sb
ar

Load
Distrib.

Bu
s

Serial Link
Serial Link
Serial Link

Serial Link

SM
C

In
te

rc
on

ne
ct

PIM

DRAM

DRAM

DRAM

Vault
Ctrl.

Vault
Ctrl.

Vault
Ctrl.

Host:
 ARM + Linux

MATRIX
MULT

Acc

p

Cr
os

sb
ar

Load
Distrib.

Serial Link
Serial Link
Serial Link

Serial Link

SM
C

In
te

rc
on

ne
ct

PIM

DRVault
Ctrl.

SM
C

In
te

rc
on

DR

DR

Vault
Ctrl.

Vault
Ctrl.

Host Side Accelerator : : Memory Side Accelerator

Figure 5.14: Simulation setup for comparison of PIM with a host-side

accelerator with similar capabilities.

the host. As can be seen in Figure 5.13, clocking PIM at around 1.5GHz leads to

highest energy efficiency in all cases.

As the final experiment, PIM was compared with a host-side accelerator with similar

capabilities, to study the effect of vicinity to the main memory. For this purpose, we

detached the complete PIM subsystem from the cube and connected it to “Interconnect

2” (Figure 5.1) without any change in its capabilities. An overview of the simulation

setup for this experiment is shown in Figure 5.14.

For matrix addition, no performance difference was observed, because the DMA

119

engine effectively hides memory access latency. However, in all four graph traversal

benchmarks PIM beats the host-side accelerator by a factor of 1.4X to 1.6X. This can

be explained by the latency sensitivity of the graph traversal benchmarks (Average

memory access latency from PIM to the main memory was measured as 46ns, while

for the host side accelerator this value had increased to 74ns). Also, since the host

side accelerator needs the serial links and the SMC Controller to be active, under the

same conditions as the previous experiment (Considering power for the active banks of

the DRAM and scaling down the voltage and frequency of PIM’s processor), our PIM

achieves an energy reduction of 55% compared to a similar accelerator located on the

host. Lastly, according to Little’s law [161], the host side accelerator requires more

buffering to maintain the same bandwidth, due to higher memory access latency. This

results in increased manufacturing cost and energy.

5.7 Summary

In this chapter we presented the first exploration steps towards design of SMC, a new

PIM architecture that enhances the capabilities of the LoB die in HMC. An accurate

simulation environment called SMCSim has been developed, along with a full featured

software stack. A full system analysis of near memory computation has been per-

formed including software to firmware and hardware layers, and considering offloading

and dynamic overheads caused by the operating system, cache coherence, and memory

management. A zero-copy pointer passing mechanism was devised to allow low over-

head data sharing between the host and the PIM. Benchmarking results demonstrate

that even in a case where the only benefit of using PIM is latency reduction, up to 2X

performance improvement in comparison with the host SoC, and around 1.5X against

a similar host-side accelerator is achievable. Moreover, by scaling down the voltage

and frequency of the proposed PIM it is possible to reduce energy by about 70% and

55% in comparison with the host and the accelerator, respectively. A overview of the

conclusions obtained throughout this thesis are presented in chapter 6, and ongoing

and future directions are identified, as well.

120

Chapter 6

Conclusions

In this dissertation, we studied the effectiveness of the 3D integration technology and

the optimization opportunities which it can provide in the different layers of the mem-

ory hierarchy in cluster-based many-core platforms.

In chapter 2 we looked inside a processing cluster and studied the applicability of

3D integration to shared L1 TCDMs. We presented two synthesizable 3D network

architectures: C-LIN and D-LIN for shared L1 memory access, and demonstrated their

effectiveness in comparison with conventional network on chips (NoC). In comparison

with their 2D alternatives, our proposed designs offer modularity and better scalability.

However, in terms of delay, they are so competitive with their 2D counterpart. This

is due to the fact that the pipelines of the processors are extremely sensitive to the

access latency of L1 memories, and current TSV technologies are not yet so competitive

with on-chip wires. Therefore, small sized L1 memories are not beneficial in terms of

performance to be moved towards the third dimension.

In chapter 3 we focused on out of the cluster L2 scratchpad memories because of

their large required size and higher tolerance to latency and its variations. We presented

a synthesizable 3D-stackable L2 memory IP component (3D-NUMA), to be attached

to a cluster-based multi-core platform through its NIs and provide high-bandwidth

L2 memory access with low average latency. 3D-NUMA implements a scalable non-

uniform memory access (NUMA) architecture, allows stacking of multiple identical

memory dies, supports multiple outstanding transactions, and achieves high clock fre-

quencies due to its highly pipelined nature. We implemented 3D-NUMA with STMi-

croelectronics CMOS-28nm Low Power Technology and obtained a clock frequency of

500 MHz, limited by the access time of the memory arrays while its logic components

could operate up to 1 GHz (up to 4 MB in 8 stacked dies with a memory density loss

121

of 9%). It was shown that addition of 3D-NUMA to a multi-cluster system can lead to

an average performance boost of 34%. Further experiments and estimations confirmed

that 3D-NUMA is energy and power efficient, temperature friendly, and has unique

features suitable for low cost manufacturing.

In chapter 4 and chapter 5, we moved towards the last level in the memory hier-

archy, and studied the benefits provided by 3D integration, there. We did not try to

justify the effectiveness of 3D integration in this context because several academic and

industrial examples are available with their most outstanding example being HMC. We

focused on another important artifact of heterogeneous 3D integration, the possibility

of near memory computation. We chose HMC as our target candidate and proposed the

“Smart Memory Cube (SMC)”, a fully backward compatible and modular extension to

it, supporting near memory computation on its Logic Base (LoB). In chapter 4, we pre-

sented a high performance AXI-compatible interconnect to support this feature. Cycle

accurate simulation demonstrated that, the proposed interconnect can easily meet the

demands of current and future projections of HMC (Up to 205GB/s READ bandwidth

with 4 serial links and 32 memory vaults). The interference between the PIM traffic

and the main links was found to be negligible when PIM has up to 2 ports requesting

up to 64GB/s. It was shown that low-interleaved addressing is not reliable enough

for an abstracted memory such as HMC. Fat data structures with power-of-two node

sizes were particularly identified as unfavorable patterns for low-interleaving. A more

robust address scrambling mechanism was proposed and it was shown to effectively

reduce bank/vault conflicts. Logic synthesis confirmed that our proposed models are

implementable and effective in terms of power, area, timing (power consumption less

than 5mW up to 1GHz and area less than 0.4mm2).

Finally, in chapter 5 we presented the first exploration steps towards design of

a PIM architecture for SMC. An accurate simulation environment called SMCSim

was developed along with a full featured software stack. A full system analysis of

near memory computation was performed including software to firmware and hardware

layers, considering offloading and dynamic overheads caused by the operating system,

cache coherence, and memory management. A zero-copy pointer passing mechanism

was devised to allow low overhead data sharing between the host and the PIM. It was

shown that even in a case where the only benefit of using PIM is latency reduction, up

to 2X performance improvement in comparison with the host SoC, and around 1.5X

against a similar host-side accelerator is achievable. By scaling down the voltage and

frequency of the proposed PIM it is possible to reduce energy by about 70% and 55%

122

in comparison with the host and the accelerator, respectively.

As an ongoing work, we have focused on specific killer application domains where

even more significant improvements are expected from PIM. We plan to extend SMC

and the PIM architecture to a highly optimized parallel acceleration engine for those

application domains. From the architectural point of view, we will strive to maintain

flexibility and programmability. Thus, we will use a cluster of light-weight processors as

a generic and low power infrastructure for acceleration of parallel applications. Also, by

augmenting the vault controller and/or memory plane with computational capabilities

(e.g. atomic operations), and connecting them using specific interconnects (e.g. ring

networks), we will be able to accelerate the regular parallel kernels, even better.

123

References

[1] E. Azarkhish, I. Loi, and L. Benini, “A case for three-dimensional stacking of

tightly coupled data memories over multi-core clusters using low-latency inter-

connects,” Computers Digital Techniques, IET, vol. 7, no. 5, pp. 191–199, 2013.

[2] E. Azarkhish, I. Loi, and L. Benini, “A high-performance multiported L2 mem-

ory IP for scalable three-dimensional integration,” in 3D Systems Integration

Conference (3DIC), 2013 IEEE International, pp. 1–8, Oct 2013.

[3] E. Azarkhish, I. Loi, and L. Benini, “3D logarithmic interconnect: Stacking

multiple L1 memory dies over multi-core clusters,” in Networks on Chip (NoCS),

2013 Seventh IEEE/ACM International Symposium on, pp. 1–2, April 2013.

[4] E. Azarkhish, D. Rossi, et al., “A modular shared L2 memory design for 3-D

integration,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, vol. 23, pp. 1485–1498, Aug 2015.

[5] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “A logic-base interconnect for

supporting near memory computation in the hybrid memory cube,” in WoNDP:

2nd Workshop on Near-Data Processing In conjunction with the 47th IEEE/ACM

International Symposium on Microarchitecture (MICRO-47), 2014.

[6] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “High performance AXI-4.0 based

interconnect for extensible smart memory cubes,” in Proceedings of the 2015

Design, Automation & Test in Europe Conference & Exhibition, DATE ’15, (San

Jose, CA, USA), pp. 1317–1322, EDA Consortium, 2015.

[7] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Design and evaluation of a

processing-in-memory architecture for the smart memory cube,” in To appear

in the Architecture of Computing Systems (ARCS), ARCS’16, 2016.

124

[8] P. M. Kogge and D. R. Resnick, “Yearly update: Exascale projections for 2013,”

Tech. Rep. SAND2013-9229, Sandia National Laboratoris, Oct. 2013.

[9] C. Santos, P. Vivet, D. Dutoit, P. Garrault, et al., “System-level thermal mod-

eling for 3d circuits: Characterization with a 65nm memory-on-logic circuit,” in

3D Systems Integration Conference (3DIC), 2013 IEEE International, pp. 1–6,

Oct 2013.

[10] “Micron sampling 2GB hybrid memory cube.” http://techreport.com/

news/25429/micron-sampling-2gb-hybrid-memory-cube, 2013.

[11] P. Ruch, T. Brunschwiler, W. Escher, S. Paredes, and B. Michel, “Toward five-

dimensional scaling: How density improves efficiency in future computers,” IBM

Journal of Research and Development, vol. 55, pp. 15:1–15:13, Sept 2011.

[12] “Nvidia’s fermi gp-gpu.” http://www.pcper.com/reviews/Graphics-

Cards/NVIDIA-Fermi-Next-Generation-GPU-Architecture-Overview, 2009.

[13] “Hybrid memory cube specification 2.1.” Hybrid Memory Cube Consortium,

2015.

[14] S. Hong, S. Salihoglu, J. Widom, and K. Olukotun, “Simplifying scalable

graph processing with a domain-specific language,” in Proceedings of Annual

IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’14, (New York, NY, USA), pp. 208:208–208:218, ACM, 2014.

[15] M. Islam, M. Scrbak, K. Kavi, et al., “Improving node-level MapReduce per-

formance using processing-in-memory technologies,” in Euro-Par 2014: Parallel

Processing Workshops, vol. 8806 of Lecture Notes in Computer Science, pp. 425–

437, Springer International Publishing, 2014.

[16] D. P. Zhang, N. Jayasena, A. Lyashevsky, et al., “A new perspective on

processing-in-memory architecture design,” in Proceedings of the ACM SIGPLAN

Workshop on Memory Systems Performance and Correctness, MSPC ’13, (New

York, NY, USA), pp. 7:1–7:3, ACM, 2013.

[17] D. Patterson, K. Asanovic, A. Brown, et al., “Intelligent RAM (IRAM): the in-

dustrial setting, applications, and architectures,” in Computer Design: VLSI in

Computers and Processors, 1997. ICCD ’97. Proceedings., 1997 IEEE Interna-

tional Conference on, pp. 2–7, Oct 1997.

125

[18] F. Hamzaoglu, U. Arslan, N. Bisnik, et al., “13.1 a 1Gb 2GHz embedded DRAM

in 22nm tri-gate CMOS technology,” in Solid-State Circuits Conference Digest

of Technical Papers (ISSCC), 2014 IEEE International, pp. 230–231, Feb 2014.

[19] A. Rahimi et al., “A fully-synthesizable single-cycle interconnection network for

shared-L1 processor clusters,” in Design, Automation Test in Europe Conference

Exhibition (DATE), 2011, pp. 1–6, 2011.

[20] W. Davis et al., “Demystifying 3D ICs: the pros and cons of going vertical,”

Design Test of Computers, IEEE, vol. 22, no. 6, pp. 498–510, 2005.

[21] S. Gupta et al., “Techniques for producing 3-D ICs with high-density intercon-

nect,” in Int. VLSI Multi-Level Interconnect. Conf., (Waikoloa Beach, HI, USA),

2004.

[22] G. Van der Plas et al., “Design issues and considerations for low-cost 3D TSV

IC technology,” in Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2010 IEEE International, pp. 148–149, 2010.

[23] R. Radojcic, “Roadmap for design and EDA infrastructure for 3D products.”

http://www.eda.org/edps/EDP2012/Papers/3D Riko Radojcic Keynote.pdf,

Apr. 2012.

[24] P. Vivet, D. Dutoit, Y. Thonnart, and F. Clermidy, “3D NoC using through

silicon via: An asynchronous implementation,” in VLSI and System-on-Chip

(VLSI-SoC), 2011 IEEE/IFIP 19th International Conference on, pp. 232–237,

2011.

[25] F. Clermidy, D. Dutoit, E. Guthmuller, I. Miro-Panades, and P. Vivet, “3D

stacking for multi-core architectures: From WIDEIO to distributed caches,” in

Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, pp. 537–

540, May 2013.

[26] D. U. Lee, K. W. Kim, K. W. Kim, et al., “25.2 A 1.2V 8Gb 8-channel 128GB/s

high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O

test methods using 29nm process and TSV,” in Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), 2014 IEEE International, pp. 432–433, Feb

2014.

126

[27] B. Giridhar, M. Cieslak, D. Duggal, et al., “Exploring DRAM organizations for

energy-efficient and resilient exascale memories,” in Proceedings of the Interna-

tional Conference on High Performance Computing, Networking, Storage and

Analysis, SC ’13, (New York, NY, USA), pp. 23:1–23:12, ACM, 2013.

[28] D. H. Woo, N. H. Seong, D. Lewis, and H.-H. Lee, “An optimized 3D-stacked

memory architecture by exploiting excessive, high-density TSV bandwidth,” in

High Performance Computer Architecture (HPCA), 2010 IEEE 16th Interna-

tional Symposium on, pp. 1–12, 2010.

[29] A. Zia, P. Jacob, J.-W. Kim, et al., “A 3D cache with ultra-wide data bus for 3D

processor-memory integration,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 18, no. 6, pp. 967–977, 2010.

[30] J. Jung, K. Kang, and C.-M. Kyung, “Design and management of 3D-stacked

NUCA cache for chip multiprocessors,” in Proceedings of the 21st edition of the

great lakes symposium on Great lakes symposium on VLSI, GLSVLSI ’11, (New

York, NY, USA), pp. 91–96, ACM, 2011.

[31] D. H. Woo, N. H. Seong, and H.-H. Lee, “Pragmatic integration of an SRAM

row cache in heterogeneous 3D DRAM architecture using TSV,” Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 21, no. 1, pp. 1–13, 2013.

[32] “Snapdragon 800 processors.” http://www.qualcomm.com/.

[33] “Samsung exynos 5 octa processors.” http://www.samsung.com/.

[34] Yole-Developpement, “3D IC & TSV interconnects 2012 business update.”

http://www.i-micronews.com/reports/3dic-tsv-interconnects-2012-business-

update/8/302/, 2012.

[35] E. J. Vardaman, “3D IC with TSV: Status and developments.”

http://connection.ebscohost.com/c/articles/86024505/3d-ic-tsv-status-

developments, Mar. 2013.

[36] A. Syed, “Emerging IC packaging technologies.” http://www.smta.org/

chapters/files/arizona-sonora amkor smta az expo 2012dec4.pdf, Dec. 2012.

[37] V. Solberg, S. McElrea, and W. Zohni, “New 3D packaging approach for next

generation high performance DRAM,” tech. rep., Invensas Corporation, San Jose,

California USA, 2012.

127

[38] R. Crisp, “High performance DRAM packaging trends and solutions.”

http://www.tessera.com/abouttessera/upcomingevents/documents/dram-

richard.pdf, Nov. 2010.

[39] A-Star-IME, “TSV silicon interposer for high I/O applications.”

http://www.ime.a-star.edu.sg/uploadfiles /3 proposal-tsv-interposer.pdf, Nov.

2010.

[40] S. Anderson, “Advanced packaging for mobile and growth prod-

ucts.” http://www.smta.org/chapters/files/arizona-sonora smta tempe

7dec11 tech forum scl.pptx.pdf, Dec. 2011.

[41] Freescale-Semiconductor, “Freescale’s redistributed chip packaging.”

http://www.freescale.com/files/shared/doc/reports presentations/rcppresenta-

tion.pdf, Jan. 2013.

[42] “The next generation CUDA architecture, code named Fermi.” White Paper,

Sept. 2009.

[43] “The hypercore architecture.” White Paper, Jan. 2010.

[44] D. Melpignano, L. Benini, E. Flamand, et al., “Platform 2012, a many-core com-

puting accelerator for embedded SoCs: performance evaluation of visual analytics

applications,” in Proceedings of the 49th Annual Design Automation Conference,

DAC ’12, (New York, NY, USA), pp. 1137–1142, ACM, 2012.

[45] D. Elliott, W. Snelgrove, and M. Stumm, “Computational RAM: A memory-

SIMD hybrid and its application to DSP,” in Custom Integrated Circuits Con-

ference, 1992., Proceedings of the IEEE 1992, pp. 30.6.1–30.6.4, May 1992.

[46] D. Patterson, T. Anderson, N. Cardwell, et al., “A case for intelligent RAM,”

Micro, IEEE, vol. 17, pp. 34–44, Mar 1997.

[47] R. Balasubramonian, J. Chang, T. Manning, et al., “Near-data processing: In-

sights from a MICRO-46 workshop,” Micro, IEEE, vol. 34, pp. 36–42, July 2014.

[48] G. H. Loh, N. Jayasena, M. Oskin, et al., “A processing in memory taxonomy and

a case for studying fixed-function pim,” in Workshop on Near-Data Processing

(WoNDP), Dec 2013.

128

[49] A. Farmahini-Farahani, J. Ahn, K. Compton, and N. Kim, “DRAMA: An archi-

tecture for accelerated processing near memory,” Computer Architecture Letters,

vol. PP, no. 99, pp. 1–1, 2014.

[50] Z. Sura, A. Jacob, T. Chen, et al., “Data access optimization in a processing-in-

memory system,” in Proceedings of the 12th ACM International Conference on

Computing Frontiers, CF ’15, (New York, NY, USA), pp. 6:1–6:8, ACM, 2015.

[51] D. Zhang, N. Jayasena, A. Lyashevsky, et al., “TOP-PIM: Throughput-oriented

programmable processing in memory,” in Proceedings of the 23rd International

Symposium on High-performance Parallel and Distributed Computing, HPDC ’14,

(New York, NY, USA), pp. 85–98, ACM, 2014.

[52] G. Stelle, S. L. Olivier, D. Stark, A. F. Rodrigues, and K. S. Hemmert, “Using

a complementary emulation-simulation co-design approach to assess application

readiness for processing-in-memory systems,” in Proceedings of the 1st Interna-

tional Workshop on Hardware-Software Co-Design for High Performance Com-

puting, Co-HPC ’14, (Piscataway, NJ, USA), pp. 64–71, IEEE Press, 2014.

[53] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-

memory accelerator for parallel graph processing,” in Proceedings of the 42Nd

Annual International Symposium on Computer Architecture, ISCA ’15, (New

York, NY, USA), pp. 105–117, ACM, 2015.

[54] P. Rosenfeld, Performance Exploration of the Hybrid Memory Cube. PhD thesis.

Univ. of Maryland, 2014.

[55] K. Kang, L. Benini, and G. Micheli, “A high-throughput and low-latency inter-

connection network for multi-core clusters with 3-D stacked L2 tightly-coupled

data memory,” in VLSI and System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP 20th

International Conference on, pp. 283–286, 2012.

[56] S. Borkar, “Networks for multi-core chips: A contrarian view,” in Symp. Low

Power Electron. Design (ISLPED), 2007.

[57] R. A. Haring et al., “The IBM Blue Gene/Q compute chip,” IEEE Micro, vol. 32,

no. 2, pp. 48–60, 2012.

[58] S. Satpathy et al., “A 1.07 Tbit/s 128x128 swizzle network for SIMD processors,”

in VLSI Circuits (VLSIC), 2010 IEEE Symposium on, pp. 81–82, 2010.

129

[59] J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp on-chip networks,” in

Proceedings of the 20th annual international conference on Supercomputing, ICS

’06, (New York, NY, USA), pp. 187–198, ACM, 2006.

[60] R. Das et al., “Design and evaluation of a hierarchical on-chip interconnect

for next-generation CMPs,” in High Performance Computer Architecture, 2009.

HPCA 2009. IEEE 15th International Symposium on, pp. 175–186, 2009.

[61] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-chip

networks,” Computer Architecture Letters, vol. 6, no. 2, pp. 37–40, 2007.

[62] K. Sewell et al., “Swizzle-switch networks for many-core systems,” Emerging and

Selected Topics in Circuits and Systems, IEEE Journal on, vol. 2, no. 2, pp. 278–

294, 2012.

[63] G. Beanato et al., “3D-LIN: A configurable low-latency interconnect for multi-

core clusters with 3D stacked L1 memory,” in VLSI and System-on-Chip (VLSI-

SoC), 2012 IEEE/IFIP 20th International Conference on, pp. 30–35, 2012.

[64] H. Saito, M. Nakajima, T. Okamoto, et al., “A chip-stacked memory for on-chip

SRAM-rich SoCs and processors,” in Solid-State Circuits Conference - Digest of

Technical Papers, 2009. ISSCC 2009. IEEE International, pp. 60–61,61a, 2009.

[65] D. H. Kim et al., “3D-MAPS: 3D massively parallel processor with stacked mem-

ory,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

2012 IEEE International, pp. 188–190, 2012.

[66] K. Ito et al., “Hierarchical 3D interconnection architecture with tightly-coupled

processor-memory integration,” in 3D Systems Integration Conference (3DIC),

2010 IEEE International, pp. 1–6, 2010.

[67] E. Rosenbaum, V. Shukla, and M.-S. Keel, “ESD protection networks for 3D

integrated circuits,” in 3D Systems Integration Conference (3DIC), 2011 IEEE

International, pp. 1–7, 2012.

[68] V. Pavlidis, I. Savidis, and E. Friedman, “Clock distribution networks in 3D

integrated systems,” Very Large Scale Integration (VLSI) Systems, IEEE Trans-

actions on, vol. 19, no. 12, pp. 2256–2266, 2011.

130

[69] H. Xu, V. F. Pavlidis, and G. De Micheli, “Effect of process variations in 3D

global clock distribution networks,” J. Emerg. Technol. Comput. Syst., vol. 8,

pp. 20:1–20:25, Aug. 2012.

[70] I. Loi, F. Angiolini, and L. Benini, “Developing mesochronous synchronizers to

enable 3D NoCs,” in Design, Automation and Test in Europe, 2008. DATE ’08,

pp. 1414–1419, 2008.

[71] R. Dreslinski et al., “Centip3De: A 64-core, 3D-stacked near-threshold system,”

Micro, IEEE, vol. 33, no. 2, pp. 8–16, 2013.

[72] A. Jain, “Research challenges and opportunities in 3D integrated circuits.”

www.usu.edu/mrc/Ankur Jain.pdf, Jan. 2009.

[73] X. Dong and Y. Xie, “System-level cost analysis and design exploration for three-

dimensional integrated circuits (3D ICs),” in Design Automation Conference,

2009. ASP-DAC 2009. Asia and South Pacific, pp. 234–241, 2009.

[74] E. J. Marinissen et al., “Wafer probing on fine wafer probing on fine-pitch

pitch micro bumps for 2.5d and 3D SICs.” http://www.swtest.org/swtw library/

2011proc/PDF/ S04 03 Marinissen SWTW2001.pdf, June 2011.

[75] S. Vangal et al., “A 5.1GHz 0.34mm2 router for network-on-chip applications,”

in VLSI Circuits, 2007 IEEE Symposium on, pp. 42–43, 2007.

[76] L. Benini et al., “MPARM: Exploring the multi-processor SoC design space with

SystemC,” J. VLSI Signal Process. Syst., vol. 41, pp. 169–182, Sept. 2005.

[77] “SW/HW extensions for heterogenous multicore platforms (vIrtical).”

http://www.virtical.eu/.

[78] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A fast and accurate

NoC power and area model for early-stage design space exploration,” in Design,

Automation Test in Europe Conference Exhibition, 2009. DATE ’09., pp. 423–

428, 2009.

[79] A. Kumar et al., “A 4.6Tbits/s 3.6GHz single-cycle NoC router with a novel

switch allocator in 65nm CMOS,” in ICCD, pp. 63–70, 2007.

131

[80] D. Park et al., “MIRA: A multi-layered on-chip interconnect router architecture,”

in Computer Architecture, 2008. ISCA ’08. 35th International Symposium on,

pp. 251–261, 2008.

[81] N. Khan, S. Alam, and S. Hassoun, “Power delivery design for 3D ICs using

different through-silicon via (TSV) technologies,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 19, no. 4, pp. 647–658, 2011.

[82] G. L. Loi, B. Agrawal, N. Srivastava, et al., “A thermally-aware performance

analysis of vertically integrated (3D) processor-memory hierarchy,” in Design

Automation Conference, 2006 43rd ACM/IEEE, pp. 991–996, 2006.

[83] “Keystone II multicore DSP.” http://www.ti.com/.

[84] J. Barth, D. Plass, E. Nelson, C. Hwang, et al., “A 45nm SOI embedded DRAM

macro for POWER7TM 32MB on-chip L3 cache,” in Solid-State Circuits Confer-

ence Digest of Technical Papers (ISSCC), 2010 IEEE International, pp. 342–343,

Feb 2010.

[85] E. Karl, Y. Wang, Y.-G. Ng, Z. Guo, et al., “A 4.6GHz 162Mb SRAM de-

sign in 22nm tri-gate CMOS technology with integrated active VMIN-enhancing

assist circuitry,” in Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2012 IEEE International, pp. 230–232, Feb 2012.

[86] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and B. Jacob, “Technology compari-

son for large last-level caches (L3Cs): Low-leakage sram, low write-energy stt-

ram, and refresh-optimized edram,” in High Performance Computer Architecture

(HPCA2013), 2013 IEEE 19th International Symposium on, pp. 143–154, Feb

2013.

[87] J. Meng, K. Kawakami, and A. Coskun, “Optimizing energy efficiency of 3D

multicore systems with stacked DRAM under power and thermal constraints,” in

Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pp. 648–

655, 2012.

[88] M. Facchini, P. Marchal, F. Catthoor, et al., “An RDL-configurable 3D memory

tier to replace on-chip SRAM,” in Design, Automation Test in Europe Conference

Exhibition (DATE), 2010, pp. 291–294, 2010.

132

[89] G. Loh, “3D-stacked memory architectures for multi-core processors,” in Com-

puter Architecture, 2008. ISCA ’08. 35th International Symposium on, pp. 453–

464, 2008.

[90] G. Kumar, T. Bandyopadhyay, V. Sukumaran, et al., “Ultra-high I/O den-

sity glass/silicon interposers for high bandwidth smart mobile applications,” in

Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st,

pp. 217–223, 2011.

[91] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architecture in-

creases density and performance,” in VLSI Technology (VLSIT), 2012 Sympo-

sium on, pp. 87–88, June 2012.

[92] Q. Wu and T. Zhang, “Design techniques to facilitate processor power delivery in

3D processor-DRAM integrated systems,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 19, no. 9, pp. 1655–1666, 2011.

[93] P.-J. Tzeng, J. Lau, C.-J. Zhan, et al., “Process integration of 3D Si interposer

with double-sided active chip attachments,” in Electronic Components and Tech-

nology Conference (ECTC), 2013 IEEE 63rd, pp. 86–93, 2013.

[94] D. Secker, M. Ji, J. Wilson, et al., “Co-design and optimization of a 256-GB/s

3D IC package with a controller and stacked DRAM,” in Electronic Components

and Technology Conference (ECTC), 2012 IEEE 62nd, pp. 857–864, 2012.

[95] J. H. Lau, “TSV interposer: The most cost-effective integrator for 3D IC inte-

gration,” in Chip Scale Review, Sep 2011.

[96] “AMBA AXI protocol specification v2.0.” ARM Holdings plc, 2010.

[97] C.-L. Lung, Y.-S. Su, H.-H. Huang, et al., “Through-silicon via fault-tolerant

clock networks for 3D ICs,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 32, no. 7, pp. 1100–1109, 2013.

[98] A.-C. Hsieh and T. Hwang, “TSV redundancy: Architecture and design issues

in 3D IC,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 20, pp. 711–722, April 2012.

[99] D. H. Kim, K. Athikulwongse, and S. K. Lim, “Study of through-silicon-via im-

pact on the 3D-stacked IC layout,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 21, no. 5, pp. 862–874, 2013.

133

[100] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit. News,

vol. 39, pp. 1–7, Aug. 2011.

[101] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for chip-

multiprocessors,” in Proceedings of the 5th Annual Workshop on Modeling,

Benchmarking and Simulation, June 2009.

[102] J.-S. Kim, C. S. Oh, H. Lee, D. Lee, et al., “A 1.2V 12.8GB/s 2Gb mobile

Wide-I/O dram with 4x128 I/Os using TSV-based stacking,” in Solid-State Cir-

cuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International,

pp. 496–498, 2011.

[103] X. Hu, P. Du, J. Buckwalter, and C.-K. Cheng, “Modeling and analysis of power

distribution networks in 3D ICs,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 21, no. 2, pp. 354–366, 2013.

[104] N. Khan, S. Reda, and S. Hassoun, “Early estimation of TSV area for power

delivery in 3D integrated circuits,” in 3D Systems Integration Conference (3DIC),

2010 IEEE International, pp. 1–6, 2010.

[105] A. Sridhar, A. Vincenzi, D. Atienza Alonso, and T. Brunschwiler, “3D-ICE: a

compact thermal model for early-stage design of liquid-cooled ICs,” IEEE Trans-

actions on Computers, vol. 62, no. 11, pp. 1–4, 2013.

[106] A. Todri, S. Kundu, P. Girard, A. Bosio, L. Dilillo, and A. Virazel, “A study of

tapered 3-D TSVs for power and thermal integrity,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 21, pp. 306–319, Feb 2013.

[107] D. Milojevic, H. Oprins, J. Ryckaert, et al., “DRAM-on-logic stack - calibrated

thermal and mechanical models integrated into pathfinding flow,” in Custom

Integrated Circuits Conference (CICC), 2011 IEEE, pp. 1–4, 2011.

[108] Y. K. Joshi and Y. J. Kim, “Thermal management of 3D-stacked IC.”

http://www.ipc.gatech.edu/materials/3d workshop joshi.pdf.

[109] Z. Feng and P. Li, “Fast thermal analysis on GPU for 3D ICs with integrated mi-

crochannel cooling,” Very Large Scale Integration (VLSI) Systems, IEEE Trans-

actions on, vol. 21, no. 8, pp. 1526–1539, 2013.

[110] H. O. Yue Zhang and M. S. Bakir, “Within-tier cooling and thermal isolation

technologies for heterogeneous 3D ICs,” in 3DIC 2013, 2013.

134

[111] “ARM Cortex-A12: The successor to the Cortex-A9 is available (in German).”

http://www.elektroniknet.de/ halbleiter/prozessoren/artikel/100334/1/.

[112] “Internal communication with STMicroelectronics.”

[113] J. Shah, “Estimating bond wire current-carrying capacity.”

https://www.idt.com/document/atc/power-systems-design-estimating-bond-

wire-current-carrying-capacity, July 2012.

[114] B. Lee, L.-C. Wang, and M. Abadir, “Issues on test optimization with known good

dies and known defective dies - a statistical perspective*,” in Test Conference,

2006. ITC ’06. IEEE International, pp. 1–10, 2006.

[115] U. Ahmed, G. Lemieux, and S. J. E. Wilton, “Performance and cost tradeoffs in

metal-programmable structured ASICs (MPSAs),” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 19, no. 12, pp. 2195–2208, 2011.

[116] N. Miyakawa, “A 3D prototyping chip based on a wafer-level stacking technol-

ogy,” in Proceedings of the 2009 Asia and South Pacific Design Automation Con-

ference, ASP-DAC ’09, (Piscataway, NJ, USA), pp. 416–420, IEEE Press, 2009.

[117] A. Topol, D. La Tulipe, L. Shi, S. M. Alam, et al., “Enabling SOI-based assembly

technology for three-dimensional (3D) integrated circuits (ICs),” in Electron De-

vices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 352–355,

Dec 2005.

[118] R. S. Mackay, H. Kamberian, and Y. Zhang, “Methods to reduce lithography

costs with reticle engineering,” Microelectronic Engineering, vol. 83, no. 49,

pp. 914 – 918, 2006.

[119] D. Pramanik, H. H. Kamberian, C. J. Progler, et al., “Cost effective strategies

for ASIC masks,” Proc. SPIE, vol. 5043, pp. 142–152, 2003.

[120] K. Jeong, A. B. Kahng, and C. J. Progler, “Cost-driven mask strategies con-

sidering parametric yield, defectivity, and production volume,” Journal of Mi-

cro/Nanolithography, MEMS, and MOEMS, vol. 10, no. 3, pp. 033021–033021–12,

2011.

[121] S. H. Pugsley, J. Jestes, R. Balasubramonian, et al., “Comparing implementa-

tions of near-data computing with in-memory MapReduce workloads,” Micro,

IEEE, vol. 34, pp. 44–52, July 2014.

135

[122] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions: A low-

overhead, locality-aware processing-in-memory architecture,” in Proceedings of

the 42Nd Annual International Symposium on Computer Architecture, ISCA ’15,

(New York, NY, USA), pp. 336–348, ACM, 2015.

[123] Y. Kang, W. Huang, S.-M. Yoo, et al., “FlexRAM: Toward an advanced intel-

ligent memory system,” in Computer Design (ICCD), 2012 IEEE 30th Interna-

tional Conference on, pp. 5–14, Sept 2012.

[124] Q. Zhu, B. Akin, H. Sumbul, et al., “A 3D-stacked logic-in-memory accelerator

for application-specific data intensive computing,” in 3D Systems Integration

Conference (3DIC), 2013 IEEE International, pp. 1–7, Oct 2013.

[125] Y. Wang, Z. Shao, H. Chan, L. Bathen, and N. Dutt, “A reliability enhanced

address mapping strategy for three-dimensional (3-D) NAND flash memory,”

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 22,

pp. 2402–2410, Nov 2014.

[126] G. Wu, J. Gao, H. Zhang, and Y. Dong, “Improving PCM endurance with ran-

domized address remapping in hybrid memory system,” in Cluster Computing

(CLUSTER), 2011 IEEE International Conference on, pp. 503–507, Sept 2011.

[127] J. ling Yang, “Parallel interleavers through optimized memory address remap-

ping,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 18, pp. 978–987, June 2010.

[128] P.-Y. Tsai and C.-Y. Lin, “A generalized conflict-free memory addressing

scheme for continuous-flow parallel-processing FFT processors with reschedul-

ing,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 19, pp. 2290–2302, Dec 2011.

[129] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme

to reduce row-buffer conflicts and exploit data locality,” in Proceedings of the 33rd

Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 33,

(New York, NY, USA), pp. 32–41, ACM, 2000.

[130] “Exploring memory management strategies in catamount.”

http://www.sandia.gov/ ktpedre/papers/mem-cug08.pdf, 2008.

136

[131] H. Vandierendonck and K. De Bosschere, “XOR-based hash functions,” Comput-

ers, IEEE Transactions on, vol. 54, pp. 800–812, July 2005.

[132] C. Pfister, “Optimizing Memory Access Patterns for High-Performance Near-

Memory Processing,” Master’s thesis, Swiss Federal Institute of Technology

Zurich, 2015.

[133] M. Frigo and S. Johnson, “The design and implementation of FFTW3,” Proceed-

ings of the IEEE, vol. 93, pp. 216–231, Feb 2005.

[134] “Spectral density estimation.” https://en.wikipedia.org/wiki/Spectral

density estimation, 2015.

[135] “Substitution-permutation network.” https://en.wikipedia.org/wiki/Substitution-

permutation network.

[136] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, et al., “Present: An ultra-

lightweight block cipher,” in Proceedings of the 9th International Workshop on

Cryptographic Hardware and Embedded Systems, CHES ’07, (Berlin, Heidelberg),

pp. 450–466, Springer-Verlag, 2007.

[137] “Double data rate (DDR) SDRAM.” JEDEC JESD79F, 2005.

[138] G.Ramesh, V. Kumar, and K. Reddy, “Asynchronous FIFO design with gray

code pointer for high speed AMBA AHB compliant memory controller,” IOSR

Journal of VLSI and Signal Processing (IOSR-JVSP), vol. 1, pp. 32–37, Nov

2012.

[139] C. Weis, I. Loi, et al., “An energy efficient DRAM subsystem for 3D integrated

SoCs,” in Design, Automation Test in Europe Conference Exhibition (DATE),

2012, pp. 1138–1141, March 2012.

[140] J. Ahn, S. Yoo, and K. Choi, “Low-power hybrid memory cubes with link power

management and two-level prefetching,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[141] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric system interconnect

design with hybrid memory cubes,” in Parallel Architectures and Compilation

Techniques (PACT), 2013 22nd International Conference on, pp. 145–155, Sept

2013.

137

[142] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine

Vision. Thompson Learning, 2008.

[143] H. Yokota, Y. Kanemasa, and J. Miyazaki, “Fat-Btree: an update-conscious

parallel directory structure,” in Data Engineering, 1999. Proceedings., 15th In-

ternational Conference on, pp. 448–457, Mar 1999.

[144] J. Zhong and B. He, “Towards GPU-accelerated large-scale graph processing in

the cloud,” in Cloud Computing Technology and Science (CloudCom), 2013 IEEE

5th International Conference on, vol. 1, pp. 9–16, Dec 2013.

[145] F. Ji and X. Ma, “Using shared memory to accelerate MapReduce on graphics

processing units,” in Parallel Distributed Processing Symposium (IPDPS), 2011

IEEE International, pp. 805–816, May 2011.

[146] R. Nair, “Evolution of memory architecture,” Proceedings of the IEEE, vol. 103,

pp. 1331–1345, Aug 2015.

[147] A. Hansson, N. Agarwal, A. Kolli, et al., “Simulating DRAM controllers for

future system architecture exploration,” in Performance Analysis of Systems and

Software (ISPASS), 2014 IEEE International Symposium on, pp. 201–210, March

2014.

[148] OpenSilicon, “HMC ASIC controller IP core.” http://www.open-

silicon.com/open-silicon-ips/hmc/.

[149] MALI, “Open source Mali-400/450 GPU kernel device drivers.”

http://malideveloper.arm.com/resources/drivers/.

[150] M. Schaffner, F. K. Gürkaynak, A. Smolic, and L. Benini, “DRAM or no-DRAM?

exploring linear solver architectures for image domain warping in 28 nm CMOS,”

in Proceedings of the 2015 Design, Automation & Test in Europe Conference &

Exhibition, DATE ’15, (San Jose, CA, USA), pp. 707–712, EDA Consortium,

2015.

[151] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-marl: A DSL for easy

and efficient graph analysis,” SIGPLAN Not., vol. 47, pp. 349–362, Mar. 2012.

[152] G. Malewicz, M. H. Austern, A. J. Bik, et al., “Pregel: A system for large-scale

graph processing,” in Proceedings of the 2010 ACM SIGMOD International Con-

138

ference on Management of Data, SIGMOD ’10, (New York, NY, USA), pp. 135–

146, ACM, 2010.

[153] S. Salihoglu and J. Widom, “GPS: A graph processing system,” in Proceedings

of the 25th International Conference on Scientific and Statistical Database Man-

agement, SSDBM, (New York, NY, USA), pp. 22:1–22:12, ACM, 2013.

[154] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset

collection.” http://snap.stanford.edu/data, June 2014.

[155] S. Wilton and N. Jouppi, “CACTI: an enhanced cache access and cycle time

model,” Solid-State Circuits, IEEE Journal of, vol. 31, pp. 677–688, May 1996.

[156] K. Chandrasekar, B. Akesson, and K. Goossens, “Improved power modeling of

DDR SDRAMs,” in Digital System Design (DSD), 2011 14th Euromicro Confer-

ence on, pp. 99–108, Aug 2011.

[157] B. Boroujerdian, B. Keller, and Y. Lee, “LPDDR2 memory controller design in

a 28nm process.”

[158] S. Lloyd and M. Gokhale, “In-memory data rearrangement for irregular, data-

intensive computing,” Computer, vol. 48, pp. 18–25, Aug 2015.

[159] J. Heinlen, “Leveraging advanced physical IP to deliver optimized SoC imple-

mentation at 40nm and below.” Talk by ARM Physical IP Division, Nov. 2010.

[160] B. M. Tudor and Y. M. Teo, “On understanding the energy consumption of ARM-

based multicore servers,” SIGMETRICS Perform. Eval. Rev., vol. 41, pp. 267–

278, June 2013.

[161] “Little’s law.” https://en.wikipedia.org/wiki/Little’s law, 2015.

139

Appendix A

Accuracy verification of the

high-level SMC model

This section presents a small subset of the accuracy comparison experiments performed

between the high-level gem5 based SMC model developed in chapter 5, and the cycle-

accurate model developed in chapter 4.

Comparison of a single memory bank between the two models: (1 serial link, 1 vault,

1 bank only)

0

1

2

3

4

5

6

7

1000 40000 160000 640000 2560000
Saturation

0

1

2

3

4

5

6

1000 40000 160000 640000 2560000

CLOSED

OPEN

Saturation
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

1000 40000 160000 640000 2560000
Saturation

Active Period: 10 ns Single Bank: Error < 6%SiSiSiSiSiSiSiSiSiSiSSiSiSSiSSSSiSSSSSiSSSS ngngngngngngngnngggngnggngngggngggggggngggggleleeleeeleeeeeeeeeeelleleeee BBBBBBBBBBBBBBBBBBBBBBananannananananaaaananaaaaannanananaaanaaaa k:k:k:k:k:k:kkk:k:k::::k:kk:k:k:k EEEEEEEEEEEEEEEEEEEEErrrrrrrrrrrrrrrrrrrrrrrrrr ororororoororoororoororrororoororooooooo <<<<<<<<<<<<<<<<<<<<<<<< 6666666666666666666666666%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%

Idle Period (ns) Idle Period (ns) Idle Period (ns)

Page Policy

gem5’s Bandwidth Error (%) gem5’s Execution Time Error (%) ModelSim Absolute Bandwidth (GB/s)

Comparison of full HMC devices modeled in both environments, where the number of

serial links has been altered:

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 20 40 80 160
Saturation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 20 40 80 160

1

2

4

Saturation
0

10

20

30

40

50

60

70

1 20 40 80 160
Saturation

Error < 2%ErErErErEErErErEErErEErErErErErEErrrrErrororororororororoorrroorororrororooooooooor rrrrrr rrrrr rrrrrrr < <<<<<<<<<<<<<<<<<<<<< 2%2%2%2%2%22%2%2%2%2%222%22%2222%2%2%22%22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ModelSim Absolute Bandwidth GB/s Gem5 Bandwidth Error (%) Gem5 Execution Time Error (%)

Idle Period (ns) Idle Period (ns) Idle Period (ns)

Active Period: 10 ns

Serial Links

Comparison of full HMC devices modeled in both environments, where the number of

memory vaults has been altered:

140

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 20 40 80 160

2
4
8
16

gem5 Bandwidth Error (%)

Saturation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 20 40 80 160

2
4
8
16

gem5 Execution Time Error (%)

Saturation

0

10

20

30

40

50

60

70

1 20 40 80 160

2
4
8
16

ModelSim Absolute Bandwidth (GB/s)

Saturation

Traffic Active Period
10 ns

Error < 2%ErErEErErEErEErErErEErrErErErEErrrrrrororororororororororoooorroorroooorrrooooor rrrrrrrrrrrrrrrrr < <<<<<<<<<<<<<<<<<<<<<<<< 2%2%2%2%2%222%2%2%22%22%2%2%222%2%%22222 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Number of Vaults

Idle Period (ns) Idle Period (ns) Idle Period (ns)

Comparison of full HMC devices modeled in both environments, where DRAM bus

width has been altered:

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1000 20000 40000 80000 160000

32 64

Saturation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1000 20000 40000 80000 160000

32 64

Saturation
0

10

20

30

40

50

60

70

1000 20000 40000 80000 160000

32 64

ModelSim Absolute Bandwidth (GB/s)

Saturation

Error < 2%ErErErErErErEErEEErErErrErrErrEErEErEErrororororoorororororoorororooororoooooor rr rrrrrrrrrrrrr < <<<<<<<<<<<<<<<<<<<<<<<< 2%2%2%22%2%2%22%222%222%222%2%%222%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DRAM Bus Width

Active Period: 10 ns

Idle Period (ns) Idle Period (ns) Idle Period (ns)

Gem5 Execution Time Error (%) Gem5 Bandwidth Error (%)

141

Appendix B

Source codes of computation

kernels

Unoptimized source codes of the ATF and PR kernels:

a) Average Teenage Follower (ATF)
 for (ulong_t r=0; r<NODES; r++)
 {
 if (nodes[r].teenager)
 for (ulong_t c=0; c<nodes[r].out_degree ; c++)
 {
 node*succ = nodes[r].successors[c];
 succ->followers++;
 }
 }

b) Pagerank
 for (ulong_t i=0; i<NODES; i++)
 {
 nodes[i].page_rank = 1.0 / NODES;
 nodes[i].next_rank = 0.15 / NODES;
 }
 ulong_t count = 0;
 float diff = 0.0;
 do {
 for (ulong_t i=0; i<NODES; i++)
 {
 float delta = 0.85 * nodes[i].page_rank / nodes[i].out_degree;
 for (ulong_t j=0; j<nodes[i].out_degree; j++) // for node.successors
 nodes[i].successors[j]->next_rank += delta;
 }
 diff = 0.0;
 for (ulong_t i=0; i<NODES; i++)
 {
 diff += fabsf(nodes[i].next_rank - nodes[i].page_rank);
 nodes[i].page_rank = nodes[i].next_rank;
 nodes[i].next_rank = 0.15 / NODES;
 }
 } while (++count < PAGERANK_MAX_ITERATIONS && diff > PAGERANK_MAX_ERROR);

142

Unoptimized source codes of the BFS and BF kernels:

a) Breadth First Search (BFS)
 ulong_t total_distance = 0;
 while (!(queue_empty))
 {
 ulong_t v = queue_top;
 queue_pop;
 for (ulong_t c=0; c<nodes[v].out_degree ; c++)
 {
 node*succ = nodes[v].successors[c];
 if (succ->distance == NC) // Infinite
 {
 succ->distance = nodes[v].distance + 1;
 total_distance += succ->distance;
 queue_push(succ->ID);
 }
 }
 }
b) Bellman-Ford
 ulong_t total_distance = 0;
 for (unsigned r=0; r<NODES; r++)
 for (ulong_t c=0; c<nodes[r].out_degree; c++) // for node.successors
 {
 node*u = &nodes[r];
 node*v = nodes[r].successors[c];
 ulong_t w = nodes[r].weights[c];
 if (u->distance != NC && v->distance > u->distance + w)
 v->distance = u->distance + w;
 }

DMA optimized version of matrix addition:

 ping = &PIM_VREG[0];
 pong = &PIM_VREG[0] + XFER_SIZE*3;

 DMA_REQUEST(A, A_ping, XFER_SIZE, PIM_DMA_READ, DMA_RES0);
 DMA_REQUEST(B, B_ping, XFER_SIZE, PIM_DMA_READ, DMA_RES1);
 while(PIM_DMA_STATUS & DMA_RES0);
 while(PIM_DMA_STATUS & DMA_RES1);

 num_bursts = SS*sizeof(ulong_t)/XFER_SIZE;
 for (x=0; x<num_bursts; x++)
 {
 // Fill Pong (Request)
 if (x+1 < num_bursts) // Boundary
 {
 DMA_REQUEST(A+(x+1)*XFER_SIZE, A_pong, XFER_SIZE, PIM_DMA_READ, DMA_RES2);
 DMA_REQUEST(B+(x+1)*XFER_SIZE, B_pong, XFER_SIZE, PIM_DMA_READ, DMA_RES3);
 }

 // Work on Ping's data
 for (j=0; j< XFER_SIZE/sizeof(ulong_t); j++)
 ((ulong_t*)C_ping)[j] = ((ulong_t*)A_ping)[j] + ((ulong_t*)B_ping)[j];

 // Write back the result of Ping
 while(PIM_DMA_STATUS & DMA_RES4);
 DMA_REQUEST(C+x*XFER_SIZE, C_ping, XFER_SIZE, PIM_DMA_WRITE, DMA_RES4);

 // Wait for Pong to finish
 while(PIM_DMA_STATUS & DMA_RES2);
 while(PIM_DMA_STATUS & DMA_RES3);

 // Swap ping and pong
 swap = ping;
 ping = pong;
 pong = swap;
 }
 while(PIM_DMA_STATUS & DMA_RES4);

143

Optimized ATF source code using two DMAs and an atomic HMC command:
 DMA_REQUEST(nodes, nodes_pong, nodes_chunk, PIM_DMA_READ, DMA_RES0);
 total_followers = 0;
 rr = nodes_count;
 num_pongs = -1;
 for (r=0; r<NODES; r++)
 {
 if (rr == nodes_count)
 {
 rr = 0;
 DMA_WAIT(DMA_RES0);
 nodes_swap = nodes_ping; nodes_ping = nodes_pong; nodes_pong = nodes_swap; // Swap Ping and Pong
 DMA_REQUEST(&nodes[r+nodes_count], nodes_pong, nodes_chunk, PIM_DMA_READ, DMA_RES0);
 }
 if (nodes_ping[rr].teenager && nodes_ping[rr].out_degree)
 DMA_REQUEST(nodes_ping[rr].successors, succ_pong, nodes_ping[rr].out_degree *
 sizeof(node*), PIM_DMA_READ, DMA_RES1);
 if (num_pongs != -1)
 {
 for (c=0; c< num_pongs; c++)
 {
 #ifdef USE_HMC_ATOMIC_CMD
 HMC_ATOMIC___INCR(succ_ping[c]->followers);
 #else
 succ_ping[c]->followers++;
 #endif
 }
 num_pongs = -1;
 }

 if (nodes_ping[rr].teenager && nodes_ping[rr].out_degree)
 {
 num_pongs = nodes_ping[rr].out_degree;
 DMA_WAIT(DMA_RES1);
 succ_swap = succ_ping; succ_ping = succ_pong; succ_pong = succ_swap;
 }
 rr++;
 }
 // Termination
 if (num_pongs != -1)
 {
 for (c=0; c< num_pongs; c++)
 {
 #ifdef USE_HMC_ATOMIC_CMD
 HMC_ATOMIC___INCR(succ_ping[c]->followers);
 #else
 succ_ping[c]->followers++;
 #endif
 }
 num_pongs = -1;
 }

144

