Fine Mapping of qroot-yield-1.06, a QTL for Root, Plant Vigor and Yield in Maize

Martinez Ascanio, Ana Karine (2015) Fine Mapping of qroot-yield-1.06, a QTL for Root, Plant Vigor and Yield in Maize, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze biochimiche e biotecnologiche, 27 Ciclo. DOI 10.6092/unibo/amsdottorato/7160.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (5MB) | Anteprima

Abstract

Root-yield-1.06 is a major QTL affecting root system architecture (RSA) and other agronomic traits in maize. The effect of this QTL has been evaluated with the development of near isogenic lines (NILs) differing at the QTL position. The objective of this study was to fine map qroot-yield-1.06 by marker-assisted searching for chromosome recombinants in the QTL interval and concurrent root phenotyping in both controlled and field conditions, through successive generations. Complementary approaches such as QTL meta-analysis and RNA-seq were deployed in order to help prioritizing candidate genes within the QTL target region. Using a selected group of genotypes, field based root analysis by ‘shovelomics’ enabled to accurately collect RSA information of adult maize plants. Shovelomics combined with software-assisted root imaging analysis proved to be an informative and relatively highly automated phenotyping protocol. A QTL interval mapping was conducted using a segregating population at the seedling stage grown in controlled environment. Results enabled to narrow down the QTL interval and to identify new polymorphic markers for MAS in field experiments. A collection of homozygous recombinant NILs was developed by screening segregating populations with markers flanking qroot-yield-1.06. A first set of lines from this collection was phenotyped based on the adapted shovelomics protocol. QTL analysis based on these data highlighted an interval of 1.3 Mb as completely linked with the target QTL but, a larger safer interval of 4.1 Mb was selected for further investigations. QTL meta-analysis allows to synthetize information on root QTLs and two mQTLs were identified in the qroot-yield-1.06 interval. Trascriptomics analysis based on RNA-seq data of the two contrasting QTL-NILs, confirmed alternative haplotypes at chromosome bin 1.06. qroot-yield-1.06 has now been delimited to a 4.1-Mb interval, and thanks to the availability of additional untested homozygous recombinant NILs, the potentially achievable mapping resolution at qroot-yield-1.06 is c. 50 kb.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Martinez Ascanio, Ana Karine
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Ciclo
27
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Maize, Near Isogenis Lines, QTL, Fine mapping, Marker-assited selection, Root phenotyping, shovelomics, meta-analysis, transcriptomics, RNA-seq
URN:NBN
DOI
10.6092/unibo/amsdottorato/7160
Data di discussione
13 Aprile 2015
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^