Natural compounds Camptothecin and Triptolide: highly specific enzyme inhibitors and tools to dissect transcriptional functions

Manzo, Stefano Giustino (2015) Natural compounds Camptothecin and Triptolide: highly specific enzyme inhibitors and tools to dissect transcriptional functions , [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Biologia cellulare e molecolare, 27 Ciclo. DOI 10.6092/unibo/amsdottorato/6961.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (25MB) | Anteprima

Abstract

With this work I elucidated new and unexpected mechanisms of two strong and highly specific transcription inhibitors: Triptolide and Campthotecin. Triptolide (TPL) is a diterpene epoxide derived from the Chinese plant Trypterigium Wilfoordii Hook F. TPL inhibits the ATPase activity of XPB, a subunit of the general transcription factor TFIIH. In this thesis I found that degradation of Rbp1 (the largest subunit of RNA Polymerase II) caused by TPL treatments, is preceded by an hyperphosphorylation event at serine 5 of the carboxy-terminal domain (CTD) of Rbp1. This event is concomitant with a block of RNA Polymerase II at promoters of active genes. The enzyme responsible for Ser5 hyperphosphorylation event is CDK7. Notably, CDK7 downregulation rescued both Ser5 hyperphosphorylation and Rbp1 degradation triggered by TPL. Camptothecin (CPT), derived from the plant Camptotheca acuminata, specifically inhibits topoisomerase 1 (Top1). We first found that CPT induced antisense transcription at divergent CpG islands promoter. Interestingly, by immunofluorescence experiments, CPT was found to induce a burst of R loop structures (DNA/RNA hybrids) at nucleoli and mitochondria. We then decided to investigate the role of Top1 in R loop homeostasis through a short interfering RNA approach (RNAi). Using DNA/RNA immunoprecipitation techniques coupled to NGS I found that Top1 depletion induces an increase of R loops at a genome-wide level. We found that such increase occurs on the entire gene body. At a subset of loci R loops resulted particularly stressed after Top1 depletion: some of these genes showed the formation of new R loops structures, whereas other loci showed a reduction of R loops. Interestingly we found that new peaks usually appear at tandem or divergent genes in the entire gene body, while losses of R loop peaks seems to be a feature specific of 3’ end regions of convergent genes.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Manzo, Stefano Giustino
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Ciclo
27
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Camptothecin, Top1, R loops, Triptolide, Rbp1
URN:NBN
DOI
10.6092/unibo/amsdottorato/6961
Data di discussione
9 Aprile 2015
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^