Numerical and Analytical Methods for Laser-Plasma Acceleration Physics

Rossi, Francesco (2015) Numerical and Analytical Methods for Laser-Plasma Acceleration Physics, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 27 Ciclo. DOI 10.6092/unibo/amsdottorato/6771.
Documenti full-text disponibili:
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (7MB) | Anteprima


Theories and numerical modeling are fundamental tools for understanding, optimizing and designing present and future laser-plasma accelerators (LPAs). Laser evolution and plasma wave excitation in a LPA driven by a weakly relativistically intense, short-pulse laser propagating in a preformed parabolic plasma channel, is studied analytically in 3D including the effects of pulse steepening and energy depletion. At higher laser intensities, the process of electron self-injection in the nonlinear bubble wake regime is studied by means of fully self-consistent Particle-in-Cell simulations. Considering a non-evolving laser driver propagating with a prescribed velocity, the geometrical properties of the non-evolving bubble wake are studied. For a range of parameters of interest for laser plasma acceleration, The dependence of the threshold for self-injection in the non-evolving wake on laser intensity and wake velocity is characterized. Due to the nonlinear and complex nature of the Physics involved, computationally challenging numerical simulations are required to model laser-plasma accelerators operating at relativistic laser intensities. The numerical and computational optimizations, that combined in the codes INF&RNO and INF&RNO/quasi-static give the possibility to accurately model multi-GeV laser wakefield acceleration stages with present supercomputing architectures, are discussed. The PIC code jasmine, capable of efficiently running laser-plasma simulations on Graphics Processing Units (GPUs) clusters, is presented. GPUs deliver exceptional performance to PIC codes, but the core algorithms had to be redesigned for satisfying the constraints imposed by the intrinsic parallelism of the architecture. The simulation campaigns, run with the code jasmine for modeling the recent LPA experiments with the INFN-FLAME and CNR-ILIL laser systems, are also presented.

Tipologia del documento
Tesi di dottorato
Rossi, Francesco
Dottorato di ricerca
Scuola di dottorato
Scienze matematiche, fisiche ed astronomiche
Settore disciplinare
Settore concorsuale
Parole chiave
Laser,plasma,wakefield,acceleration,LWFA,laser wakefieldd acceleration,particle,PIC,simulation,particle in cell,GPU,INF&RNO,wake velocity,bubble regime,laser depletion rate,quasi static,load balancing,parallelizaion
Data di discussione
20 Marzo 2015

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi