
Alma Mater Studiorum
Università degli Studi di Bologna

Dottorato di Ricerca in Fisica
Ciclo XXVII

Numerical and Analytical Methods

for Laser-Plasma

Acceleration Physics

Settore Concorsuale di Afferenza: 02/B3

Settore Scientifico Disciplinare: FIS/07

Coordinatore: Prof. Fabio Ortolani

Presentata da:

Francesco Rossi

Relatore:
Prof. Giorgio Turchetti

Tutor:
Prof. Armando Bazzani

Esame Finale Anno Accademico 2013-2014



Contents

Introduction 5

Acknowledgements 10

Papers 11

I. Laser Wakefield Acceleration Theoretical Studies 13

1. Laser Propagation and Phase Velocity of Plasma Waves in the Weakly Rela-

tivistic Regime 16

1.1. Quasi static equations in the weakly relativistic regime . . . . . . . . . . . 18

1.2. Expressions for Energy Depletion . . . . . . . . . . . . . . . . . . . . . . . 19

1.3. Expressions for Laser Intensity Transport Velocity and for the velocity of

the Intensity Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4. Expression for the Wake Phase Velocity . . . . . . . . . . . . . . . . . . . 24

1.5. Depletion Rate and Laser Intensity centroid velocity in the a0 > 1 regime 29

2. Wake Velocity and Self-Injection in the Nonlinear Bubble Regime: Numerical

Investigation 33

2.1. Wake Geometrical Properties in the Bubble Regime . . . . . . . . . . . . . 34

2.2. Threshold for self-injection for a non-evolving laser . . . . . . . . . . . . . 36

2.3. Evolution of the Phase Velocity of a Bubble Wake generated by an evolving

laser driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4. Empirical law for the Minimum Value of the Bubble Wake Phase Velocity 41

2



II. Computational methods 44

3. The particle-in-cell method 45

3.1. Phase space representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1. Passes of an electromagnetic PIC code and numerical parameters

of a laser plasma interaction simulation . . . . . . . . . . . . . . . 48

3.1.2. Interpolation and deposition using shape functions . . . . . . . . . 49

3.1.2.1. Force interpolation . . . . . . . . . . . . . . . . . . . . . . 49

3.1.2.2. Charge and current deposition . . . . . . . . . . . . . . . 50

3.1.2.3. Common shapefunctions and shapefactors . . . . . . . . . 50

3.2. The “standard” second-order PIC: leapfrog and FDTD . . . . . . . . . . . 55

3.2.1. Solving the Maxwell equations numerically using the Yee Lattice . 55

3.2.2. Boris pusher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.3. Bringing all together . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3. Charge conservation using Esirkepov Shape functions . . . . . . . . . . . . 62

4. Jasmine: PIC implementation on GPUs 66

4.1. GPU parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1. Deposition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2. Multi-GPU Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1. Simple Load-Balancing Algorithm for Laser Plasma Simulations . . 72

4.3. Meta-programming Technique . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4. GPU implementation of PIC auxiliary features . . . . . . . . . . . . . . . 77

4.4.1. Tunneling ionization modeling with the ADK model . . . . . . . . 78

5. INF&RNO 81

5.1. Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1. Laser envelope equation derivation . . . . . . . . . . . . . . . . . . 82

5.1.2. Laser envelope equation numerical solution and parallelization . . . 83

5.1.3. Plasma motion and wakefield equations in cylindrical comoving

coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2. Parallalelization and scalability benchmarks . . . . . . . . . . . . . . . . . 90

5.2.1. 1D domain decomposition . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2. 2D domain decomposition and shared memory parallelization . . . 93

5.2.3. INF&RNO GPU Parallelization . . . . . . . . . . . . . . . . . . . . 95

3



6. INF&RNO/Quasi-Static 97

6.1. The Quasi-static Approximation . . . . . . . . . . . . . . . . . . . . . . . 97

6.2. Quasi-static numerical scheme in cylindrical symmetry . . . . . . . . . . . 98

6.3. Parallelization via pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4. Pipeline load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5. INF&RNO/Quasi Static Benchmark: ~10 GeV acceleration stage simulation108

III. Modeling of Experiments 111

7. Electron acceleration case studies 112

7.1. INFN-LNF FLAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.1. Interaction with flat top density profile . . . . . . . . . . . . . . . . 112

7.1.2. Structured Gas Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2. Experiments at ILIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1. High density regime for radiobiology applications . . . . . . . . . . 115

7.2.2. Low density regime for Thomson scattering . . . . . . . . . . . . . 116

Conclusions 123

4



Introduction

Particle accelerators have had a profound impact on many fundamental science discover-

ies and they are the basis of important technologies such as synchrotrons and free electron

lasers. Conventional schemes are limited by the electrical breakdown limit of the radiofre-

quency (RF) cavities they use for generating the electric fields that accelerate charged

particles. In fact, in those cavities, the accelerating field is bound to ∼ 100MV/m and

this has implied that present high energy accelerators are tens of kilometers long and

cost billions of dollars.

Over the last decade, the laser wakefield acceleration technique (LWFA) started to

emerge as a breakthrough electron acceleration technology and as a possible alternative

for building electron accelerators that could overcome the limitations of the conventional,

RF-based, accelerators.

To accelerate particles, the resonant accelerating structures in the RF-based schemes

have been replaced in LWFA by the electric field generated by a plasma wake (the wake-

field), driven by a relativistically intense, short, laser pulse. The plasma wave generated

by the laser driver is the result of the gradient in laser field energy density providing a

force (i.e., the ponderomotive force) that creates a space charge separation between the

(underdense) plasma electrons and the neutralizing ions. The wakefield can exceed sev-

eral hundreds gigavolts per meter in peak amplitude and propagates through the plasma

at relativistic velocities, following the laser pulse with a phase velocity of the order of

the group velocity of the laser driver. This ability to sustain extremely large acceleration

gradients enables compact accelerating schemes.

The LWFA technique was proposed 35 years ago by Dawson and Tajima [23] and,

in the last decade, the rapid progress of the laser technology boosted the development

of LWFA accelerators. Current laser-plasma accelerator (LPA) experiments, requiring

ultra-short (tens of femtoseconds) and powerful pulses (10 TW − 1PW ), operate at

relativistic intensities I0 & 1018W/cm2.

Using a 9−cm-long capillary discharge waveguide (with plasma density ∼ 7·1017cm−3)
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to drive a sub-petawatt laser pulse (0.3PW ), the group led by Wim Leemans at Lawrence

Berkeley National Laboratory has recently demonstrated in experiments a scheme that

produces high quality electron beams (6% rms energy spread, 0.3mrad rms divergence,

6pC charge) with record-breaking energies, up 4.2GeV [5].

Laser plasma accelerators are interesting candidates for applications to future high

energy colliders [11] and radiation sources [12, 13, 14].

The acceleration in a LPA is limited by dephasing, the distance at which the acceler-

ated beam outruns the accelerating part of the wakefield, and by the evolution of the laser

pulse. During its propagation in the plasma, the pulse undergoes both transverse evolu-

tion (diffraction/relativistic self-focusing/plasma wave guiding) and longitudinal evolu-

tion (self-steepening, energy depletion and redshifting). The evolution of the pulse affects

the accelerating properties of the wake, and hence the dynamics of the accelerated bunch.

In an LPA, charged particles need to be injected at the correct phase of the wakefield,

as for any accelerating structure. In the “bubble” regime, in which the ponderomotive

force of the intense laser pulse transversally expels ambient electrons and forms of a

trailing electron ellipsoidal cavity moving at relativistic velocity (a bubble wake), it has

been observed, in experiments and in Particle-in-Cell simulations that, in some cases,

electrons from the background plasma itself can be (self-)injected and accelerated in the

wake. Denoting with L0, λ0 the rms length and wavelength of the laser pulse, respectively,

the bubble regime can be accessed if the pulse is quasi-resonant kpL ∼ 1 , (where ωp =

kpc =
√

4πn0e2/me is the plasma frequency for a plasma of density n0 and c is the speed

of light in vacuum) and if the peak normalized vector potential of the laser satisfies a0 & 2

( a0 ' 8.5 · 10−10(I0[W/cm2])1/2λ0[µm]).

The self-injection mechanism is probably the simplest injection technique to access

experimentally, but several other injection techniques have been developed (including

colliding pulses [15, 16], tailored density profiles [17, 18, 19] and ionization-induced in-

jection [20, 21]).

Understanding the self-injection mechanism and the propagation of short and intense

laser pulses in a underdense plasma are therefore topics of fundamental importance in

the field of laser-plasma accelerators.

In Chapter 1, the laser evolution and plasma wave excitation by a weakly relativisti-

cally intense, short-pulse laser propagating in a preformed parabolic plasma channel is

discussed, including the effects of pulse steepening and energy depletion. Analytical ex-
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pressions for the laser energy depletion, the pulse self-steepening rate, the laser intensity

centroid velocity, and the phase velocity of the plasma wave are derived in 3D, as in our

upcoming contribution [22], and in the weakly relativistic intensity regime a0 < 1.

Due to the high nonlinearities, to study higher intensity regimes in 3D, numerical sim-

ulations are generally required. In Chapter 2, reviewing the recent results in Ref. [8],

the nonlinear bubble regime is systematically studied by means of particle-in-cell simu-

lations, run with the ponderomotive PIC code INF&RNO [26, 27, 28] under controlled

conditions. The bubble wake properties and the importance of the bubble wake velocity

in the self-injection process are investigated.

Due to the high nonlinearity and complexity of the phenomena involved, numerical

simulations are fundamental tools for studying of laser plasma interaction, for modeling

LPA experiments, for designing them and for developing new theories (as in Chapter

2). Particle-in-Cell (PIC) codes (Ref. [39], and Chapter 3 for a general introduction)

provide an accurate kinetic description of plasmas and are very established tools in the

LPA community.

The most complete (“full”) physical model for studying laser-plasma interactions is the

Vlasov equation, providing a 6D phase space kinetic description of the plasma, coupled

with the Lorentz force, the relativistic equations of motion and Maxwell equations for

Electrodynamics. PIC codes discretize the Vlasov equation sampling the phase space

with spatially-shaped computational particles.

In this numerical view, the smallest scale to resolve is the laser pulse wavelength,

of the order of the micron (µm). In LWFA, the longest physical scale of interest is the

acceleration length, which can range in current designs and experiments from the order of

the millimeter (mm), up to the order of the meter (m) (lower densities, longer propagation

distances resulting in higher energies). Due to this extremely large scale separation (the

ration can be greater than 106), 3D simulations of laser-plasma acceleration are extremely

demanding in terms of computational power, even with modern top supercomputers.

In part II, we review the numerical methods and the numerical and computational

optimizations that allow to accurately model the 3D Physics of laser plasma accelerators

with present supercomputing architectures.

In particular, in Chapter 4 the challenges and benefits of porting the PIC algorithms

to the massively parallel Graphics-Processing-Unit (GPU) architecture are discussed.

Exploiting massive parallelism present in applications, GPUs deliver exceptional perfor-
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mance in term of computational throughput and memory bandwidth, but the PIC core

algorithms need to be redesigned for satisfying the constraints imposed by the intrin-

sic parallelism of the architecture. The code jasmine, a relativistic, multi-GPU efficient

PIC code, implementing a “full” 3D model, is presented. jasmine is part of the efforts

made by the computational laser-plasma Physics group at the University of Bologna,

that developed novel high order schemes for PICs in the code framework ALaDyn [3].

The code jasmine has been used to model recent LWFA experiments run with the

220TW INFN-LNF FLAME laser system (Frascati Laser for Acceleration and Multidis-

ciplinary Experiments) and with the 10TW laser system installed at the Intense Laser

Irradiation Laboratory (ILIL) of the INO of the CNR in Pisa, with the goal of studying

optically driven electron beam sources for Thomson scattering [41]. Some results of the

numerical modeling campaigns are presented in Sections 7.1 and 7.2.

A key to success for multi-GeV acceleration LPAs is the realization of a much longer

interaction lengths (therefore scaling to lower plasma densities). Due to the scale sepa-

ration (and numerical dispersion issues), scaling to interaction lengths greater than the

centimeter with a full PIC model is prohibitive with present architectures (GPUs in-

cluded). Reduced models [38, 36, 26] and running the simulation in an optimal Lorenz

boosted frame [30, 33, 32, 31] have been proposed to overcome this limitations and allow

for the simulations of multi-GeV LPA stages.

In Chapter 5, the reduced-model, cylindrical (r-z), code INF&RNO (INtegrated Fluid

& paRticle simulatioN cOde) [26, 27, 28], developed at Lawrence Berkeley National Labo-

ratory, is presented. INF&RNO uses the envelope approximation for describing the laser

pulse and the ponderomotive force approximation for the laser-plasma interaction. In

the envelope approximation, the driver characteristic length (of the order of the plasma

length in most LWFA) is, in principle, the smallest scale to resolve and, being much

longer than the laser wavelength, the min/max scale separation is less dramatic than

in a full PIC model. Nevertheless, numerical simulations using reduced models are still

computationally challenging, requiring up to tens of thousands CPU core hours. Efficient

parallelization is therefore still necessary. The advanced numerical schemes in INF&RNO

require the use of advanced parallelization methods, and the efforts for achieving scal-

ability and efficient parallelization on different architectures are described in Chapter

5.

An even stronger model reduction is the quasi-static approximation (QSA) [45, 46]

that, separating the timescales of the driver evolution and of the electrons in the wake,
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can be successfully applied for developing powerful numerical codes [47, 49], allowing to

accurately simulate laser evolution and wakefield generation very efficiently. In Chapter

6, the implementation of a quasi-static module in the INF&RNO framework is discussed.

A load-balanced, pipelining-based parallelization technique is presented and a 0.5 meters

long acceleration stage, accelerating electron bunches up to 9.6GeV in the quasi-linear

wakefield driven by a BELLA-class laser pulse [25] is presented as a code benchmark in

section 6.5.

Please download the latest version of this thesis from:

http://physycom.unibo.it/rossi/rossi_phd_thesis.pdf
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In this part, the pulse propagation and the properties of the plasma wake are studied

in the weakly-relativistic and bubble regimes.

In Chapter 1, we investigate and characterize the laser evolution and plasma wave

excitation by a weakly relativistically intense (a0 < 1), short-pulse laser propagating in a

preformed parabolic plasma channel, including the effects of pulse steepening, frequency

redshifting, and energy depletion. Wakefield properties and laser driver evolution are

topics of fundamental importance in the field of laser-plasma interaction because they

determine the dynamics of accelerated electrons in laser-driven plasma-based accelera-

tors.

Starting from the envelope equation for the laser and the linearized quasi static plasma

equations for the wakefield, analytical expressions for the quantities (initial energy deple-

tion rate, intensity transport velocity and intensity peak velocity) governing the evolution

of a short gaussian pulse propagating in a under-dense plasma channel have been derived

in the weakly relativistic (a0 < 1) regime. Analytical results have been validated numer-

ically with accurate simulations performed with the 2D-cylindrical, ponderomotive code

INFERNO [26, 27, 28].

In the same regime, an expression for the initial velocity of the excited plasma wave

has been derived. The temporal evolution of the wake velocity has been numerically

investigated and it has been shown that its oscillations temporally match the one of

the laser intensity peak, rather than the laser intensity centroid. The transverse shape

oscillations that an initially gaussian short pulse undergoes in a matched plasma chan-

nel significantly affect the wake velocity, leading to minimum values substantially lower

that the laser linear group velocity or even laser 1D intensity transport velocity and, as

the laser propagates, longitudinal pulse evolution (red-shifting and steepening) further

decreases the phase velocity of the wake.

In Chapter 2, the nonlinear bubble regime, reached at higher pulse intensities a0 > 2,

is systematically studied by means of Particle-in-Cell simulations, run with the PIC code

INF&RNO under controlled conditions.

The scaling of the bubble shape and size with the laser intensity has also been analyzed,

showing significant deviation from a round bubble for a0 > 5.

It has been proven that, even for a non-evolving driver (and consequently, non-evolving

wake) propagating at a prescribed velocity, self-injection occurs, and the dependence

of the threshold for self-injection on laser driver intensity and wake velocity has been

explored.
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Studying the injection threshold in a stationary bubble wake, the evolution of the

pulse was decoupled from the self-injection mechanism. If the driver evolves (because of

self-focusing, plasma wave guiding and/or self-steepening), the bubble wake velocity is

no longer equal to the driver velocity, but is determined by the driver evolution.

The actual bubble phase velocity, significantly different from the laser driver group

velocity, was found to be the relevant parameter to be considered for the self-injection

physics. The evolution of wake velocity shows a complex behavior due to the interplay

of different nonlinear effects, but, in our simulations, the minimum value of the wake

velocity, measured at the center of the wake, can be expressed by the simple empirical

expression γmin0 ' 2.4 ·
√

k0
kp
, and this value is independent of a0.
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1. Laser Propagation and Phase Velocity

of Plasma Waves in the Weakly

Relativistic Regime

The laser pulse depletion rate, propagation velocity and the phase velocity of plasma

waves are of fundamental importance to many areas of Plasma Physics. For example,

energy depletion rate and wake phase velocity determine the dynamics of the accelerated

electrons in laser plasma accelerators (LPAs) [1].

The wake phase velocity strongly depends on the pulse propagation velocity and

determines the dephasing length, the distance for a relativistic particle to move out of

an accelerating phase. Therefore, it limits the maximum energy gain of the accelerated

electrons [63], as well as the trapping/injection threshold for background plasma elec-

trons [60, 61] and the maximum amplitude of the plasma wave [64]. The pulse depletion

rate also limits the energy gain and the quality of the accelerated electron bunch.

A calculation of these quantities is essential for the design and understanding of present

and future LPA experiments.

In laser plasma accelerators, the laser ponderomotive force drives the electron plasma

wave. An important parameter in the discussion of intense laser-plasma interactions

is the normalized laser strength parameter a0, defined as the peak amplitude of the

normalized vector potential of the laser field a = eA/mec
2. The laser strength parameter

is related to the peak laser intensity I0 by I0 = (πc/2)(mec
2a0/eλ)2, which yields a0 '

7.32×10−19λ2
0[µm]I0[W/cm2], where a linearly polarized laser field is assumed, λ = 2π/k

is the laser wavelength, me is the electron mass, e is the electron charge, c is the speed

of light in vacuum and ω = ck is the laser frequency in vacuum.

For low laser intensities a2
0 � 1, the phase velocity of the plasma wave is approximately

the group velocity of the laser. For a low-intensity laser pulse propagating in a uniform,

underdense plasma (ω2
p/ω

2
0 � 1), the linear laser group velocity is vg/c = 1 − ω2

p/2ω
2
0
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in the one-dimensional (1D) limit, where ωp = kpc = 2πc/λp = (4πn0e
2/me)

1/2 is the

plasma frequency and n0 is the unperturbed neutral plasma number density. In the linear

regime, the Lorentz factor of the plasma wave is therefore γp ' γg = ω0/ωp.

Some approximate expressions have been calculated in other limited regimes. Lu et

al. used particle-in-cell simulations to estimate a constant phase velocity γp = ω0/
√

3ωp

in the blowout regime (a0 ∼ 4) and a phase velocity of γp =
√
a0ω0/ωpin the nonlinear

1D regime [56, 55]. Earlier work numerically showed that vp < vg for the nonlinear 1D

regime [62]. More typically, in literature, the wake velocity vp has been approximated by

the linear group velocity of the laser vp ' vg.
Schroeder et al. [7] have shown that this is a poor approximation in the nonlinear

regime (a0 > 1), which is of interest for the present LPA experiments. Investigating

the evolution of a short and intense pulse in an under-dense plasma, they show that the

wake phase velocity is determined by the nonlinear laser intensity transport and laser

evolution. The nonlinear intensity transport and group velocities of the laser pulse and

the nonlinear phase velocity of the excited plasma wave were computed assuming a 1D,

broad pulse limit.

For the 3D geometry, Schroeder et al. [58] have obtained a theory for the wake velocity

in the low intensity a0 � 1 regime, in which the plasma density perturbation can be

neglected for describing the laser evolution.

In addition, the wake phase velocity evolves because of the driver’s energy depletion

process [7]. In the work of Shadwick et al. [59], an analytical theory describing the process

of energy depletion of short (kpL ∼ 1) and intense (a0 > 1) laser pulses propagating in

a under-dense plasma was developed using the 1D wave equation.

In this chapter, we investigate the propagation of weakly relativistic a0 < 1 laser pulse

in a under-dense plasma channel, in 3D. We analytically derive an expression for the

laser energy depletion rate and we compute the velocity of the pulse intensity centroid,

of the laser intensity peak and the phase velocity of the excited plasma wave. These are

calculated by using the envelope approximation for the laser evolution and the linearized

quasi-static approximation for the plasma response. The analytical solutions are shown to

be in good agreement with numerical solutions of the full quasi-static equations obtained

with the ponderomotive code INF&RNO [26, 27, 28].
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1.1. Quasi static equations in the weakly relativistic regime

We adopt non-dimensional, "comoving" variables defined as ζ = kp(z−ct) (longitudinal)

and r = kprphysical (transverse), where kp = ωp/c, ωp is the plasma frequency corre-

sponding to the chosen reference density n0, and c is the speed of light. The time is also

rescaled with ωp, that is τ = ωpt.

Laser propagation is considered in a cold, collisionless, under-dense plasma (with im-

mobile ions) and the laser pulse is described using an envelope model. Denoting by

a⊥ = eA⊥/mc
2 the normalized vector potential of the laser, the envelope â is defined by

a⊥ = â
2e
i(k0/kp)ζ + c.c.. The envelope evolves according to [1]:[

∇2
⊥ + 2

(
i
k0

kp
+ ∂ζ

)
∂τ − ∂2

τ

]
â = ρâ, (1.1.1)

where 2π/k0 is the central laser wavelength, ρ = 1
γ
n
n0

is the (normalized) plasma proper

density and γ is the relativistic gamma factor associated with the local plasma fluid

velocity.

The plasma response affects the laser envelope evolution by means of the proper density

term in equation 1.1.1. Solutions in the nonlinear regime can be obtained numerically

by integrating the full system of plasma/wakefield quasi-static equations coupled self-

consistently with the envelope equation. Analytical or semi-analytical solutions can be

obtained in the weakly relativistic limit |â| < 1, where the laser contribution can be

treated as a perturbation. In this limit, ρ = ρ0 + δρ, where ρ0(r) = n0(r)/n0 is the

unperturbed background density (in our case, a parabolic plasma channel of radius R

ρ0 = 1 + 4r2/R4) and δρ satisfies

(
∂2
ζ + 1

)
δρ = −

(
1−∇2

⊥
) |â|2

4
(1.1.2)

The electromagnetic wakefield is described by fields normalized to E0 = mecωp/e,

where me and e are respectively mass and charge of the electron.

We use the notation

â = a0 exp
(
−r2/W 2

)
exp

(
−ζ2/L2

)
(1.1.3)

to indicate a monochromatic gaussian laser pulse with peak intensity a0, normalized

transversal spot size at focus (waist) W = w0 and length L.
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Assuming that kp
k0
∂ζ |â| ∼ kp

k0
|â|/L � 1, which holds for a short L . 2 pulse at early

times (before depletion takes place), the envelope equation (1.1.1) simplifies to:

∂τ â ' −
i

2

kp
k0

[
ρâ−∇2

⊥â+ i
kp
k0
∂ζ
(
ρâ−∇2

⊥â
)]
, (1.1.4)

in which the expansion of the operator
(

1− i∂ζ kpk0
)
has been used.

1.2. Expressions for Energy Depletion

The expression for the normalized pulse energy,

ε =
k2
p

k2
0

∫
dζ

∫
dr r ·{[

k0

kp
â− i∂â

∂ζ

] [
k0

kp
â∗ + i

∂â∗

∂ζ

]
+

1

2

∂â

∂r

∂â∗

∂r

}

derives from the integration of the electromagnetic energy density dU = 1
8π

((−→
E
)2

+
(−→
B
)2
)

in the Coloumb gauge ∇ ·
−→
A = 0 (in which

−→
E = −1

c
∂
−→
A
∂t ,
−→
B = ∇×

−→
A ) for the laser field

in its slow-varying complex envelope representation â.

The laser energy depletion rate can be naturally split in two parts, namely the terms

containing longitudinal derivatives and the terms containing transverse ones:

∂τε = ∂τε‖ + ∂τε⊥,

where
∂τε‖ =

k2p
k20

∫
dζ
∫
dr r ∂τ

{[
k0
kp
â− i∂â∂ζ

] [
k0
kp
â∗ + i∂â

∗

∂ζ

]}
∂τε⊥ =

k2p
k20

∫
dζ
∫
dr r ∂τ

{
1
2
∂â
∂r

∂â∗

∂r

} .

Using the laser envelope equation (Eq. (1.1.1)) and its complex conjugate to simplify

the longitudinal terms, the expression for energy rate becomes

∂τε = −
k2
p

2k2
0

∫
dζ

∫
dr r

{
ρ∂ζ

(
|â|2
)}

+ ∂τε⊥

The transverse term in the energy depletion rate is of higher order in kp/k0 � 1 than

the longitudinal part, as can be shown by expanding the temporal derivative with the

operatorial expansion of the envelope equation (1.1.4). Hence, integrating by parts, the
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energy depletion rate becomes:

∂τε ' −
k2
p

2k2
0

∫
dζ

∫
dr r (∂ζρ) |â|2 +O

(
k4
p

k4
0

)
. (1.2.1)

The rate of change of the normalized intensity Q =
∫
dζ
∫
dr r |â|2, describing the

early-time self steepening of a laser pulse, is therefore

∂τQ ' −∂τε. (1.2.2)

The same equivalence was found to be valid in the 1D limit [59, 7].

In the case of a weakly relativistic (a0 < 1) gaussian pulse (1.1.3), the quasi-linear

plasma response (1.1.2) can be used as an approximation for the proper density in (1.2.1),

yielding a compact expression for the initial (when the shape of the pulse is still gaussian)

value of the energy rate:

∂τε/ε0|τ=0 ' −
1

32

√
π

2

k2
p

k2
0

a2
0Le

−L
2

4

(
1 +

4

W 2

)
(1.2.3)

Solid lines in figure 1.2.1 show the energy depletion rate given by Eq. 1.2.3 for gaus-

sian pulses with different intensities and waists (L = 2 and k0/kp = 20) propagating in

a matched parabolic plasma channel. The theory shows good agreement with the solu-

tion of the full envelope and quasi static plasma equations (obtained numerically with

INF&RNO simulations), up to the limit a0 < 1.

In the broad pulse limit W � 1, the energy rate is given by:

∂τε/ε0|τ=0 ' −
k2
p

k2
0

1

16e

√
π

2
a2

0,

which provides a better prediction than the 1D theory result ∂τε/ε0(1D) = −k2p
k20

1
8e

√
π
2a

2
0,

as in the 1D model the laser intensity, and hence the energy depletion rate, is radially

constant.
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Figure 1.2.1.: Initial depletion rate for a resonant (L = 2) gaussian pulse propagating in
a matched parabolic plasma channel with on-axis density k0/kp = 20. The
theoretical expression for the normalized depletion rate (Eq. 1.2.3, solid
lines) show good agreement with INF&RNO simulations in the weakly
relativistic regime (crosses).

1.3. Expressions for Laser Intensity Transport Velocity and

for the velocity of the Intensity Peak

The laser intensity transport velocity can be defined as ∂τζl = βl − 1, where ζl is the

laser intensity centroid, defined as the position weighted by |â|2

ζl =

∫
dζ
∫
dr r ζ |â|2∫

dζ
∫
dr r |â|2

=
G

Q

The intensity transport velocity can be computed at early times using the operatorial

expansion of the envelope equation (1.1.4). For an initially longitudinally-symmetric

pulse Gτ=0 = 0 holds and the expression for the intensity transport velocity simplifies

to:

∂τζl|τ=0 = −∂τG
Q0

= − 1
Q0

k2p
2k20

∫
dζ
∫
dr r

{
2ρ|â|2+

ζρ∂ζ |â|2 − ∂â
∂r

∂â∗

∂r

}
(1.3.1)

As derived in Ref. [58], the intensity transport velocity of a gaussian pulse propagating
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in a parabolic plasma channel of radius R is, in the low-power limit (a0 � 1, ρ = ρ0):

βl|τ=0 ' 1−
k2
p

2k2
0

(
1 +

2W 2

R4

)
−
k2
p

k2
0

1

W 2
. (1.3.2)

Considering propagation in vacuum (ρ = 0), only the diffraction term gives a con-

tribution in the intensity transport velocity formula (Eq 1.3.1) and, hence, βl|τ=0 '
1− 1

Q0

k2p
2k20

∫
dζ
∫
dr r ∂â∂r

∂â∗

∂r = 1− k2p
k20

1
W 2 .

In the weakly relativistic regime (a0 < 1) the quasi-linear plasma response (1.1.2) can

be used as an expression for the proper density in (1.3.1), yielding, for a gaussian pulse

propagating in a parabolic plasma channel of radius R:

βl = 1− k2p
2k20

{
1 + 2W 2

R4 + 2
W 2 −

√
2

16 a
2
0

(
1 + 4

W 2

)
·

L
[

3
2P0(L)− P2(L)

]}
,

in which Pm(L) =
∫∞

0 du sin(Lu) ume−u
2 .

In particular, in the case of a resonant Gaussian pulse (L = 2) propagating in a

matched plasma channel (R = W ):

γl|τ=0 '
k0

kp

(
1 +

4

W 2

)−1/2 (
1 + 0.0509 a2

0

)
(1.3.3)

In the weakly relativistic regime, intensity-dependent effects increase the transport

velocity, as results from a comparison between the weakly relativistic (Eq 1.3.3) and the

low-power case (Eq 1.3.2), in which all the intensity dependent terms were neglected a

priori. The increase of the transport velocity is due to the plasma density perturbation

caused by the laser pulse, assumed to depend on the ponderomotive force according to a

linearized relation (Eq 1.1.2) for a0 < 1. Qualitatively, as the plasma goes through the

pulse, the ponderomotive effects carve a lower density channel, in which laser propagation

is faster.

The velocity of the on-axis point ζ∗l (τ) having the peak value of the intensity, for

which∂ζ |â|2
∣∣
r=0,ζ=ζ∗l (τ)

= 0 holds, is given by

∂τζ
∗
l = β∗l − 1 = −

∂2|â|2
∂ζ∂τ

∣∣∣
ζ=ζ∗l ,r=0

∂2|â|2
∂ζ2

∣∣∣
ζ=ζ∗l ,r=0

(1.3.4)

Using the operatorial expansion of the envelope equation Eq. (1.1.4), Eq. (1.3.4) can

22



be expressed at early times, for a monochromatic laser pulse, as

∂τζ
∗
l = −

k2
p

k2
0

∂ζ
(
a∂ζ

(
ρa−∇2

⊥a
))

∂2
ζ |â|2

∣∣∣∣∣
ζ=ζ∗,r=0

(1.3.5)

For an initially Gaussian pulse, ζ∗l (τ = 0) = 0 holds and Eq (1.3.5) simplifies to

∂τζ
∗
l |τ=0 = −

k2
p

2k2
0

(
1 +

4

W 2
+ (ρ− ρ0)|0 − 2∂2

ζρ
∣∣
0

)
(1.3.6)

In the low power limit a0 � 1, the density perturbation can be neglected (ρ = ρ0) and

the velocity of the intensity peak of a gaussian pulse propagating in a matched (R = W )

plasma channel (Eq 1.3.6) is equal to the velocity of its intensity centroid (the intensity

transport velocity, Eq 1.3.2).

As the intensity grows, the laser pulse ponderomotive interaction with the plasma cre-

ates an asymmetric longitudinal plasma density profile, that affects the intensity trans-

port velocity (Eq 1.3.1) and the evolution of the pulse shape, that reflects in the velocity

of the intensity peak (Eq 1.3.6). The proper density terms in Eq. (1.3.6) depend on

the laser intensity and they can be computed for a weakly relativistic intense laser pulse

(a0 < 1) using Eq. (1.1.2) for the proper density perturbation. In the case of a weakly

relativistic, initially gaussian pulse propagating in a matched plasma channel, the initial

value of the intensity peak relativistic factor (1.3.6) is given by

γ∗l |τ=0 '
k0

kp

[
1 +

4

W 2
− 0.0436a2

0

(
1 +

8

W 2

)]−1/2

(1.3.7)

This theory, including the proper density perturbation, shows that the laser intensity

peak velocity increases with the intensity, as the laser intensity transport velocity (Eq

1.3.3) does.

The plots in figure 1.3.1 show the Lorentz factors of the intensity centroid and intensity

peak versus intensity and waist of various gaussian pulses (L = 2 and k0/kp = 20). In the

weakly relativistic regime (a0 < 1), the theory shows good agreement with the numerical

solution of full the plasma/envelope equations.
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Figure 1.3.1.: Initial Lorentz factor of the intensity centroid (left) and of the intensity
peak (right) versus intensity and waist of a gaussian laser pulse with
k0/kp = 20 propagating in a matched parabolic plasma channel. The
solid curves show the value predicted by (1.3.3) and the crosses are full
numerical solutions computed with INF&RNO.

1.4. Expression for the Wake Phase Velocity

The plasma wave phase velocity is determined by the intensity transport velocity and

the evolution of the laser. It can be defined as the velocity of the on-axis zero crossing

point ζ∗ of the accelerating field Ez = −∂Ψ
∂ζ (where Ψ the wake potential) located at the

back the first wave period, satisfying

Ez(ζ∗(τ), τ) = 0,
∂Ψ

∂ζ

∣∣∣∣
ζ=ζ∗,r=0

= 0

Imposing Ez(ζ∗(τ), τ) = 0, Ez(ζ∗(τ + ∆τ), τ + ∆τ) = 0 and taking the limit ∆τ → 0,

the phase velocity of the zero crossing point is given by

∂ζ∗
∂τ

= β∗ − 1 = −
∂2Ψ
∂ξ∂τ

∣∣∣
ζ=ζ∗,r=0

∂2Ψ
∂ξ2

∣∣∣
ζ=ζ∗,r=0

(1.4.1)

In the weakly relativistic regime (a0 < 1), the quasi-static wake potential equations

are well approximated by [1]

∂2ψ

∂ζ2
= −ψ +

|â|2

4
. (1.4.2)

From the semi-analytic solution of Eq 1.4.2, an equation for the position of the zero-
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crossing point ζ∗can be found

∫ ∞
ζ∗

cos (ζ∗ − ζ) |â|2 = 0, (1.4.3)

and the expression for its velocity Eq. 1.4.1 becomes

β∗ − 1 =

∫∞
ζ∗
dζ cos (ζ∗ − ζ) ∂τ |â|2

|âζ=ζ∗ |2 +
∫∞
ζ∗
dζ sin (ζ∗ − ζ) |â|2

(1.4.4)

The zero crossing point ζ∗ of the wakefield generated by a short (L . 2) Gaussian

pulse is relatively far from the pulse centroid and it is possible to approximate the laser

envelope field to be null at such distances, |âζ≤ζ∗ |2 ' 0. In this case, the solution of

Eq 1.4.3 is ζ∗ = −3
2 . Furthermore, for a short pulse, the integrals in Eq 1.4.4 can be

extended to infinity.

The time derivative of the squared modulus of complex envelope ∂τ |â|2 in Eq. 1.4.4 can

be computed at early times by using the operatorial expansion (Eq. 1.1.4) of the envelope

equation and, hence, the integrals in Eq. 1.4.4 can be computed semi-analytically, for a

weakly relativistically intense, monochromatic gaussian laser pulse.

In particular, for a resonant (L = 2) gaussian pulse, propagating in a matched parabolic

plasma channel, the initial relativistic factor of the wake is

γ∗|τ=0 '
k0

kp

[
1 +

4

W 2
− 0.192682a2

0

(
1 +

8

W 2

)]−1/2

(1.4.5)

Figure 1.4.1 shows the agreement of equation1.4.5 with full numerical solutions ob-

tained with INF&RNO.

At later times, the evolution of the laser pulse modifies the position of the zero-crossing

point and hence the phase velocity of the plasma wake. Equations describing the evolu-

tion of the slowly varying laser field envelope can be derived by analyzing the paraxial

wave equation and by applying the source-dependent expansion method [101]. In the

source-dependent expansion method, the laser field â is assumed to be well approximated

by the fundamental Gaussian mode of the form

â = a0
W

w(ζ)
e−ξ

2/L2
e
−(1−iα) r2

w(ζ)2 , α =
1

2

k0

kp
w
∂w

∂τ
(1.4.6)

where the spot size w(ζ) temporally evolves as [57]
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Figure 1.4.1.: Lorentz factor of the initial phase velocity of the zero crossing point lo-
cated at the back of the first bucket for a resonant (L = 2) gaussian pulse
propagating in a matched parabolic plasma channel and various intensities
and waists.

∂2w

∂τ2
=

(
kp
k0

)2 8

w3

[
1

2
−
∫
drrρ

(
2r2

w2
− 1

)
e−

2r2

w2

]
(1.4.7)

For a laser pulse described by the fundamental gaussian mode 1.4.6, the position of

the zero crossing point located at the back of the first bucket is

ζ∗ = −3

2
π + θ∗,

where θ∗ is a correction that depends on the spot size longitudinal distribution

tan θ∗ =

∫ +∞
−∞ dζ sin ξ e

−ζ2/L2

w2(ζ)∫ +∞
−∞ dζ cos ξ e

−ζ2/L2

w2(ζ)

(1.4.8)

In the case of a longitudinally symmetric pulse, the numerator in Eq 1.4.8 is zero and

the zero-crossing point position is given by ξ∗ = −3
2π, whereas, in general, the paraxial

evolution prescribed by Eq. 1.4.7 introduces asymmetries in the waist distribution w(ζ)

and oscillations of the zero crossing point.

This theory predicts that the initial value for the wake velocity (1.4.5) is close to the

velocity of the maximum intensity point (1.3.7). The correlation was further investigated,

at later evolution times, with INF&RNO simulations. Figure 1.4.2 presents numerical
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results showing that the values of the relativistic factor of the peak of the pulse intensity

and of the relativistic factor of the wake remain very close for a few matched Rayleigh

lengths of propagation in the plasma channel, and their temporal evolution is qualitatively

different from the relativistic factor of the laser intensity centroid. The damping at later

times of the oscillations is due to the fact that a short laser driver, as the one used

in this simulation, is not monochromatic. Each chromatic component of the pulse is

characterized by a different oscillation frequency and the decoherence between these

modes damps out the oscillations.

The laser intensity peak moves longitudinally as the pulse transversally evolves as in

Eq. 1.4.7, due to the paraxial evolution of the transverse slices that interact with different

plasma densities depending on their longitudinal position.

The oscillations of the plasma wake velocity that are observed at the matched Rayleigh

length timescale are a consequence of the transverse evolution of the pulse. Such evo-

lution alters its longitudinal symmetry, which induces variations in Eq. 1.4.8, and also

determines to the position of the peak of the intensity.

On the contrary, the change in the intensity transport velocity, owing to longitudinal

terms in the envelope equation, affect the wake velocity the over the pump depletion

time scale.
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Figure 1.4.2.: Temporal evolution of the relativistic factor of various points of interest for
a wake generated by gaussian laser pulse propagating in a matched plasma
channel, with intensity a0 = 0.5, waist W = 4 and k0/kp = 20. The
relativistic factor of the center and back of the wake follow the evolution of
the laser intensity peak (maximum value of the intensity), while the laser
intensity centroid (weighted average of a2 over the ζ coordinate) evolves
on a slower timescale.

In figure 1.4.3, we separately analyze the effects that either the transversal or the

longitudinal evolution of the pulse have on the wake velocity. Red lines show a virtual

experiment in which longitudinal evolution was suppressed by integrating the paraxial

equation instead of the full envelope equation for the laser pulse, while in the case indi-

cated by the green lines a laser pulse that does not undergo any transverse evolution is

considered, in a similar fashion as in Benedetti et al. [57] and as described in [22]. In the

latter case, only the slower longitudinal effects determine the laser evolution and hence

the wake velocity.
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Figure 1.4.3.: Temporal evolution of the relativistic factor of the wake for a gaussian laser
pulse propagating in a matched plasma channel, with intensity a0 = 0.5,
waist W = 4 and k0/kp = 20. The effects on the wake velocity caused
by the transverse and longitudinal evolution of the pulse shape are studied
separately by considering either the paraxial evolution of the laser envelope
(neglecting the longitudinal evolution or hence the energy depletion/self-
steepening, red lines) and suppressing transverse evolution (green lines)
and compared to the full dynamics (blue lines).

1.5. Depletion Rate and Laser Intensity centroid velocity in

the a0 > 1 regime

For higher intensities (a0 > 1 ), the perturbative approximation 1.1.2 is no longer ac-

curate. In Krall’s theory [93], the 3D proper density follows from the wake potential

as:

ρ =
1

Ψ + 1

(
1−∇2

⊥Ψ
)

(1.5.1)

For computing the depletion rate, we make the assumption that, slice by slice, transver-

sally, the one dimensional equation for the potential [1] applies:

∂2Ψ
(
v2, ζ

)
∂ζ2

=
1

2

[
1 + v2f2(ζ)/2

(Ψ + 1)2 − 1

]
, where we also assumed that rated the laser pulse envelope is separable as |â|2 = ã2(r) ·
f2(ζ), and ν = ã(r). This assumption can be motivated by the importance of longitudinal

terms in the depletion formula 1.2.1 and it produces a 1D-potential - 3D-density hybrid

model, in which 1D theory is used transversally for the wake potential, but the density

distribution is obtained using a 3D law 1.5.1.
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For L < W , the validity of the assumption was benchmarked using quasi-static numer-

ical simulations. In figure 1.5.1, the proper density field obtained with the full quasi-static

model is compared with the one obtained by means of the 1D hybrid model. In the re-

gion of interest for the depletion integral (i.e. the laser pulse) no significant difference

is observed for laser plasma parameters L = 2, W = 4, a0 = 3.0. In particular, the

longitudinal integrand I =
∫
dr r a2∂ζρ in the depletion rate formula ∂τε ' −

k2p
2k20

∫
dζI

computed with the hybrid model (red solid line in figure) is in very good agreement with

the full solution of the quasi static equations (blue solid line). On the contrary, computing

the same integral using a 1D formula for the proper density in place of 1.5.1 (neglecting

the transverse laplacian) introduces a noticeable discrepancy (green solid line).
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Figure 1.5.1.: Proper density ρ, proper density longitudinal derivative ∂ζρ and longitu-

dinal integrand I =
∫
dr r a2∂ζρ of the depletion rate ∂τε ' −

k2p
2k20

∫
dζI,

numerically computed using fully dimensional, hybrid (1D potential, 3D
proper density) and 1D models. For laser plasma parameters are L =
2, W = 4 a0 = 3.0, the proper density computed with the hybrid model,
and hence depletion rate, is in very good agreement with the solutions of
the full quasi-static equations.

Substituting the proper density in Eq 1.2.1 with Krall’s formula 1.5.1, we get an

expression for the energy depletion rate

30



∂τε '
k2
p

k2
0

∫
dr
{
I0

(
ã2(r)

)
r + I1

(
ã2(r)

) [
ã2(r)′ + rã2(r)′′

]
+ I2

(
ã2(r)

) [
ã2(r)′

]2
r
}

(1.5.2)

, where I0, I1, I2 are quantities that depend only on the 1D theory potentials Ψ(v2, ζ),

and they can be fully computed numerically, as shown in figure 1.5:


I0(v2) = 1

2v
2
∫
dζ 1

Ψ(v2,ζ)+1
∂ζf

2(ζ)

I1(v2) = 1
2v

2
∫
dζ 1

Ψ(v2,ζ)+1
∂v2Ψ(v2, ζ) ∂ζf

2(ζ)

I2(v2) = 1
2v

2
∫
dζ 1

Ψ(v2,ζ)+1
∂2
v2Ψ(v2, ζ) ∂ζf

2(ζ)

This way, we are able to compute the depletion rate in the nonlinear case, in 3D and

for any waist W , transversally integrating quantities that are simple, pre-computable,

“universal” 1D theory results, that depend only on the radial value profile of the intensity.

Figure 1.5.2.: I0, I1, I2 as a function of a0. These quantities depend only on the 1D
theory potentials Ψ(v2, ζ) and the laser longitudinal shape f(ζ).

In figure 1.5 we show the agreement of Eq. 1.5.2 with full numerical solutions, obtained

with INF&RNO. Excellent agreement is verified both for the pulse depletion rate and

the laser intensity centroid initial velocity.
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Figure 1.5.3.: Initial depletion rate and laser intensity centroid velocity for a resonant
(L = 2) gaussian pulse. The 1D potential, 3D proper density model
(crosses) shows excellent agreement with the full solution of the quasi static
equations (solid lines for depletion rate, dashed lines for γlaser) for the range
of parameters 4 < W < 8 and a0 < 5. Solid lines in the laser intensity
centroid box are the analytical results Eq 1.3.3 in the weakly relativistic
limit.
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2. Wake Velocity and Self-Injection in

the Nonlinear Bubble Regime:

Numerical Investigation

As of today, most of the laser plasma acceleration experiments have been performed in

the so called bubble regime, in which the ponderomotive force of a short and intense

laser pulse propagating in an underdense plasma expels background electrons, leading to

the formation of a ellipsoidal plasma cavity moving at relativistic velocity, the “bubble”

wake.

The bubble regime can be accessed if the laser peak normalized potential of the laser

is a0 & 2 and kpL ∼ 1. The linearly varying longitudinal and transverse fields of the

bubble wake have almost ideal accelerating and focusing properties for particles placed

in the proper phase.

In some cases, it has been observed, both in experiments and 3D particle-in-cell (PIC)

simulations, that electrons from the background plasma can be “self-”injected and accel-

erated in the bubble. The self-injection process provides the simplest acceleration scheme

from the experimental point of view, and understanding its properties is of fundamental

importance in order to control and possibly optimize the performance of laser plasma

accelerators. Despite its importance, a complete theory of self-injection is still lacking.

In this chapter we systematically analyze the self-injection process by means of fully

consistent PIC simulations run under controlled conditions.

The geometrical properties that characterize the bubble wake are discussed in section

2.1. In section 2.2, a laser pulse intensity threshold for self injection is empirically derived

as a function of the bubble wake velocity, for the case of non-evolving laser driver (and

hence wake). In section 2.3 we study how the laser driver (consistent) evolution affects the

temporal evolution of the bubble wake velocity, and hence the self-injection properties.
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2.1. Wake Geometrical Properties in the Bubble Regime

The characterization of the geometry of the wake in the bubble regime was carried out

by means of numerical simulations.

We considered the bubble wake generated by a non-evolving Gaussian laser pulse,

propagating along the ẑ direction in an underdense, uniform, cold plasma. The laser

envelope is described by:

a(z, r, t) = a0 exp
(
−r2/w2

0

)
exp

(
− (z − z0 (t))2 /L2

)
, where z0(t) is the laser centroid, moving at a constant speed dz0/dt = β0 and relativistic

factor γ0.

The pulse length was set to the linearly resonant length L = 2. Since the self-guided

propagation of the pulse is of crucial importance for accelerator applications, the value of

the pulse waist was taken to match the condition for self-guided propagation of a short

and intense laser pulse w0 = 2
√
a0 in [56].

In the case of a non-evolving pulse shape, the plasma response, and hence the wake,

reaches a stationary state and its geometrical properties depend only on the laser model

parameters.

The wake shape and size can be characterized the longitudinal (R‖) and transverse

(R⊥) radii. The longitudinal radius R‖is defined as the longitudinal length of the ac-

celerating part of the wakefield and the transverse radius R⊥ is defined as the radial

distance of the bubble center (defined as the position where all the fields are zero) from

the position where the plasma density reaches the background value, growing from being

almost zero on the axis.

The geometry of the bubble shows weak dependence on the laser propagation relativis-

tic factor γ0 for γ0 > 10, and, in this regime, the bubble shape can be simply characterized

by the normalized laser peak intensity a0.

We performed a numerical scan to characterize the functional dependence of the bub-

ble shape parameters on the intensity a0. Simulations were performed with the 2D

cylindrical, ponderomotive particle in cell code INF&RNO in the range 2 < a0 < 7.

To ensure that the wake properties reach their stationary values as smoothly as pos-

sible, the laser-plasma interaction was initialized adiabatically, slowly ramping up both

the plasma density and the laser intensity. At early times, we also limited particle veloc-
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ity to prevent early injection/beam loading, as it could affect the wake shape and make

interpretation at later times more difficult.

The stationary plasma response and bubble shape can also be computed using a quasi-

static model (see Section 6.2) in this regime.

Simulations show that R‖ and R⊥ depend linearly on a0. Figure 2.1 shows the scaling

of the radii with the normalized laser intensity and a numerical fit gives, for Rparallel:

R‖(a0) ' 2.9 + 0.305 · a0 (2.1.1)

Figure 2.1.1.: Scaling of the bubble radii, R‖[red curve] R⊥[blue curve], with normalized
laser field strength a0. The black dashed line is the theoretical bubble size
proposed in [56], R = 2

√
a0. The simulation parameters are L = 2, w0 =

2
√
a0 and γ0 = 100. Phys. Plasmas 20, 103108 (2013);

The previous models in Refs. [96, 94, 95] all assume a bubble of spherical shape. In

our numerical study, in matched conditions w0 = 2
√
a0, we observed spherical symmetry

only around a0 ' 3.5 (and w0 = 2
√
a0 ' 3.75), and significant deviations for a0 > 5.

In general, besides the intensity a0, all other parameters in our non-evolving gaussian

pulse model affect the ponderomotive push on the plasma electrons and hence the shape of

the bubble wake. In order to obtain a condition for the bubble sphericity for any gaussian

pulse, we performed a systematic study in the full pulse parameter space, varying the

pulse length, the waist and the intensity (L, w0, a0). In figure 2.1 the bubble radii

difference R‖ − R⊥ is shown versus a0 and w0, for gaussian pulses of different lengths

L = 1.5, 2.0, 2.5. Each circle is a simulation result in the parameter space (L,w0, a0).
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For any laser intensity value a0, spherical bubble wakes (R⊥ ' R‖ , white circles) were

observed only around w0 ' 3.75, as for the matched, resonant gaussian pulse case.
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Figure 2.1.2.: Bubble radii difference R‖ − R⊥ versus a0 and w0, for a gaussian laser
pulse with length L = 1.5, 2.0, 2.5. Each circle is a simulation result
in the parameter space (L,w0, a0). Blue circles represent a longitudinally
elongated bubble shape R‖ > R⊥, while red ones a transversally elongated
one R⊥ > R‖. For w0 < 3 and w0 > 4, both increasing the pulse waist w0

and intensity a0 result in a relative transversal expansion of the bubble.
For any a0, spherical bubble wakes (R⊥ ' R‖ , white circles) were observed
only around w0 ' 3.75.

2.2. Threshold for self-injection for a non-evolving laser

A conclusive theory of particle self-injection and trapping in the 3D nonlinear bubble

regime is still missing. In several contributions, the dependence of self-injection thresh-

old on the wake phase velocity is considered to play a major role in the self-injection

physics, as discussed in Ref. [94] and [95]. A critical discussion of these models and the

admissibility of their hypotheses can be found in Ref [97] and Ref [98].

For a non-evolving wake (that we generate using non-evolving laser), self-injection in

the bubble regime can be modeled studying the motion of a generic test particle in the

stationary 3D wake. In a reference frame comoving with the laser pulse and the wake,

the trajectories of the test particles are governed by the equations:
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

∂ζ
∂t = pz

γ − β0

∂x
∂t = px

γ

∂pz
∂t = − 1

2γ
∂(a2/2)
∂ζ + ∂Ψ

∂ζ −
px
γ By

∂px
∂t = − 1

2γ
∂(a2/2)
∂x + ∂Ψ

∂x −
(
β0 − pz

γ

)
By

(2.2.1)

, where β0 is the wake phase velocity, ζ, x are the longitudinal (comoving with the pulse

and the wakefield) and transverse coordinates, pzand pxare the longitudinal/transverse

momenta, γ = 1 + a2/2 + p2
z + p2

x, a is the laser field amplitude, and Ψ is the wake

potential, such that Ez = −∂Ψ/∂ζ, Ex − β0By = ∂Ψ/∂x.

The Hamiltonian of the test particle is:

H = γ − β0pz −Ψ

If the wake is non-evolving, then H is a constant of motion. In particular, for a test

electron initially at rest (a background cold plasma electron), H = 1 holds.

A particle is trapped in the wake if its longitudinal velocity is equal or greater than

the wake phase velocity β0 and its location resides in the accelerating/focusing domain of

the wakefield. Hence, the for the phase space phase at the moment of injection/trapping(
ζ̃ x̃ p̃z, p̃x

)
:

p̃z/γ̃ = β0

holds.

TakingH = 1 for an electron initially at rest and assuming that self-injection occurs far

behind the laser pulse, where the laser field amplitude is neglectable ã ' 0, the necessary

condition for trapping is

Ψ = Ψ(ζ̃, x̃) = −1 +

√
1 + (p̃x)2

γ0
(2.2.2)

, in terms of the wake potential at the moment of trapping.

In Eq 2.2.2 we see that trapping is facilitated (i.e. it requires a less negative potential

to happen) at low wake phase velocities. Furthermore, equation 2.2.2 suggest that the

wake velocity should play a very important role in determining the injection threshold,
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while for a non-evolving gaussian laser the potential map Ψ(ζ, x) depends only on a0.

Taking a non-evolving laser pulse as the driver, the laser pulse shape evolution (which

is a combination of depletion, self-steepening and focusing effects) is decoupled from the

analysis of the injection mechanism. Under these controlled conditions we can deter-

mine when self-injection occurs and relate its appearance to the wake velocity and laser

intensity (i.e., wake size and amplitude).

We studied the threshold for self injection performing several INF&RNO PIC sim-

ulations in the (γ0, a0) parameter space. The stationary wakefield was initialized as

described in section 2.1. After the wake was cleanly initialized, we measured the about

of self-injected charge, after a fixed laser propagation length. In figure 2.2, two regions

are clearly separated: an injection domain and a no-injection one (denoted by black cir-

cles). We obtained an empirical expression for the threshold of injection, given by the

expression

a∗0 (γ0) & 2.75
[
1 + (γ0/22.)2

]1/2
. (2.2.3)

Our simulations show that an injection threshold exists for a cold plasma even for a

non-evolving pulse and bubble wake. In particular, for any given bubble phase velocity

γ0, we find that self-injection takes place above a certain the laser intensity a∗0 (i.e., if the

bubble size is large enough). The threshold is significantly lower than the one presented

in [94] (that predicts the existence of a threshold for self-injection, assuming a simplified

analytical expression for the bubble fields) and it is in qualitative agreement with the one

presented in [95] at low wake velocities (γ0 < 60). For large γ0, we found that a∗0 grows

linearly as ∼ γ0/8, so, as expected, self-injection does not occur in the ultra-relativistic

limit γ0 →∞ [99].

The threshold condition for self-injection can also be rewritten as a condition on the

laser power:

P ∗ (γ0) /Pc ' 2.6

[
1 +

( γ0

22.

)2
]3/2

For instance, for a plasma with density n0 = 3·1018cm−3, the minimum power required

for self-injection is such that P = Pc · (4 ∼ 6). The calculation is in agreement with

experimental results.

The injection threshold was also investigated using the integration of the test particles
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Figure 2.2.1.: Left box: Injection threshold and amount of self-injected charge (repre-
sented by color) for different values of the wake velocity γ0 and laser field
strength a0. The solid red line is the empirical condition for self injec-
tion Eq 2.2.3. (a),(b),(c) are the threshold conditions respectively given
in references [56], [94] and [95]. Right box: Test particle trajectories for
different values of the wake velocity relativistic factor, with a0 = 5, L = 2
and w0 = 2

√
a0. Phys. Plasmas 20, 103108 (2013)

equations of motion, Eq 2.2.1, using the wakefield map computed with INF&RNO. Figure

2.2 (right) shows different particle trajectories for a0 = 5 and wake velocities γ0 =

10, 20, 40, 60. No injection is observed for γ0 = 40, 60, while the trajectories for γ0 =

10, 20 feature trapping and betatron motion. The injection threshold obtained with this

method is consistent with fully self-consistent INF&RNO simulations.

The analysis of the transverse phase space (Fig 2.2) at injection shows an inverse

correlation for x̃ and p̃x: the injection momentum tends to be higher (lower) if injection

happens on-axis (off-axis). Furthermore, the phase space area (spread) of the phase

space at injection grows with the inverse of the wake phase velocity (for fixed a0) and

with a0 (for fixed γ0). The condition 2.2.2 was also be verified to hold at injection using

test-particle simulations.

2.3. Evolution of the Phase Velocity of a Bubble Wake

generated by an evolving laser driver

In the previous section, the threshold for self-injection has been derived in the case of a

non-evolving wake propagating at a constant speed, comoving with a non-evolving driver.

If the driver evolves (due to diffraction, self-focusing, plasma wave guiding, self-
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Figure 2.2.2.: Test particles transverse phase space at injection, for fixed wake velocity
(γ0 = 12 left) and laser intensity (a0 = 5 right). The other laser-plasma
parameters are L = 2 and w0 = 2

√
a0. Phys. Plasmas 20, 103108 (2013)

steepening, depletion, etc.) the bubble wake velocity is determined by the driver evolu-

tion, and is no longer equal to the driver velocity. In particular, it can be different from

the driver group velocity (as in the weakly relativistic regime in the previous chapter).

In figure 2.3, we show the temporal evolution of the laser group velocity (red line)

and the wake phase velocity, measured at the center (blue line) and at the back of the

wake, for laser-plasma parameters a0 = 4.5, w0 = 2
√
a0, k0/kp = 90, L = 2, with the

laser focused at the entrance of the plasma slab. The wake phase velocities have been

measured by tracking the position of the longitudinal field zero crossing points throughout

the simulation.

The magenta line in figure 2.3(a) is the 1D theory prediction for the phase velocity of

the back of the wake in the limit a0 � 1 and, in the early stage of laser-plasma interaction.

The 1D theory includes the effects of pulse steepening and redshifting (depletion) and

predicts γ(1D)
0b = 0.45ω0/ωp = 40.5 [7], but we expect the actual velocity of the wake to

be lower than the 1D result, as slice-dependent plasma wave guiding and the transverse

evolution of the laser driver due to self-focusing affect the laser intensity profile and hence

the shape of the wake.

In 3D, an analytical theory of the nonlinear wake phase velocity is lacking. The linear

theory, valid for a0 � 1, predicts a constant value γ(linear)
b = γ

(linear)
laser = ω0/ωp (black

dashed line in figure 2.3 (a)). The analytical result (eq 1.4.5) for the weakly relativistic

regime a0 < 0.5 fails to provide a good approximation because the peak laser normalized
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potential a0 = 4.5 considered for this example is far beyond the scope of the model. In

Ref. [56], the constant value γ(3D)
b = ω0/

√
3ωp ' 52 (green dashed line in figure 2.3 (a))

is proposed by using PIC simulations in the bubble regime.

From our simulation, we observe that the wake velocity is, as expected, lower than

the one of the driver and lower than the linear theory prediction. During the bubble

formation τ < 100, the wake phase velocity exhibits large fluctuation. Even once the

wake is formed, its velocity continues to evolve and it is determined mainly by the laser

evolution resulting from the competition between laser self-focusing/diffraction, plasma

wave guiding, self-steepening, and frequency redshifting. More specifically, the wake

velocity, measured at the center or at the back of the bubble, during its evolution reaches

a minimum value of γb ' 18− 25, much lower than the laser driver γlaser ' 123 (red line

in figure 2.3 (a)).

If the wake velocity evolution is slow enough (i.e., the velocity does not change too much

over the time a plasma particle interacts with the bubble wake) we can, at any time, use

Eq. 2.2.3 to determine if self-injection will occur, evaluating it using the instantaneous

values of wake velocity and peak normalized field strength. The cyan dashed line in

figure 2.3 (a) is the minus wake velocity γ∗b (τ) compatible with self-injection, computed

using Eq. 2.2.3 and the dynamic peak normalized field strength a0(τ) (shown figure 2.3

(b)).

We expect self-injection to happen if the actual bubble phase velocity γb(τ) measured

at the back (where injection takes place) of the bubble is lower than the threshold value

γ∗b (τ).

According to figure 2.3 (a), the actual phase velocity is lower than the threshold value

for 150 . τ . 500 and self-injection mainly occurs, as predicted, within this interval.,

as can be seen in figure 2.3 (c), showing the distribution of self-injected electrons as a

function of their initial longitudinal coordinate.

2.4. Empirical law for the Minimum Value of the Bubble

Wake Phase Velocity

Since self-injection occurs when the phase velocity is low, the scaling of the minimum

value of bubble phase velocity at the center of the wake, γmin0 , appears to be a critical

parameter for estimating the self-injection threshold for an evolving driver. In order
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Figure 2.3.1.: (a)(b)(c). Temporal evolution of the wake velocities and other observable
resulting from a fully consistent simulation with laser-plasma parameters
a0 = 4.5, w0 = 2

√
a0, k0/kp = 90, L = 2.

(a) Evolution of the laser group velocity (red line); Wake phase velocity
measured at the center and at the back of the bubble wake (blue solid and
blue dashed lines); Linear theory prediction for wake velocity (black dashed
line); 1D wake velocity [7]([i], magenta dashed line); 3D wake velocity pro-
posed in Ref. [56]; Maximum wake velocity compatible with injection Eq.
2.2.3 (cyan dashed line).
(b) Normalized laser field strength a0(τ).
(c) Distribution of self-injected electrons as a function of their initial lon-
gitudinal coordinate. As expected, self-injection occurs when the wake
velocity measured at the back is lower than the injection threshold Eq.
2.2.3 computed with a0(τ).
Phys. Plasmas 20, 103108 (2013);

to characterize γmin0 , we run fully consistent numerical simulations, changing the back-

ground plasma density and the laser intensity.

We found that, if a0 > 2, the minimum value of the phase velocity is independent from

a0, even though the details of the phase velocity evolution depend on laser intensity.

The scaling of γmin0 with the plasma background density is shown in figure 2.4, where

we plot the values of the minimum wake velocity, measured in a set of simulations with

different plasma densities (10 < k0/kp < 150) . An empirical fit of the minimum bubble

velocity is given by the simple formula (red dashed line in figure):

γmin0 ' 2.4 ·

√
k0

kp
(2.4.1)

So far, our study assumes a Gaussian laser driver. As a consequence of transverse
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Figure 2.4.1.: Scaling of the minimum of the wake velocity measured at the center of the
bubble wake γmin0 , as a function of plasma frequency ω0/ωp. The laser is
an initially gaussian pulse with L = 2, w0 = 2

√
a0 and a0 = 4.5 focused at

the beginning of the plasma, and its evolution is simulated self-consistently
using the envelope equation. The dashed line is the empirical fit Eq 2.4.1.
It is found in simulations that the minimum value of the phase velocity is
independent from a0. Phys. Plasmas 20, 103108 (2013)

laser dynamics, its intensity profile evolves towards a “conical” shape (narrower towards

the back). Furthermore, the laser shape is modified by the depletion and self-steepening

processes. Any pulse shape modification affects the particle orbits and the shape of the

wake, since they are determined by the ponderomotive force. The effect of the laser shape

on the self-injection physics will be subject of future investigations.
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Part II.

Computational methods
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3. The particle-in-cell method

3.1. Phase space representation

The most complete (“full”) physical model for studying laser-plasma interactions is the

Vlasov equation, providing a 6D phase space kinetic description of the plasma, coupled

with the Lorentz force, the relativistic equations of motion and Maxwell equations for

Electrodynamics.

The most straightforward and complete approach to model numerically a system de-

scribed by Maxwell-Vlasov equations consists in computing, for each time, the phase

space distribution fj(x,p, t), discretized on a grid. In a full three-dimensional model,

the plasma phase space is six-dimensional. Thus, the number of grid points (the memory

required for the execution of the simulation), scales as n6, n being the linear dimension

of the discrete grid.

This memory requirements are far beyond the actual technology limits, for example

taking a meaningful grid size, let’s say n = 1024, the memory required would be ∼
1018Gb.

It is therefore necessary to use a “compressed” representation of the discretized fj(x,p, t).

A method that use a very sparse phase space representation is the so-called particle-in-

cell method [39]. It decomposes the fj distribution into the sum of contributions coming

from a finite Npj set of computational macro-particles, or quasiparticles. Their trajec-

tories are followed in the phase space in a lagrangian manner, while the electromagnetic

fields are discretized on a spatial grid, with grid spacing ∆x.

The macro particles are not point like charges, they are represented by a density

function which is extended in space so that they can be considered as a smooth cloud of

charge , in order to smooth out the numerical noise. The support of these function has

a size of the order of the grid cell size. Whereas in the configuration space the numerical

particles are defined by a finite extension, in the momentum space they are point-like

(they have definite momentum).
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The interaction of the particles with the field grids, which complete the description of

the dynamics, is achieved by processes of interpolation and deposition. The interpolation

and deposition processes, being the support of the quasi-particle density function com-

pact involve only a small number of grid cells, the ones overlapping with the particle’s

finite shape.

The Vlasov equation and the equations of motion read:

(∂t + ẋ·∂x + ṗ · ∂p) fj(x,p, t) = 0 (3.1.1)

ẋ =
p

γm
, ṗ = F(x,p, t) (3.1.2)

The PIC approach consists in discretizing the phase space density function using a

finite, approximated, sum:

fj(x,p, t) = f0j

Npj−1∑
n=0

g (x− xn(t)) δ (p− pn(t)) ,

in which, f0 is a normalization factor, xn(t) is the trajectory of the n-th macro-particle

and pn(t) is its momentum.

The function g(x) is the macro-particle shape function.

The shape function is used as a convolution kernel and it is assumed to have δ-like

properties (from which follows f0 = 1
Np

):
∫
g(x− xn)dx = 1∫
∂xg(x− xn)dx = 0

(3.1.3)

g(x) describes the macro-particle spatial extension in space and it is useful for reducing

the numerical noise arising from interpolation and deposition processes, which would

arise if a δ-function was used instead. The meaning of g(x) is evident considering the

expression for the charge density, which becomes:

ρ(x, t) =
∑

j Qj
∫
fj(x,p, t)dp

ρ(x, t) =
∑

j,n qjg(x− xn)
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, whereas the electrical current can be defined as:

j(x, t) =
∑
j,n

vnqjg(x− xn)

Rewriting the Vlasov equation 3.1.1, using this discretized phase space discretization

and equation 3.1.2, one gets:



∂tf = −f0
∑Np

n {[∂xg (x− xn(t)) · ẋn(t)] δ (p− pn(t))

+g (x− xn(t)) [∂pδ (p− pn(t)) · ṗn(t)]}

ẋ · ∂xf = f0
∑Np

n

{
pn(t)
γm · [∂xg (x− xn(t))] δ (p− pn(t))

}
ṗ · ∂pf = f0

∑Np
n {F (z, pn(t), t) · g (x− xn(t)) [∂pδ (p− pn(t))]}

f0
∑Np

n

(
−ẋn · g′nδn − ṗngn · δ′n + pn

γm · g
′
nδn + F (z, pn(t), t) gn · δ′n

)
= 0

(3.1.4)

Integrating in the momentum space and using the delta function properties, one has:

Np∑
n

(
−ẋn +

pn
γm

)
∂xg (x− xn(t)) = 0, ∀x→ ẋn =

pn
γm

Being Fn the spatial average of the external force field acting on the n−th macroparticle

F(x,pn, t) evaluated over the shape function g(x):

Fn(x,p, t) =

∫
g(x− xn)F(x,pn, t)dx

, integrating on dz, and using the delta-like properties 3.1.3 of g(x), one gets:

Np∑
n

(
−ṗn + Fn

)
∂pδ(p− pn) = 0, ∀p = 0→ ṗn = Fn

The particle-in-cell method, therefore, reduces the computational complexity required

for the evolution of a six-dimensional phase space grid to a system of 2Np (for each

species) equations of motion, coupled with the proper equations (in our case for the e.m.

fields) that close the system giving an expression for the external force field F.
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3.1.1. Passes of an electromagnetic PIC code and numerical parameters
of a laser plasma interaction simulation

Dealing with charged particles, the physical description of the problem is closed by the

Maxwell equations for the electromagnetic fields, which are coupled with the particle

motion in a bidirectional way (by the Lorentz force and by the evaluation of charge and

current densities).

The passes of an integration cycle of an electromagnetic PIC code are the following:

1. Time advancement of macro-particles momentum and position p,x, using the ob-

tained equations of motion and the Lorentz force. The fields are interpolated from

the E,B grids.

2. Deposition (spatial average on a discrete grid) of the external field quantities needed

in Maxwell equations, ρ and j .

3. Time advancement of electromagnetic fields E,B, discretized on spatial grids, (see

subsection 3.2.1), using Maxwell equations and the quantities computed in step 2

as external sources.

The critical parameter of a simulation is the grid cell size ∆x. The integration timestep

∆t is related to ∆x by the Courant condition. It is a condition required for the stability

of the explicit integration schemes for the Maxwell PDEs, reading ∆t ≤ c∆x, where the

constant c depends on the set of algorithms used.
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Furthermore, the size ∆x must be small enough to resolve with enough grid points the

typical lengths of the considered system.

In the case of a system of electromagnetic waves interacting with a plasma, these are:

• λem, the wavelength of the electromagnetic waves

• λsd = c/ωpe, the plasma skin depth

The smallest of the two length scales must be resolved with enough grid points. The two

length scales correspond to two mutually-exclusive regimes:

• Sovracritical regime: ω � ωpe → λsd � λem , the λsd must be resolved, having the

other one resolved as well.

• Underdense plasma regime: λem � λsd , the λem must be resolved, having the

other one resolved as well.

The laser envelope approximation (see section ) may come to help in this case,

requiring only the much larger scale λsd to be resolved, allowing the use much

smaller grid sizes.

Another critical parameter of a PIC simulation the number of macro-particles per cell,

sampling the local phase space. Approximating the phase space distribution as a finite de-

composition of a too small number of spatially extended macro-particles, can cause some

regions of the phase space to be represented with not enough detail and the introduction

of a statistical noise effect. The amplitude of the latter effect scales approximately with√
Npart per cell ([39]).

3.1.2. Interpolation and deposition using shape functions

The spatial averaging needed for interpolation and deposition processes is defined using

the particles’ shape function g.

3.1.2.1. Force interpolation

The average (interpolated) force acting on a particle is defined as, being F(x,pn, t) =

q
(
E(x) + pn×B(x)

mγc

)
:

Fn(xn,pn, t) =

∫
g(x− xn)F(x,pn, t)dx
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Indexing the grid cells, with characteristic function χı, with the multidimensional index

ı = (i, , j, k) it is possible to decompose the above integral average into a finite sum of

single cell averages:

Fn(xn,pn, t) =
∑
ι∈G

∫
Xι

g(x− xn)F(x,pn, t)dx

The force is given by the fields which are discretized in such a way that they take a

single, constant, value per cell Ei,Bi. It is therefore possible to write the cell-integrals

as function of the particle position only:

Fn(xn,pn, t) =
∑
ι∈G

Fı(pn, t)

∫
Xι

g(x− xn)dx

, or, introducing the shape factors (for a particle whose position is xn) Sı(xn) =∫
Xι
g(x− xn)dx:

Fn(xn,pn, t) =
∑
ι∈G

Fı(pn, t)Sı(xn)

For the shape factors the property
∑

ı Sı(x) = 1 hold true.

3.1.2.2. Charge and current deposition

In order to evaluate the current and electrical charge density, discretized on a grid, it is

necessary to “deposit” the macro-particle charge on the grid nodes. Being ρ(x) defined

as ρ(x) =
∑

n q g(x− xn), then:

ρı =

∫
χı
ρ(x)dx∫

dxχı = Vı
=

∫
χı

[∑
n

qg(x− xn)

]
dx/Vı

=
∑
n

q

[∫
χı

g(x− xn)dx

]
/Vı =

1

Vı

∑
n

qSı(xn)

3.1.2.3. Common shapefunctions and shapefactors

For a regular 3D cartesian grid, with grid cells sized ∆x = (∆x,∆y,∆z) centered in the

point xı=(i,j,k) = (xi, yj , zk), xi = x0 + ∆x · i, it is useful to introduce the centered and

normalized shapefunctions and shapefactors g̃(x̃) and S̃(x̃ı), defined starting from the

cell-centered coordinate system (denoted by ~):
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x̃ı = ((x− xi) /∆x, (y − yj) /∆y, (z − zk) /∆z) ,

, in which, the shape factors becomes:

S(x̃ı) = Sı(x) = S̃ ((x− xi) /∆x, (y − yj) /∆y, (z − zk) /∆z)

The equation Sı(xn) =
∫
Xι
g(x − xn)dx, can be recast using the linear change of

variables y = ∆y ∗ ỹı + yı:

S̃(x̃ı) = Sı(x) =

∫
χi

g (y − (x̃ı ∗ d∆x + xı)) dy

S̃(x̃ı) = V

∫
χ
g(∆x ∗ (ỹı − x̃ı))dỹı =

∫
χ
g̃(ỹı − x̃ı)dỹı (3.1.5)

where χ is the volume of the box defined by |x̃| < 1
2 , |ỹ| <

1
2 , |z̃| <

1
2 and g̃(ỹı) ≡

V g(∆x ∗ ỹı) .

It is natural for the shapefunction to be separable in one dimensional components, i.e.

g(x) = g(x)g(y)g(z). By simple integration properties, one has also:

S(x) = Sx(x)Sy(y)Sz(z)

This last relation and equation 3.1.5 allow to compute easily the shape factors for

any separable shape function. Some examples of normalized, one-dimensional shape

functions/factors are (dropping the ~ in the figures) are:
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These classical shape functions are defined piecewise on intervals of length ∆x (1 in

the normalized coordinates system). By definition, the shape factor functions S(x) have

the same properties. The intervals α ∈ Å of piecewise definition of these S(x̃i) are always

of the kind α = [aα, aα + 1], and can be identified by their parameter a ∈ A, integral or
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half-integral.

a ≤ x̃i ≤ a+ 1

Replacing some definitions in the relation above, and applying the floor and ceil func-

tion (bxcand dxe) properties, one obtains directly the cell index corresponding to a given

piece of function definition (for performance reasons, it is useful to know it in advance):

a∆x ≤ x− x0 − ia∆x ≤ (a+ 1)∆x

d(x− x0)/∆x− a− 1e ≤ ia ≤ b(x− x0)/∆x− ac

∀a : ia = b(x− x0)/∆x− ac =

bx̃0c − a ≡ i0 − a; a integer⌊
x̃0 + 1

2

⌋
− a′ ≡ i′0 − a′; a = a′ − 1

2halfinteger

The optimized chain of computation reads (’ for the case in which a are half integer):

∀a ∈ A

↓

ia = i
(′)
0 − a(′)

↓

x̃i0−a = x̃i0 − a(′)

↓

S(x̃i0 − a(′)) ≡ Sa(x̃i0) optimizedSa

Defining b ∈ B and c ∈ C as the analogous, for the y and z directions, of the intervals

a ∈ A, one can finally recompose the full 3D interpolation algorithm for a particle in

position x = (x, y, z) (dropping ’):

53



(i0, j0, k0) = (bx̃0c , bỹ0c , bz̃0c) =
(⌊

(x− x0)/∆x
⌋
, ..., ...

)
F =

∑
(abc) S

x
a (x̃i0) · Syb (ỹj0) · Szc (z̃k0) · Fi0+a, j0+b, k0+c

and the deposition algorithm (of the single particle quantityF ) :(i0, j0, k0) = (bx̃0c , bỹ0c , bz̃0c) =
(⌊

(x− x0)/∆x
⌋
, ..., ...

)
∀a, b, c : = Sxa (x̃i0) · Syb (ỹj0) · Szc (z̃k0) · F → ⊕→ Fi0+a, j0+b, k0+c

More generally, considering symmetric shape factors S(x̃) with support supp(S) in the

interval [−l, l = b̃+ ∆x/2], the interpolation is computed only on the grid cells for which

Si(x) 6= 0, or, equivalently, S(x̃ı) 6= 0 holds true:

supp(S) = {−l ≤ x̃i ≤ l}

−l ≤ (x− xi) /∆x ≤ l

−l∆x ≤
(
x− x0 − i ·∆x

)
≤ l∆x

(x− x0)/∆x− l ≤ i ≤ (x− x0)/∆x+ l

dx̃0 − le ≤ i ≤ bx̃0 + lc

So, the cells interacting with our particle, are the one with i-index in the set I:

i ∈ I = {bx̃0 − lc+ 1, bx̃0 − lc+ 2, bx̃0 − lc+ 3, ..., bx̃0 + lc}

#(I) = 2l;

Furthermore,

• if l is an integer: i ∈ I = {bx̃0c − l + 1, ..., bx̃0c − l + (l − 1), bx̃0c , ..., bx̃0c + l},
e.g. l = 1 : i ∈ I = {bx̃0c , bx̃0c+ 1}

• if l = m− 1
2 is an half-integer: i ∈ I = {

⌊
x̃0 + 1

2

⌋
−m+1, ...,

⌊
x̃0 + 1

2

⌋
, ...,

⌊
x̃0 + 1

2

⌋
+

m− 1} e.g. l = 3
2 : m = 2, i ∈ I = {

⌊
x̃0 + 1

2

⌋
− 1,

⌊
x̃0 + 1

2

⌋
,
⌊
x̃0 + 1

2

⌋
+ 1}
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3.2. The “standard” second-order PIC: leapfrog and FDTD

The “standard”, second-order PIC scheme, uses the leapfrog scheme for advancing parti-

cles’ momentum and position and the FDTD method for solving Maxwell equations.

3.2.1. Solving the Maxwell equations numerically using the Yee Lattice

The temporal evolution of the electromagnetic fields, in presence of an electrical current

j (generated by the plasma particles’ velocities in our case), is completely determined,

given the proper initial and boundary conditions, by the Maxwell–Faraday and Ampère-

Maxwell laws: 
∂E
∂t = +c∇×B− 4πj

∂B
∂t = −c∇×E

(3.2.1)

These equations form a system of two first order partial differential equations, which

can be integrated numerically in time using finite difference methods. First of all, the

fields are discretized on a finite grid and the spatial differentiation operators are approx-

imated by finite differences.

The finite difference approximation ∆h[f ](x) of a linear differential operator ∆ is

a linear function of the field values at the locations x + h ∗ k, being k a vector of

signed integers, h the discretization step size vector, and * the component-by-component

product:

∆h[f ](x) =
∑
k∈κ

µ∆
k f(x + h ∗ k) ∼= ∆f(x)

Indexing the grid points G with a multi-dimensional index ı = (i, j, k, ...) ∈ G, the

finite difference, calculated at the grid point ı, is:(∆h[f ])ı =
∑

∈G µı−f ≡ µ∆
ıf

µ∆
ı ≡ µ∆

ı−

For the curl, one has:
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∇×E =


∂yEz − ∂zEy
∂zEx − ∂xEz
∂xEy − ∂yEx

→ (∇×Eı) =


µ
∂y
ı Ez − µ∂zı Eyj

...

...

 ≡ µ(∇×)
ı Ej

This way, the PDE becomes a system of ordinary differential equations involving the

values of the fields defined at the grid points locations ı.
(
∂E
∂t

)
ı

= +c
(
µ

(∇×)
ı Bj

)
ı
− 4πjı(

∂B
∂t

)
ı

= −c
(
µ

(∇×)
ı Ej

)
ı

It is now possible to integrate iteratively and numerically the equations, using methods

like Runge-Kutta, or directly expressing the temporal differentiation operators as finite

differences, and then solving the resulting system for the values at later times.

Depending on the fields’ discretization geometry and the physical quantities that is

more important to conserve, various choices can be made between numerical derivative

and integration schemes:

• The time integration is usually computed explicitly (the appropriate Courant–Friedrich’s–Lewy

on the integration step must be therefore satisfied for having stability), using

Runge-Kutta, forward (Euler) or centered (leapfrog) schemes.

• The spatial derivatives (curls) can be discretized using centered (second-order ac-

curate in space), higher order (five point stencil), upwind (for certain geometries

and for certain purposes) or even compact (see [3]) schemes.

A very popular integration scheme, which is second-order accurate in space and time,

is the Finite-Difference Time-Domain method, or FDTD (see [100]). It manages to

discretize both time and all of the space derivatives using centered differences of the kind

∆x · f ′(x) ' f(x + 1
2∆x) − f(x − 1

2∆x), which are practically more accurate than the

standard 2∆x · f ′(x) ' f(x+ ∆x)− f(x−∆x) , being f ′(x) = ∂xf(x):

• The electric and magnetic fields must be defined at staggered time positions (En,Bn+1/2),

and the time-advance iteration is obtained with a leapfrog step: the PDE system
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has a symplectic structure. This integration scheme allows for numerical-energy-

dissipation-free wave propagation.

• Spatially : the different field components are stored for different grid locations,

on a Yee Lattice. A 3D computational domain is split into cubical voxels. The

components of E are stored for the edges (in the corresponding directions), while

the components of B for the face centers of the cube. The numerical derivatives

composing the curl operations, can all be expressed using central differences, as we

can see clearly in the following figure (from wikipedia):

For an uniform 3D cartesian discretization of the fields (the grid spacings are dx, dy, dz),

the FDTD scheme can be therefore written explicitly as (the notation used is Fni,j,k ≡
F (idx, jdy, kdz, ndt) ):
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

En+1
xi+1/2,j,k

−Enxi+1/2,j,k

dt = c
B
n+1/2
zi+1/2,j+1/2,k

−Bn+1/2
zi+1/2,j−1/2,k

dy − c
B
n+1/2
yi+1/2,j,k+1/2

−Bn+1/2
yi+1/2,j,k−1/2

dz

−4πJ
n+1/2
xi+1/2,j,k

En+1
yi,j+1/2,k

−Enyi,j+1/2,k

dt = c
B
n+1/2
xi,j+1/2,k+1/2

−Bn+1/2
xi,j+1/2,k−1/2

dz − c
B
n+1/2
zi+1/2,j+1/2,k

−Bn+1/2
zi−1/2,j+1/2,k

dx

−4πJ
n+1/2
yi,j+1/2,k

En+1
zi,j,k+1/2

−Enzi,j,k+1/2

dt = c
B
n+1/2
yi+1/2,j,k+1/2

−Bn+1/2
yi−1/2,j,k+1/2

dx − c
B
n+1/2
xi,j+1/2,k+1/2

−Bn+1/2
xi,j−1/2,k+1/2

dy

−4πJ
n+1/2
zi,j+1/2,k

B
n+1/2
xi,j+1/2,k+1/2

−Bn−1/2
xi,j+1/2,k+1/2

dt = −c
Enzi,j+1,k+1/2

−Enzi,j,k+1/2

dy + c
Enyi,j+1/2,k+1

−Enyi,j+1/2,k

dz

B
n+1/2
yi+1/2,j,k+1/2

−Bn−1/2
yi+1/2,j,k+1/2

dt = −c
Enxi+1/2,j,k+1

−Enxi+1/2,j,k

dz + c
Enzi+1,j,k+1/2

−Enzi,j,k+1/2

dx

B
n+1/2
zi+1/2,j+1/2,k

−Bn−1/2
zi+1/2,j+1/2,k

dt = −c
Enyi+1,j+1/2,k

−Enyi,j+1/2,k

dx + c
Enxi+1/2,j+1,k

−Enxi+1/2,j,k

dy

,

(3.2.2)

or, defining the operators:∇
+fijk =

(
fi+1,j,k−fi,j,k

dx ,
fi,j+1,k−fi,j,k

dy ,
fi,j,k+1−fi,j,k

dz

)
∇−fijk =

(
fi,j,k−fi−1,j,k

dx ,
fi,j,k−fi,j−1,k

dy ,
fi,j,k−fi,j,k−1

dz

) , (3.2.3)

as: 

∇− ·En = 4πρn

∇+ ·Bn+1/2 = 0

En+1−En

dt = c∇− ×Bn+1/2 − 4πJn+1/2

Bn+1/2−Bn−1/2

dt = −c∇− ×En

, (3.2.4)

with:
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

En =
(
Enxi+1/2,j,k

, Enyi,j+1/2,k
, Enzi,j,k+1/2

)
Bn =

(
Bn
xi,j+1/2,k+1/2

, Bn
yi+1/2,j,k+1/2

, Bn
zi+1/2,j+1/2,k

)

ρn = ρni,j,k

Jn =
(
Jnxi+1/2,j,k

, Jnyi,j+1/2,k
, Jnzi,j,k+1/2

)
The Courant condition of this numerical scheme is ([39]):

c · dt < 1/

√(
1

dx

)2

+

(
1

dy

)2

+

(
1

dz

)2

Physics requires the first two equations (Gauss laws) in 3.2.4 to hold at every time

step .

Analytically, if the electrical charge continuity equation ∂ρ
∂t +∇ · J = 0 holds, the EM

field evolution PDEs 3.2.1 do automatically enforce Gauss law (if the law was satisfied

at the initial time). In fact, applying the divergence to the Maxwell–Faraday Law ∂E
∂t =

+c∇×B−4πj, and using the Gauss law itself, one obtains the electrical charge continuity

equation: if the latter is satisfied so it is the Gauss law.

In a simple PIC simulation, instead, the J deposition process, which uses finite sized

shape functions, introduces and accumulates numerical errors due to cell boundary cross-

ing and charge conservation must be enforced in other ways, as shown in section 3.3.

3.2.2. Boris pusher

For what concerns the quasi-particles’ motion, the solutions are computed using Boris

method, which is a second-order, leapfrog-like, method that perfectly matches with the

previously discussed FDTD and can be used, in general, for integrating the equations of

motion of relativistic particles in an external electromagnetic field.

For a relativistic particle of mass m, the second Newton’s equation reads,

p = γmv, F =
dp

dt

Introducing u = γv/c = p/mc, one has:
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F = m
d (γv)

dt
= m

du

dt

In the electromagnetic case, the acting force is the Lorentz force, F = q
(
Ē + v×B̄

c

)
,

in which the fields are the result of the shape function interpolation on the grid, at the

particle’s position x. One has:

du

dt
=

q

m

(
E +

v ×B

c

)

The so-called leapfrog method can be used to resolve numerically a symplectic system

of differential equations (with the appropriate initial condition), of the kind:u̇ = 1
mF

ẋ = u/γ

Defining x and u at staggered discrete times xn = x(n∆t), un+1/2 = u(n∆t+ ∆t/2),

the method integrates iteratively the equations of motion according to the replacement

rules: 
un+1/2−un−1/2

∆t = 1
mFn

xn+1−xn

∆t = un+1/2/γn+1/2

In the non-relativistic case γ = 1 and if the force can be defined at integer times

F = F(x) → Fn = F(xn), all the quantities are discretized and centered correctly in

time.

In our case, instead, Lorentz force requires to know the momentum u and the rela-

tivistic factor γ at integer times n:

un+1/2 − un−1/2

∆t
=

q

mc

(
En +

un

2γn
×Bn

)
It is therefore necessary to center in time (obtaining the values at times n∆t) un and

γn. The momentum can be centered using a temporal average (which formally maintains

the second-order accuracy):
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un = un+1/2 + un−1/2,

and leads to an implicit equation:

un+1/2 − un−1/2

∆t
=

q

mc

(
En +

un+1/2 + un−1/2

2γn
×Bn

)
,

whereas, for the centering of γn, it is convenient to use the Boris method. Defining u+

and u− by the relations:

un−1/2 = u− − qEn∆t

2mc

un+1/2 = u+ +
qEn∆t

2mc

and replacing in the above equation, one has:

u+ − u−

∆t
= (u+ + u−)× q

2γnmc
B

u+ − u− = (u+ + u−)× qB∆t

2γnmc

The very last equation represent a rotation of the vector u around an axis parallel to

B of an angle θ = −2 arctan(qB∆t/2γmc). Therefore the relation γn =

√
1 +

(
u−

c

)2
=√

1 +
(
u+

c

)2
holds.

Introducing t = qB∆t
2γnmc , one has:

u+ − u− = (u+ + u−)× t

But this is a linear system in the unknowns u+
x , u

+
y , u

+
z :

ty (u+
z + u−z )− tz

(
u+
y + u−y

)
+ u+

x − u−x = 0

−tx (u+
z + u−z ) + u+

y + tz (u+
x + u−x )− u−y = 0

u+
z + tx

(
u+
y + u−y

)
− ty (u+

x + u−x )− u−z = 0

,

having, as solution:
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u
′

= u− + u− × t

u+ = u− + u
′ × 2t

1+t2

u+ = u− + (u− + u− × t)× 2t
1+t2

The position of the particle is obtained centering respect to the values of u, γ:

xn+1 = xn + vn+1/2∆t = xn +
un+1/2

γn+1/2
∆t

The scheme is time-reversible and introduces a second-order error in the particle tra-

jectory.

3.2.3. Bringing all together

For writing a PIC code using the Boris scheme, one has to match the time indices in the

evolution equations derived in the previous subsections.

The chain of computation for the n− th simulation cycle, assuming that the quantities

are know at times En,Bn−1/2,xn,un−1/2, reads:

1. Advance Bn−1/2 → Bn using En.

2. Advance un−1/2 → un+1/2 using En and Bn.

3. Advance xn+1 using xn and un+1/2.

4. Compute Jn+1/2 using un+1/2 and xn+1/2 = xn + xn+1.

5. Advance Bn → Bn+1/2 using En.

6. Advance En → En+1 using Bn+1/2 and Jn+1/2.

3.3. Charge conservation using Esirkepov Shape functions

The Esirkepov method ([72]) for electrical current deposition enforces charge conservation

directly inside the deposition algorithm, and it can be applied for quasi-particles of

arbitrary shape factors.

As, analytically, the charge continuity equation ∂ρ
∂t +∇ · J = 0, guarantees the Gauss

law to be compatible with the dynamics (determined by Maxwell Ampere equation), an
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analogue equation must hold (with the appropriate discretized operators) for numerical

discrete quantities.

This equation can be obtained using the following properties of the discretized opera-

tors defined in 3.2.3 (∆ is here the discrete Poisson operator in central differences):

∇± · ∇±× = 0

∇± · ∇∓ = ∆ =
fi+1,j,k−2fi,j,k+fi−1,j,k

dx2
+

fi,j+1,k−2fi,j,k+fi,j−1,k

dy2
+

fi,j,k+1−2fi,j,k+fi,j,k−1

dz2

, and applying the ∇−· divergence to the third equation in 3.2.4, one has:

∇− ·En+1 −∇− ·En

dt
= c∇− · ∇− ×Bn+1/2 − 4π · ∇−Jn+1/2

, or recalling Gauss law, ∇− ·En = 4πρn, :

ρn+1 − ρn

dt
+∇− · Jn+1/2 = 0 (3.3.1)

Gauss Law is satisfied at every time step only if the obtained discretized continuity

equation 3.3.1 holds at every time step, explicitly:

ρn+1
i,j,k − ρ

n
i,j,k

dt
+
J
n+1/2
xi+1/2,j,k

− Jn+1/2
xi−1/2,j,k

dx
+
J
n+1/2
yi,j+1/2,k

− Jn+1/2
yi,j−1/2,k

dy
+
J
n+1/2
zi,j,k+1/2

− Jn+1/2
zi,j,k−1/2

dz
= 0

(3.3.2)

The charge density, in a PIC, is constructed from the form factors S (the cell-integrated

shape functions) of the quasiparticles, indexed by α, with position xnα:

ρni,j,k =
∑

α∈particles
qαSi,j,k(x

n
α) ,

Si,j,k(xα) = S
(
x̃αijk

= (xi − xα) /dx, (yj − yα) /dy, (zk − zα) /dz
)
,∑

ijk∈grid
Si,j,k(xalpha) = 1 ∀α

Considering a single particle of charge q one therefore has ρni,j,k = qSi,j,k(x). During

its motion, in a timestep, it shifts by (δx, δy, δz) from the position xn to xn+1. Using

the vector W, defined as

63




W xijk = −dt

q

Jxi+1,j,k
−Jxi,j,k

dx

W yijk = −dt
q

Jyi,j+1,k
−Jyi,j,k

dy

W zijk = −dt
q

Jzi,j,k+1
−Jzi,j,k

dz

(3.3.3)

, into the discretized continuity equation 3.3.2 one is lead to the equation:

Sijk(x
n+1)− Sijk(xn)−Wxijk +Wyijk +Wzijk = 0

→ Sijk(x+ δx, y + δy, z + δz)− S(x, y, z) = Wxijk +Wyijk +Wzijk

As shown in Ref. [72], if the particle shifts by (δx, δy, δz) along a straight line, the W

components are linear combinations of the eight shape factors (ı = (i, j, k)):

Sı(x, y, z), Sı(x+ δx, y, z), Sı(x, y + δy, z), Sı(x, y, z + δz),

Sı(x, y + δy, z + δz), Sı(x+ δx, y, z + δz), Sı(x+ δx, y + δy, z), Sı(x+ δx, y + δy, z + δz)

, and they are given by:

W x;ı =
(

1
3 ,

1
3 , −

1
6 , −

1
6 , −

1
3 ,

1
6 ,

1
6 ,

1
3

)
· S̄ijk

W y;ı =
(

1
3 , −

1
6 ,

1
3 , −

1
6 ,

1
6 , −

1
3 ,

1
6 ,

1
3

)
· S̄ijk

W z;ı =
(

1
3 , −

1
6 , −

1
6 ,

1
3 ,

1
6 ,

1
6 , −

1
3 ,

1
3

)
· S̄ijk

Sijk =



Sı(x, y, z)

Sı(x+ δx, y, z)

Sı(x, y + δy, z)

Sı(x, y, z + δz)

Sı(x, y + δy, z + δz)

Sı(x+ δx, y, z + δz)

Sı(x+ δx, y + δy, z)

Sı(x+ δx, y + δy, z + δz)


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Once W is computed for a particle of arbitrary shape factors S, it is possible to iterate

(in space) the equations 3.3.3 to calculate the correct contribution to the current J.

The boundary conditions for the integration (the iteration starting and ending points),

are determined by the fact that, outside the particle’s finite-size shape function, the

contribution of the particle to the current is zero.
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4. Jasmine: PIC implementation on

GPUs

Particle-in-Cell codes (PIC) are well-established tools for modeling plasma based particle

accelerators, providing an accurate kinetic description for plasma physics. PIC simula-

tions are extremely demanding in terms of computational power, hence the development

of efficient parallel codes is of great interest [3, 70, 79].

New opportunities towards computational efficiency are given by the recent develop-

ment of new many-core architectures: Graphics Processing Units (GPUs) have evolved,

with the NVIDIA G80 architecture [71], into completely programmable general-purpose

massively parallel processors. The new generations of NVIDIA GPU micro-architectures,

Fermi (2010), Kepler (2012) and Maxwell (2014), retain and extend the same CUDA

programming model, introducing better performance, new features and new low-level

instructions.

These architectures offer a new kind of massive, on-chip, parallelism, in which DRAM

memory is shared by thousands of concurrent threads.

Due to the massively parallel nature of the architecture, the adaptation of PIC al-

gorithms requires some rethinking. In particular, the particle-to-grid operations (e.g.

the evaluation of the current density) need special care to avoid memory inconsistencies

and conflicts. Development of GPU PIC codes has become a topic of great interest in

the laser-plasma community. The first GPU code scaling efficiently to multiple GPUs,

PIConGPU, has been presented by Burau et al. [65]. Kong et al. proposed a method

[66] for implementing deposition in a consistent manner while using the fast manual

caches available on GPUs. Osiris [68] and Vorpal [67] are also working for having their

frameworks running on these architectures.

In this chapter we present our GPU particle-in-cell code framework, named jasmine.

jasmine implements a second order, FDTD-based explicit 3D PIC scheme, supporting

double precision and arbitrary-order particle shapes. The optimized four-point deriva-
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tive/integration scheme OSE2-Lpf, proposed in Ref. [4], helps to reduce dispersion errors

for long laser-propagation cases. Charge conservation can be enforced using Esirkepov

[72] shape factors and wave-absorbing boundary conditions are implemented using a

perfectly matched layer [73].

In section 4.1, we describe a robust algorithm for grid deposition that is efficient for

any number of particles per cell and particle shape function order. It exploits the exposed

GPU memory hierarchy and avoids the use of shared memory atomic operations, which

can hurt performance in pre-Maxwell GPU architectures especially when many particles

lay on the same cell.

The code scalability for warm-plasma simulations has been measured up to 88 GPUs

and a dynamic load-balancing algorithm increases the efficiency of the code for certain

laser-plasma accelerator simulations, as discussed in section 4.2.

The code also supports tracking and dumping quasi-particle trajectories that allow

scattering radiation as post-processing, and it can model the laser field tunneling ioniza-

tion process modeling ionization with the ADK model (section4.4.1).

4.1. GPU parallelization

A modern GPU chip is composed by ~10-20 Streaming Multiprocessor (SM). Each SM

dispatches instructions to groups of ~32 lightweight threads, named warps. In principle,

each thread has its own execution context (registers, etc.), but serialization occurs if

threads in a warp take different execution paths. In fact, the SMs hardware paradigm

is the SIMD (single instruction, multiple data), as they only can dispatch instructions

to a warp of threads (~lanes). On the other hand, the (software/) programming model

provides an abstract execution model (“SIMT”, single instruction multiple thread), in

which threads have their own independent execution context (program counter), and, in

this view, vectorization/serialization is performed dynamically by the GPU hardware.

Threads are grouped in application-configurable “blocks”, sharing a low latency, on-

chip, memory space, named shared memory (16-64 KB in size per SM, depending on the

architecture).

The SMs hide instruction execution latencies (memory access, arithmetic, ...) by keep-

ing many warps at in execution at once, exploiting the applications’ massive parallelism.

While waiting for a latency, other operations, on different warps, are started in order to

“absorb” it. The SM is designed to minimize the cost of these execution switches; for
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example, the registers for all the threads in the block(s) being executed are stored in the

SM’s on-chip register file.

All the (off-chip) DRAM (global memory, in CUDA terminology) of the GPU board

is visible to all threads. The DRAM provides much higher bandwidth (> 80 GB/s) than

present CPUs and a latency of ~800 cycles. To fully utilize the bandwidth, enough con-

current accesses should be in flight, in order to hide the memory access latency. Further-

more, threads in a warp should access global memory using ordered, “coalesced” access

patterns (e.g. all the threads in a warp should access contiguous memory locations).

The massive parallelism, the strictness of global memory access patterns, the latency

hiding philosophy, the SIMD-like execution of warps and the different automatic caching

philosophy (the number of bytes per “thread” is several orders of magnitude lower com-

pared to CPU models) are constraints that must be taken into account for writing efficient

GPU codes.

Parallelizing a Particle-in-Cell code for this architecture presents some challenges.

Grid-only operations are straightforward to implement, while efficiency for mesh-to-

particle interpolation is achieved when the most efficient memory spaces are used for

caching. The critical part is the particle-to-grid current deposition, as it requires a

rethinking of the algorithm, because of the memory collisions arising from massive par-

allelism.

4.1.1. Deposition Algorithm

The most naïve approach for parallelizing the PIC density deposition algorithm for

shared-memory, massively parallel architectures is processing each particle in parallel,

summing density values to the grids stored in the global shared memory. This leads to

race conditions due to the fact that two threads, processing two different particles, need

to perform a non-atomic sum to the same memory location if the two particles are in the

same cell.

Therefore, atomic operations or synchronized algorithms are required. In addition to

that, considering a simulation with an average number of particles per cell Nppc and

total shape function order K (2D linear shapes K = 4, 3D quadraticK = 27), one has

that each density grid cell is accessed K × Nppc times. As stated in [66], it is therefore

worthwhile to cache the density grid in the fastest memory space available, such as the

shared-memory (the on-chip, multiprocessor, manual cache shared by a block of threads)
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on the CUDA architecture, which provides several orders of magnitude lower latency and

higher throughput compared to the CUDA device global memory.

Our density deposition algorithm consists of the following steps:

1. Particles are kept organized by grid “neighborhood” first, and by grid cell index

next. One CUDA thread block processes particles that have their center inside a

grid neighborhood. The density data associated to the neighborhood is cached in

the block’s shared memory. This caching saves up to K × Nppc global memory

accesses.

2. For each cell overlapped by the particle’s shape, the sums are performed using

an in-block segmented reduction in shared memory. The segments (brackets) are

determined by the particle cell index.

3. The results of the sums are scattered to the density grid cache and finally to the

global memory grid.

The benefits of using parallel reduction instead of using shared-memory atomic oper-

ations (prior to the Maxwell architecture shared memory atomic operations are imple-

mented with lock/update/unlock patterns) include better performance, lower accumu-

lated round-off error [78] and full determinism of the order of the sum operations.

In subsection 5.2.3, another approach for implementing densities deposition is dis-

cussed; for a specific numerical scheme, modeling LWFA using the ponderomotive ap-

proximation in cylindrical symmetry r-z (Sec. 5.1), an algorithm using global memory

atomics, on density contributions “grouped” using Kepler architecture “shuffle” instruc-

tions (used for efficiently communicating data across registers in a warp) performs well

and can be implemented in a very straightforward manner.

Enforcing Charge Conservation using Esirkepov’s Method

This scan-based approach can present an obstacle when optimizing the number of grid

deposition operations in the Esirkepov’s charge conservation method [72], as the number

of parallel sums is fixed in the sorting/bracketing step.

The conservation method can be directly implemented without branching, at the cost

of increasing by two in each direction the size of the block of cells in which a particle

deposits its density contribution. This introduces a large overhead. For example, for the

3D quadratic shape case the number of cells involved increases from 27 to 125. Such
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Figure 4.1.1.: Shared-memory-atomics free, reduction-based deposition algorithm. (left)
Thread blocks are assigned the particles contained in their density sub-
domain (blue and green subdomains), and they cache the density field in
shared memory. Particles are kept organized inside the neighborhood and,
for each each cell, for each shape factor (in this case, 2d with quadratic
shape factors) a (segmented) reduction in shared memory is performed.
The figure on the (right) shows where the reductions for each cell and the
first and last shape factor are summed in the shared cache.
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Figure 4.1.2.: jasmine performance benchmark results for varying numerical configura-
tions. A test case bubble regime laser plasma acceleration simulation with
physical parameters “a0=7.7, w0=9.0 µm, n0=1e19 1/cm3” was run for
ct = 60 µm in double precision.

overhead can be reduced since the actual particle shape is increased in size only in the

directions along which it crosses its cell boundary in the last time step.

A solution for optimizing the number of operations in a scan-based deposition algo-

rithm could be to organize the particles according by cell-cross directions. Unfortunately,

such method would result in high fragmentation and inefficiency, as the number of cell

crossing configurations is 27 for the 3D case.

However, for grids in which the transverse cell size is larger than the longitudinal one

(more than a factor of two), it is convenient to split particles that are crossing cells

transversely from the ones that are not, which are the majority because of the CFL

condition. In the case mentioned before, this reduces the total shape size from 125 to 45

for the vast majority of the particles.
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4.2. Multi-GPU Parallelization

Large 3D simulations do not fit memory limitations of a single GPU board (~6-20GB

depending on the GPU). CPU codes have shown to be able to scale very efficiently up

to hundreds of thousands cores and GPU PICs must achieve efficient multi-GPU paral-

lelization/scalability in order to be able to solve the same problems and be competitive.

Whereas the implementation for a single GPU, being shared-memory based, required

no explicit subdomain boundary exchange, multiple-GPU parallelization does. The clas-

sical domain decomposition (in 3D) using MPI approach was used in jasmine. Zero-copy,

host mapped memory is used when possible for moving buffers from GPU RAM to the

CPU one, through which data is passed before network transfers. Recent developments in

the GPU HPC technology allow remote GPU remote direct memory access (GPUDirect™

RDMA), and their use will be the subject of future developments.

In order to achieve good scalability, overlapping network communication with compu-

tation is even more important for GPU codes than for CPU ones, as the computational

power over network bandwidth ratio might be higher. Therefore, in jasmine, particles are

exchanged across GPU nodes concurrently with current deposition. All file output (sav-

ing snapshots of simulations and online diagnostics) operations are executed in parallel

with computation as well.

A scalability measurement was run for a warm plasma test case on the clusters APE

QUonG and CINECA PLX and the results are shown in figure 2. Thanks to communication-

computation overlap, our code shows close-to-ideal weak scaling up to the measured 88

GPU and strong scaling shows that it is possible to increase the performance adding new

nodes up to the same limits.

The relative performance of jasmine, versus our CPU PIC implementation ALaDyn [3],

has been measured running full scale, 3D, benchmark simulations in the same numerical

conditions. The performance of jasmine per single, Fermi-generation, GPU board has

shown to be roughly equivalent to the one of ALaDyn run on 40-50 modern CPU cores.

4.2.1. Simple Load-Balancing Algorithm for Laser Plasma Simulations

In laser plasma simulations, the dynamics tend to create large-scale particle density

inhomogeneity. In parallel particle codes, this translates into a load imbalance of the

processors, which severely limits scalability.

Preparing to scale to a considerably higher number of GPUs, in jasmine we have
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Figure 4.2.1.: jasmine strong/weak scaling benchmarks on INFN APE QUonG (24 GPUs)
and CINECA PLX (used 88 GPUs) machines
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Figure 4.2.2.: LPA bubble regime simulation test case used for benchmarking the load-
balancing algorithm. Physical parameters are “a0=5.8, w0=13.2 µm,
n0=3.8e18 1/cm3”. Snapshot at ct = 800.0 µm. To stress the load imbal-
ance effect , the benchmark was run in a smaller simulation box (50µm x
50µm x 50µm).

implemented a dynamic load-balancing algorithm. We have chosen to let the subdomain

topology (and therefore the neighbors number) intact, but we resize the subdomain boxes

by moving their boundaries.

Rather than seeking a global solution for each iteration of the algorithm, we proceed in

a hill-descending fashion: each few simulation time-steps we choose the chain of resizing

“moves” (each move consists in resizing a subdomain along a particular direction) that

minimizes a fitness function. The fitness function seeks the states which minimize both

the load variance across the nodes and the maximum loaded node / average node ratio.

The load redistribution process has shown to converge very rapidly for both one-

dimensional domain decomposition and higher dimensional ones, up to the number of

subdomains we could test on. We tested the algorithm’s capability to redistribute the

computational load for a typical 3D bubble regime laser plasma acceleration simulation.

The results of these tests show high efficiency gains and are shown in figure 4.2.2, 4.2.3,

4.2.4 and 4.2.5.
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Figure 4.2.3.: Load balancing algorithm test run on 12 GPUs. Simulation used for testing
discussed in figure 4.2.2.

Figure 4.2.4.: Load balancing algorithm test run on 36 GPUs and 2D domain decompo-
sition (12x3). Simulation used for testing discussed in figure 4.2.2.
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Figure 4.2.5.: Load balancing algorithm test run on 72 GPUs and 3D domain decompo-
sition (8x3x3). Simulation used for testing discussed in figure 4.2.2.

4.3. Meta-programming Technique

We have chosen to rely on meta-programming techniques to write maintainable and pos-

sibly unique code for all quasi-particle weighting orders, numerical schemes and parallel

architectures (GPUs but also a baseline implementation for multicore CPUs). In fact, the

core PIC algorithms (deposition, interpolation, ...) follow a generic structure but they

need to be configured my many parameters: dimensionality, particle shapes, physical

laws and numerical schemes.

The core PIC algorithms (deposition, interpolation, ...), have been written as final-

configuration-agnostic templates, which can be used to generate code for the simulation

parameters at compile time, as a pre-compilation step. The templates take as input

also the data structure used to store simulation status, which is part of the simulation

configuration (for example, particle data can be organized with a parameter switch in a

GPU-friendly manner, as struct-of-arrays or array-of-structs). This opens the possibility

to integrate the jasmine GPU kernels into other PIC codes.

We have created a python framework, using the general-purpose template engine mako

[77] as text-rewriting system, to generate the final, specialized, C++ code. This way, a

full and extremely flexible programming language, python, can be used as a macro lan-

guage, providing more freedom and transparency compared to standard C++ template

meta-programming (at obvious costs). In addition to help writing generic deposition
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algorithms (using standalone components) and generating a baseline multicore CPU im-

plementation based on the CUDA kernels, the framework has been used for building

numerical features. As an example, jasmine supports physical coordinates stretching,

providing a larger simulation box, useful for delaying effect at the boundaries due to

quasi-particles leaving the domain, without increasing the computational cost. The in-

verse of the stretching function is required for integrating the quasi-particles motion, and

such inverse function (with all the coefficients and pieces if piecewise) is symbolically

pre-computed at compile time (via the package sympy), and the required, efficient, C++

code is generated automatically by the template framework, once the stretching function

has been chosen and configured by the user.

4.4. GPU implementation of PIC auxiliary features

Besides the core PIC algorithms, a code framework for simulating laser plasma interac-

tions needs some additional features, such as particle trajectory tracking, diagnostics and

dynamic particle allocation (for the moving window, tunneling ionization and particle

splitting).

Obviously, for these operations not to become a bottleneck, they also must be paral-

lelized and implemented for the GPU architecture. Algorithmically, most of them can

be built using combinations of “scan primitives” [75], a family of parallel binary opera-

tions which return, for an input vector, the vector of the incremental operation results,

requiring global knowledge of the inputs for each output. In jasmine, we have used

scan primitives provided by the “thrust” library [76]. Sorting, stream compaction and

global sums can be implemented in parallel for shared memory architectures using these

primitives.

For example, stream compaction is used to filter and select in parallel the relevant

particles (i.e. belonging to the accelerated bunches) each timestep when simulating

radiation emission processes (e.g. bubble betatron motion or Thomson scattering). The

quasi-particles’ trajectories are then used for simulating radiation emission, as a post-

processing step and using the algorithm presented in Ref. [92]. Similarly, a scan operation

orchestrates the parallel work of the threads assigned to the different ions and computes,

in parallel, the output indices of the quasi-particles generated by the ionization state

changes of the ions (see subsection 4.4.1).
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4.4.1. Tunneling ionization modeling with the ADK model

For high-field laser-gas interaction, the ionization process, producing the plasma, is dom-

inated by tunneling ionization. In numerical studies, the ionization process is often

omitted, as ionization occurs before the main body of the pulse hits the target. For ex-

ample, low-Z gases (H or He) are ionizable by laser picosecond prepulses and ionization

effects are usually neglectable.

When a higher-Z gas target is used, or for laser intensities close to the ionization

threshold, the modeling the ionization process is necessary as it influences the generation

of the plasma wake.

Tunneling ionization effects have been exploited for inventing methods of radiation and

particle acceleration generation. As an example, the self-injection threshold in LWFA can

be lowered using high-Z gas targets, in which electrons can be generated by ionization

at the right phase of the wakefield for injection [88, 91, 90, 89], allowing better control

on the beam quality.

For modeling these applications, PIC codes must include consistent ionization sim-

ulation modules. A detailed analysis of the numerical implementation of the ADK

(Ammosov-Delone-Krainov) tunneling ionization model [84] in PIC codes and a bench-

mark of existing implementations can be found in Ref. [81]. The ADK model predicts

the ionization rate Wlm of a complex atom in a static external electric field Edc, for the

electron with quantum numbers l,m, using the semi-classical approximation [84, 81].

In PIC simulators, variables storing the ionization status are added to the ions (or

atoms) quasi-particle species. The ionization rate Wlm is then computed using the lo-

cal field and the ionization status via the ADK formulas, at each time step. For each

simulation timestep (∆t long), once the ionization rate has been computed, the ions

quasi-particles are ionized with probability P = 1− exp(W (t)∆t), using a uniform ran-

dom number generator and the rejection sampling method for the decision. At high laser

intensities, multi-level ionization may happen in a single PIC timestep, and, in order to

model this effect accurately, a system of equations involving all the ionization rates has

to be integrated [81].

This discrete sampling method introduces numerical noise, and the number of PIC

quasi-particles per cell can be used to control it [81]. Furthermore, the spatiotemporal

resolution should be chosen appropriately in order to ensure that the field peaks (that can

be close to a level ionization threshold) are appropriately sampled in time [81]. Figure
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Figure 4.4.1.: A gaussian laser pulse with peak a0 = 1.8, L = 10λ0 and wavelength λ0 =
0.8µm propagates through and ionizes a uniform Nitrogen gas 1D slab,
with total electron density n = 10−5nc. The spatial resolution used is ∆x =
λ0/66. The laser electric field Ey (blue line, left y axis), is overlayed by
the locally averaged ratio (right axis) of nitrogen ions in statuses N6+ and
N7+ ((nN6+ + nN7+) /nN ), for jasmine numerical parameters: 10 particles
per cell (red line), 50 particles per cell (green line), 100 particles per cell
(yellow line).

4.4.1 shows a 1D benchmark run with jasmine (similar to the one run in Ref. [81]) in

which the effect of the number of particles per cell on the ionization noise is visible.

In jasmine, the GPU implementation of the ADK module was almost straightforward.

A first kernel computes the ions’ ionization rates, samples the probability rate (using the

library curand for uniform random number generation), updates the ionization status

and outputs the number of ionized electrons for each ion. For each ion being ionized, a

second kernel then initializes the status of the newly created electrons, using a parallel

scan [75] to compute (in parallel) computational electrons’ indices in the particles array.

A 2D benchmark simulation with ionization induced injection was run with jasmine

using similar parameters as in the 2D benchmark in Ref. [81]. A laser pulse with peak
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Figure 4.4.2.: 2D ionization induced benchmark simulation run with the code jasmine.
(Left) Beam average energy evolution. (Center) Longitudinal beam phase
space. (Right) Beam Px−Py distribution. See parameters and interpreta-
tion in the text.

normalized potential a0 = 2.0 and τfwhm = 56fs (cos2 longitudinal profile) is focused to

a focal spot with waist w0 = 14.1µm and propagates through a preionized plasma with

electron density np = 1.64 ·1018. A 8µm thick (with 8µm ramps) layer of Nitrogen (atom

density nN = 1.65 · 1018) at the entrance of the plasma is used for localized ionization

induced injection, allowing the acceleration of a low energy spread (< 3%) electron bunch.
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5. INF&RNO

INF&RNO (Ref. [26, 27, 28]) is a 2D cylindrical (r-z) code, developed at LBNL, that

adopts an envelope model for the laser pulse and uses the ponderomotive force approxi-

mation to describe the interaction of the pulse with the plasma. Its purpose is simulating

laser-plasma electron accelerators, where a short and intense laser pulse interacts with

an underdense plasma over distances that can reach the meter.

A 3D “full” , i.e. resolving the smallest spatial/temporal scale which is the laser

wavelength, PIC simulation requires 104−105CPU core hours in present supercomputers

for a millimeter scale plasma. The computational complexity required for scaling to

a meter-scale plasma with fixed accuracy makes simulating meter-scale propagations

unfeasible with standard computational tools and today’s supercomputers.

Anyways, 3D simulations are crucial for understanding phenomena and for designing

LPAs working at these physical scales. Two solutions have been proposed to overcome

these computational limitations. The first solution consists in running the full PIC

simulation in an optimal in a optimal Lorentz “boosted” frame (the Boosted Lorentz frame

(BLF )) moving along the laser propagation direction at relativistic velocities. If one

can neglect the effect of backward propagating waves (e.g. Raman backscattering), the

unbalance between the maximum and minimum physical scales involved in a simulation

can be reduced, leading to a shortening of the simulation length (also by several orders

of magnitude). Applications and limitations of this technique are discussed in Ref [30,

33, 32, 31].

The second solution is the use of reduced models. Dimensional reduction, for exam-

ple assuming cylindrical symmetry instead of the full cartesian geometry, can provide

> 10x simulation speedups. Furthermore, the envelope approximation for the laser

pulse and the ponderomotive approximation for describing the laser-plasma interaction

remove the necessity to resolve the laser wavelength as the minimum spatial/temporal

scale. In fact, applying these approximations, the smallest scale to resolve is the plasma

wavelength, which makes the computational work scale much better in long propagation
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distances/high energy/low density regimes (for laser wakefield accelerators with short

pulses λlaser � λp ∼ Lenvelope).
INF&RNO can run the simulations using the fluid or PIC model (or both, for staged

simulations). The fluid simulations can be run in a Boosted Lorentz Frame. The par-

allelized version of INF&RNO is capable of running LPA simulations, including meter-

scale, 10 GeV acceleration stages (e.g. BELLA, Ref. [25]), in practically feasible times

on modern supercomputers. Another, stronger, model reduction is the quasi-static ap-

proximation, discussed in the next chapter.

5.1. Numerical scheme

The laser envelope model describes the laser pulse propagation in a fully ionized plasma.

It leads to a slow-varying laser envelope equation which is obtained representing the fields

as modulations of fast and slow parts. The model assumes the ions to be stationary and

the collision time to be much greater than the other timescales.

Both the hypothesis are valid for laser plasma interactions involving a short laser pulse

propagating in an underdense plasma (ω2
p/ω

2 � 1): the electrons’ thermal speed is small

compared to their quiver speed in the laser field and their collision time is much greater

than the laser pulse length.

5.1.1. Laser envelope equation derivation

The wave equation and Poisson equation for the normalized potentials in the Coloumb

gauge, being e and m are the charge and the mass of the electron:


E = −∇Φ− ∂A

∂ct

B = ∇×A

0 = ∇ ·A

→

φ = eΦ
mc2

a = eA
mc2

,

read: 
(
∇2 − 1

c2
∂2

∂t2

)
a = k2

p

n

n0

u

γ
+

∂

∂ct
∇φ = −k2

p

1

n0ce
J +

∂

∂ct
∇φ

∇2φ = k2
p (n− ni) /n0

,

in which u = γv/c = p/(mc) is the fluid average of the normalized electron momentum
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and γ = (1 + u2)1/2, kp =
(

4πn0e2

mc2

)1/2
, J = −encu/γ.

Introducing the comoving coordinates ξ = z−ct, τ = t, and neglecting the term ∂
∂ct∇φ

(the fast part of the electrostatic potential φfast ∼ exp(ikξ) is typically small compared

to the fast part of the plasma current), the wave equation becomes:(
∇2
⊥ +

2

c

∂2

∂ξ∂τ
− 1

c2

∂2

∂τ2

)
a w k2

p

n

n0

u

γ

Further possible simplifications are:

• For forward-going light waves, the term 1
c2

∂2

∂τ2
a can be neglected. On the other

hand, this term is important for backward-propagating radiation (i.e. Raman

backscattering) and it is necessary when running simulation in a boosted Lorentz

frame (see Ref. [26]), as it is required for Lorentz invariance.

• The leading-order transverse electron motion is the laser quiver motion: on the

right hand side we can approximate u = a.

• Assuming a linearly polarized laser field of frequency ω = ck, propagating in the

positive z direction, having a transverse component expressible as a modulation

of a fast oscillating field and a slow-varying |∂ξâslow| � |k âslow| envelope âslow:
a = âslow(r, ξ, t) exp(ikξ)/2 + c.c.

Applying these simplifications, one has:(
∇2
⊥ + 2ick

∂

∂τ
+

2

c

∂2

∂ξ∂τ

)
âslow w k2

p

n

n0

âslow
γ

or, (
i
k0

kp
+ ∂ξ

)
∂τ â =

1

2

n

n0

â

γ
− 1

2
∆⊥â

5.1.2. Laser envelope equation numerical solution and parallelization

In INF&RNO, the laser envelope is evolved using the envelope equation complete with

the second order time derivative term ∂2
τ(

∇2
⊥ + 2i

k0

kp

∂

∂τ
+ 2

∂2

∂ζ∂τ
− ∂2

∂τ2

)
â =

δ

γfluid
â (5.1.1)
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, in which a⊥ = eA⊥/mc
2 = â

2e
i(k0/kp)ξ + c.c. , 2π/k0 is the laser wavelength, γfluid

is the relativistic factor associated to the local average of plasma velocity and δ is the

normalized density n/n0. Eq. 5.1.1 is then discretized in time using an implicit Crank-

Nicholson scheme:

− â
n+1 − 2ân + ân−1

∆2
τ

+2

(
i
k0

kp
+

∂

∂ζ

)(
ân+1 − ân−1

2∆τ

)
= −∇2

⊥

(
ân+1 + ân−1

2

)
+

δn

γnfluid

(
ân+1 + ân−1

2

)
(5.1.2)

For a resonant pulse (Lrms ∼ 1), the characteristic length Lrms of the pulse is the

smallest relevant scale of interest (and comparable to the plasma skin depth), and so,

in principle, the smallest length to resolve. However, during propagation in the plasma,

as a consequence of laser-pulse redshifting and depletion, structures smaller than L arise

in the laser envelope [35, 34, 36, 28]. This effect has to be taken into account when

designing the numerical scheme (Ref [28]) for the laser envelope equation, and always

when choosing the resolution to be used in simulations.

In particular, the discrete representation of the longitudinal derivative ∂ζ requires extra

care, as it might introduce significant numerical errors (preventing a correct description

of the laser evolution) when the operator is not discretized in its optimal form and/or

the small structures forming in â are not well resolved. In INF&RNO, the polar form of

the complex field â is used instead of the Cartesian representation [28]:

â(ζ) = a(ζ)eiθ(ζ)

where a(ζ) = |â and θ = arg(â). Evaluating the longitudinal derivative of the laser

envelope using the polar form proved to have some numerical advantage, as the polar

amplitude and phase are less prone to show an oscillatory behavior or significant vari-

ability over small scales compared to the real or imaginary parts. Using the polar form,

the longitudinal derivative operator becomes ∂ζ â = (∂ζa) · eiθ + iâ (∂ζθ).

In figure 5.1.1 the performance of the INF&RNO polar form envelope solver is shown

in detail. For a 1D simulation with laser-plasma parameters a0 = 1, Lrms = 1 and

k0/kp = 100, even at moderately low resolution Lrms/∆ζ = 30, the polar form envelope

solver result (blue dots) is in excellent agreement with the reference solution obtained

with the full PIC code ALaDyn (red solid line). The standard, Cartesian form, solver

converges to the correct solution only at high resolution Lrms/∆ζ = 1000.
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Figure 5.1.1.: Benchmark simulation for the different envelope solvers, in 1D. The laser-
plasma parameters are a0 = 1, Lrms = 1 and k0/kp = 100.
(a) Laser energy evolution, as a function of the propagation distance, nor-

malized to the laser pulse pump depletion length lpd ∼ λp
(
k0
kp

)2
.

(b) Lineout of the longitudinal wakefield, Ez, after a propagation distance
corresponding to 0.8 · lpd
In both the boxes the red dashed line is the reference result obtained with
the full PIC code ALaDyn (red solid line). The black lines are the results
obtained with the “standard”, Cartesian form, envelope solver at differ-
ent resolutions, Lrms/∆ζ = 30, 100, 1000 (black dashed lines). The blue
points are the result obtained with the INF&RNO polar form envelope
solver for Lrms/∆ζ = 30. Figure courtesy of C. Benedetti [28].

In INF&RNO, new temporal steps of the envelope ân+1 are computed by using the

Crank-Nicholson discretization Eq. 5.1.2, knowing ân−1 and ân.

The right-to-left dependency is introduced by the presence of the longitudinal deriva-

tive ∂ζ . The resolutive algorithm we use for obtaining ân+1 is simply to integrate from

right boundary (where the envelope field is zero) to the left. The right to left inte-

gration allows to treat the longitudinal derivative term as a known term, breaking the

integration into a chain of 1D linear systems in the transverse coordinate that must be

solved serially. Since the longitudinal derivative acts in in Eq 5.1.1 only mixed with the

temporal derivative ∂τ , the envelope field ân+1
i−1,j at time n + 1 and at the longitudinal

grid point i− 1 depends on the previous local statuses of âni−1,j and â
n−1
i−1,j and the only

dependency on the points on the right is due to the temporal derivative ∂τ â, discretized
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as
(
ân+1
ij − ân−1

ij

)
/2∆τ (we omit for simplicity ân+1

i+1,j following from the discretization

using a second order upwind scheme)

ân+1
i−1,j = F

(
ân+1
ij − ân−1

ij , âni−1,j , â
n−1
i−1,j

)
(5.1.3)

This right-value dependency makes the laser integration part impossible to parallelize

longitudinally, as it is impossible to break the dependency chain and split the compu-

tation among processing units. Leaving it un-parallelized would result in a very poor

scalability (of fundamental importance for a modern code, see section 5.2), and the max-

imum reachable speedup would have been < 10x (a simple estimate using Ahmdal’s

law).

Slice by slice, the form of F that follows from Eq 5.1.3 requires to solve tridiagonal

linear systems transversally. As a result, the code has dependencies that parallelization

hard along both the transversal and the longitudinal directions.

An iterative scheme for solving Eq. 5.1.1, via Eq. 5.1.3, has been implemented in

INF&RNO in order to solve the recurrence and enable parallelism.

Since the envelope field is slowly varying in time, it is reasonable to assume that

its temporal derivative varies slowly in time ân+1
ij − ân−1

ij ∼ ân−1
ij − ân−3

ij . In fact, the

difference between these two terms is a finite difference approximation of the second

derivative in time of â, which is a small factor in our conditions, important only for

describing backward-propagating waves (as seen in section 5.1.1). The iterative scheme

starts by using a previous temporal derivative at the right points in place of unknown

ân+1
ij − ân−1

ij , as the an initial guess allowing to compute a rough estimate g1 for ân+1
ij for

all grid points i in parallel, using F . The newly computed g1can then provide another

approximation for each point on the right ân+1
ij − ân−1

ij , and the process can be iterated

until the succession gk converges.

gn+1
i−1,j;1 = F

(
ân−1
ij − ân−3

ij , ...
)

initial guess

gn+1
i−1,j;k = F (gn+1

i,j;k−1 − â
n−1, ...) k − th iteration

ân+1
ij = gn+1

ij;P final

The iterations are stopped when a convergence criterion comparing successive gk is
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Figure 5.1.2.: Validation of the envelope solver parallel/iterative algorithm: longitudinal
line-outs of the proper density before laser depletion (left), density with
the depleted laser (center), depleted laser envelope modulus (right). Laser
plasma parameters are a0 = 1, w0 = 5, L = 2, k0/kp = 20

met. Due to the fact that the envelope is slow-varying, even at low resolutions and

with the laser deep into depletion, a low number of iterations (∼ 10 ) manages to find

a very accurate solution, as seen in the lineouts in figure 5.1.2. Since any successive

approximation gk can be computed in parallel for each longitudinal grid point i (the

recurrence ân+1
i−1,j = F (ân+1

ij ...) becomes gn+1
i−1,j;k = F (gn+1

i,j;k−1...), in which the iteration

index k solves the dependency), we were able to get rid of any parallelization/scalability

issue at the price of introducing some cheap iterations that scale well (in the PIC, the

particle interpolation/deposition dominates the CPU time by far).

5.1.3. Plasma motion and wakefield equations in cylindrical comoving
coordinates

In INF&RNO, cylindrical symmetry is assumed around the z axis for plasma phase space

distribution and wakefield fields (the direction of laser propagation), as for the envelope

field.

Let us define these non-dimensional, plasma wavelength normalized, comoving r-z

cylindrical coordinates and variables:
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

ξ = kp (z − ct) , kp = ωp/c

r = kpr

τ = ωpt = kpct

δ = n
n0

(normalized density)

The laser envelope evolves at timescales much longer than a single laser oscillations.

The force acting on a plasma electron can be therefore averaged in time in this scheme,

using the ponderomotive approximation for the force [1]. In this model, the plasma

responds to the driver ponderomotive force generating an electromagnetic wakefield and

consistently perturbing the driver propagation modifying the proper density in Eq. 5.1.1.

The relativistic electromagnetic wakefield is described by the electromagnetic fields

Ewake, Bwake (the suffix wake is further omitted for brevity), evolving according to

Ampere-Maxwell laws:


∂Ewake
∂t = c∇×Bwake − 4πJ

∂Bwake
∂t = −c∇×Ewake

→cyl



∂Ez
c∂t = 1

r
∂rBφ
∂r −

1
r
∂Br
∂φ −

4π
c Jz

∂Er
c∂t = 1

r
∂Bz
∂φ −

∂Bφ
∂z −

4π
c Jr

∂Eφ
c∂t = ∂Br

∂z −
∂Bz
∂r −

4π
c Jφ

...

...

...

, where J are normalized current densities. To maintain the radial symmetry of the

plasma distribution (the laser envelope acts only with the radially symmetric pondero-

motive force), the wakefield electromagnetic fields are constrained to be Eφ = 0, Bz =

0, Br = 0, in every point of the domain. This simplifies our system, which becomes:
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

∂Ez
c∂t = 1

r
∂(rBφ)
∂r − 4π

c Jz

∂Er
c∂t = −∂Bφ

∂z −
4π
c Jr

∂Eφ
c∂t ≡ 0

∂Bz
c∂t =

∂Eφ
∂r ≡ 0

∂Br
c∂t = −∂Eφ

∂z ≡ 0

∂Bφ
c∂t = −∂Er

∂z + ∂Ez
∂r

→ξ=kp(z+ct)


∂Ez
∂τ = ∂Ez

∂ξ + 1
r
∂(ρBφ)
∂r − jz

∂Er
∂τ =

∂(Er−Bφ)
∂ξ − jr

∂Bφ
∂τ = −∂(Er−Bφ)

∂ξ + ∂Ez
∂r

In INF&RNO, the background plasma can be modeled using either a fully kinetic PIC

or a cold fluid description (that does not describe wave-breaking and self-injection) and

the laser-plasma coupling is described via the ponderomotive approximation. The rela-

tivistic equations of motion of an electron of momentum p, in the envelope/ponderomotive

an approximation, read:
dp
dt = q

(
Ewake + v×Bwake

c

)
− mc2

2γ ∇
∣∣∣ qÂmc2 ∣∣∣2

γ =

√
1 + p2

m2c2
+
∣∣∣ qÂmc2 ∣∣∣2 (5.1.4)

In normalized cylindrical coordinates, the equations of motion for electrons become:



γ =
√

1 + |â|2 /2 + u2
z + u2

r

dξ
dτ = uz

γ − 1

dr
dτ = ur

γ

duz
dτ = −∂γ

∂ξ − Ez −
ur
γ Bφ

dur
dτ = −∂γ

∂r − Er −
uz
γ Bφ

.

In the PIC model, the quasi-particle dynamics follows from the electrons’ equations of

motion 5.1.4.

In the fluid model, the equations governing the evolution of the fluid plasma model

can be obtained starting from the relativistic plasma cold fluid equations (u = γv/c):
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
∂n
c∂t +∇ · (nu/γ) = 0(
∂
c∂t +

(
u
γ

)
· ∇
)

u = F

Changing variables to the comoving system ∂
∂t = ∂

∂τ −
∂
∂ξ , and recalling 5.1.4, one

obtains the fluid equations used in INF&RNO-fluid:



γfluid =
√

1 + |â|2 /2 + u2
z + u2

r

∂δ
∂τ = ∂δ

∂ξ −∇ ·
(

u
γfluid

δ
)

∂(δuj)
∂τ =

∂(δuj)
∂ξ −∇ ·

(−→
β δuj

)
+ δ

[
−
(
E + u

γfluid
×B

)
− 1

2γfluid
∇
(
|â|2
2

)]
, j = z, r

In INF&RNO, an explicit fourth order Runge-Kutta integrator is used for the Ampere-

Maxwell wakefield and the quasi-particle motion.

The fields are discretized on un-staggered, 2D, regular z, r grids. The longitudinal

ζ derivatives are computed with a second-order upwind scheme (∂ζ;∆ζfi,j = (−3fi,j +

4fi+1,j−fi+2,j)/(2∆ζ)), while the transversal one with a second-order centered scheme.

The motivation of using upwind derivatives is to damp some backward propagating in-

stabilities. In the PIC mode, force interpolation, charge density and current deposition

are performed using quadratic shape functions. Compact low-pass digital filters [37] and

standard binomial filters (with compensator) are available for field and current smooth-

ing.

5.2. Parallalelization and scalability benchmarks

INF&RNO is a reduced model code, but simulations can still take several years of CPU

time in order to be completed at higher resolutions. Efficient parallelization, together

with accurate and reduce numerical models, was therefore necessary in order to perform

simulations of 10 GeV scale laser-plasma acceleration stages.

The key quality for a parallel code is nowadays the scalability, as, if the performance

of single scalar units ceased to increase, the number of processing core per CPU and

the number of computing nodes connected in supercomputers still increase with a good

scaling over the years. Hence, good scalability gives the possibility to benefit from the
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Figure 5.2.1.: Parallelization using domain decomposition in 1D or 2D.

future high performance computing advances.

The first requirement for scalability is imposed by Ahmdal’s Law: if a code contains

a serial part that takes a fraction tserial of the total runtime, the maximum achievable

speedup is bound at performance multipliers∼ 1/tserial, also for Nprocessors → ∞. In

fact, the time for running a simulation scales as limNprocs→∞ t =
tparallelizable

N + tserial =

tserial. Hence, every modern code should be designed in order to minimize serial parts.

This is the motivation that leaded us to look far an envelope integrator that solved the

envelope Crank-Nicholson equation 5.1.2 without using a non-parallelizable recurrence

(subsection5.1.2).

5.2.1. 1D domain decomposition

Thanks to the parallel, iterative envelope solver presented in subsection5.1.2, all the

longitudinal grid operations in INF&RNO are local stencils, deriving from finite difference

discretization. Their locality allows for longitudinal domain decomposition, splitting the

computational domain into smaller subdomains, each one evolving almost independently.

The only communication required is for exchanging a few boundary grid slices. PIC quasi-

particles can be subdivided across the same subdomains, with the difference that they

have to be reassigned once they cross a subdomain boundary (they are in principle free

to move inside the entire domain, but the Courant timestep for the fields limit the range

in a time step to be less than the cell size) and extra ghost cell must be allocated for

interpolating fields and deposing densities.
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INF&RNO is parallelized with 1D domain decomposition using standard message pass-

ing interface to exchange field boundaries and particles crossing domain. Each physical

subdomain is computed by a different computational node. For typical laser-plasma

simulations, the longitudinal direction is the one with more grid points Nz.

In its longitudinal upwind derivative scheme ∂ξ;∆ξfi,j = (−3fi,j+4fi+1,j−fi+2,j)/(2∆ξ),

the values required for computing f ′ij are the two points on the right, fi+1,j ,fi+1,j . Before

every derivative computation, one has to be sure that the ghost region contains the right

data, which must be copied from the right neighbor node, as illustrated in the following

figure. As mentioned before, the PIC scheme may require additional ghost cells if high

order shape functions are used. Parallel codes with boundary data exchange scale well

until the time for boundary communication (cell points and crossing particles) dominates

the computation time. In fact, for a fixed simulation, the total computation scales as

O(1) versus the number of parallel units N , the total communication scales as O(N),

the computation per node decreases as ∼ 1/N , but the communication per node stays

constant.

The validation and debugging of the parallelized code was performed comparing results

of various simulation runs (see figure 5.2.2 for a simple example), value by value.

The scalability was measured both in terms of weak scaling (runtime scalability in-

creasing number of parallel units keeping the subdomain computational size fixed) and

strong scaling (runtime scalability increasing the number of parallel units and keeping

the total problem size fixed). On a modern cluster, the fluid only code strong scaling is

excellent up to a number of cores ~1
2 of the grid points, as can be seen for the following
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figure, for Nz = 4224.

Also the PIC code scales well, up to the limit in which only a very few (2-3) grid z-slices

are assigned per node. The following figure shows its weak scaling graph for Nz = 1968

5.2.2. 2D domain decomposition and shared memory parallelization

Efficient 1D parallelization (subsection 5.2.1) takes INF&RNO scalability close to the

maximum 1D limit, i.e. assigning one slice (plus ghost cells) per subdomain.

Besides the maximum number of subdomains, another limitation of the 1D decompo-

sition is the fact that the boundary/domain size ratio scales linearly with the number

of domain slices Np;z, and this can result in poor scalability. 2D domain decomposition
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Figure 5.2.2.: Comparison between a parallelized PIC simulation (40 minutes on 120
cores) result and scalar one (38 hours). Laser plasma parameters a0 = 3.0,
L = 2, w0 = 2

√
a0.

(splitting domains also in the radial direction) could be a solution for both the limita-

tions, allowing to scale to a larger number of subdomains, as the grid to split has now

Nz ×Nr as size.

In INF&RNO, the parallelization along the transverse direction presents some diffi-

culties due to the Nz “transverse” tridiagonal systems present in the envelope equation

implicit numerical scheme. Tridiagonal system can be solved serially using the very effi-

cient Thomas algorithm, and, while we are still looking for a better way to handle these

systems, the best compromise found so far for our case is using a pipelined solving algo-

rithm. After the longitudinal domain decomposition, each node has Nz/Np;z tridiagonal

systems, each one involving all the Nr transverse points in the slice. Each “system” is

then broken in Np;r parts, but the Thomas algorithm introduces a dependency amongst

the sequence of parts. The pipelining approach consists in starting all computations as

soon as all the dependencies are met (e.g. after solving the first part of the system, for

the first z-slice, the first node begins the computation of the first part second z-slice, and

so on).

Practically, the strong scalability plot for the PIC code, using the 2D decomposition,

shows that it is possible to run on more processors than allowed by the longitudinal-only

decomposition (in this case, the maximum theoretical speedup was Nz = 1968), still at

a reasonable efficiency:
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Another option would be to parallelize each slice using OpenMP shared memory par-

allelization, without domain decomposition. Some preliminary studies where carried out

parallelizing the whole simulation using OpenMP. The density deposition race condition,

arising from shared memory parallelization, can be avoided with the use of atomic oper-

ations or using a single buffer per core. The OpenMP version of the code reaches good

scalability up to 12 cores.

5.2.3. INF&RNO GPU Parallelization

The GPU port of the numerical schemes implemented in INF&RNO is currently under

development.

Since the Runge Kutta 4 time integrator uses 4 substeps for the particles, keeping a

strictly spatially organized data structure for the particles, as required by the deposition
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algorithm in jasmine (section 4.1.1), can introduce a significant overhead. Therefore,

another, more relaxed, approach for implementing densities deposition has been chosen.

Densities are summed on the global memory density grid with the help of global mem-

ory atomic operations. The number of atomic operations is dramatically reduced by

performing a warp segmented scan, which groups the global memory access for particles

laying in the same cell and at contiguous indices in the particle array. This way, a great

part of the global memory accesses can still be “cached”, but it is no longer necessary to

update the spatial sorting scheme each Runge-Kutta sub-time step. The warp scan is

implemented using Kepler architecture “shuffle” instructions.

The densities deposition kernel has been fused with the interpolation/push kernel (i.e.

it computes both densities and the particles’ status Runge-Kutta temporal derivatives

streaming the particle array just once). For typical LWFA simulation parameters, the

performance of the fused kernel, on a NVIDIA Kepler K40 GPU, ranges, from 7ns on

average, per particle (1 particle per cell) to 3ns on average, per particle (>= 8 particles

per cell).
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6. INF&RNO/Quasi-Static

6.1. The Quasi-static Approximation

The quasi-static approximation (QSA) was first applied to nonlinear laser-plasma inter-

action by Sprangle et al. in [45, 46]. Considering a wakefield driver (either a laser pulse

or a ultra relativistic beam) propagating in a tenuous plasma, The QSA separates the

timescales of the driver evolution and of the electrons in the wake, assuming that dur-

ing the time it takes the driver to transit a plasma electron, the driver does not evolve

significantly.

If the driver propagates at relativistic speed, the time for crossing a plasma electron is

approximately τL = L, where L is the normalized driver characteristic length. In order

for the plasma electrons to experience a static (independent from τ) driver ponderomotive

field (or, in order to the QSA assumption to be satisfied), its evolution timescale must

satisfy τE � τL.

There are two intrinsic time scales associated with Plasma Wakefield Accelerator

PWFA and Laser Wakefield Acceleration LWFA. In both regimes, the wakefield driver

characteristic length is usually of the order of the plasma wavelength (L ∼ 1), in order to

maximize the amplitude of the wakefield. In PWFA, the drive beam is ultra-relativistic

(γbeam > 2000) and it evolves on the scale of the betatron wavelength, which is (2γbeam)1/2

times longer than the plasma wavelength. In LWFA, the natural scale of evolution of the

laser beam is the Rayleigh (diffraction) length zR = 1
2
k0
kp
w2

0, where w0 is the laser spot

size. Since, typically, zR � 1, the plasma electrons experience a static laser field.

In the quasi static approximation, the plasma response is calculated by freezing the

driver and its ponderomotive fields, neglecting the temporal derivatives ∂τ in the plasma

fluid or kinetic equations, which determine the plasma response to the driver pondero-

motive force map. The QSA plasma equations can be used to determine the response as

a function of the driver ponderomotive field and the spatial coordinates.

The temporal derivatives are retained in the equations governing the evolution of the
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driver, and, at each driver evolution “timestep”, the currents and densities are obtained

from the quasi-static response for a fixed τ . In other words, numerically, the QSA can be

used to simulate the driver-plasma interaction in a iterative, two-step, manner. A QSA

iteration is composed by the computation of the wakefield response at fixed τ and the

evolution of the driver in τ , for which the response from the first step is used.

Due to the scale separation, the QSA is a very useful approximation for writing efficient

numerical codes, as it enables a time-step size which can be much greater than those in

full PIC codes. This was successfully demonstrated in the ponderomotive relativistic

quasi-static PIC codes WAKE [47, 48] (originally a 2D cylindrical or cartesian code) and

QuickPIC [49, 50], a 3D PIC code using pipelining for achieving impressive parallelization

results. The 3D quasi-static code HiPACE [51], highly specialized for PWFA, is the first

one parallelized in all three dimensions.

In this chapter, we describe the implementation of the QSA in the ponderomotive

code INF&RNO [26, 27, 28], covering the numerical scheme in cylindrical symmetry, and

its numerical stability issues (6.2), the parallelization using pipelining (6.3) and a load

balancing technique that improves the scalability in high intensity cases, for which the

iteration load of our quasi-static solver produce a significant load imbalance in across

longitudinal domains (6.4).

6.2. Quasi-static numerical scheme in cylindrical symmetry

The QSA is applied starting from the explicit PIC equations in cylindrical, co-moving

coordinates used in INF&RNO:


∂Ez
∂τ = ∂Ez

∂ζ + 1
r
∂(rBφ)
∂r − Jz

∂Er
∂τ =

∂(Er−Bφ)
∂ζ − Jr

∂Bφ
∂τ = −∂(Er−Bφ)

∂ζ + ∂Ez
∂r

(6.2.1)
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

∀j ∈ 1, 2, ..., Np

dζj
dτ = βz,j − 1

drj
dτ = βr,j

duz,j
dτ = −∂γj

∂ζ − Ez − βrBφ
dur,j
dτ = −∂γj

∂r − Er + βzBφ

γj =
√

1 + |â|2/2 + u2
z,j + u2

r,j

(6.2.2)

Fields and currents (generically, any eulerian quantity Q) can be assumed to be frozen,

or quasi-static, during plasma evolution in the comoving, speed-of-light frame: ∂τQ ' 0

(or ∂Qt ' −∂ζQ). Taking ∂Ez
∂τ = 0, ∂Er∂τ = 0,

∂Bφ
∂τ = 0, Eq 6.2.1 becomes:


∂Ez
∂ζ + 1

r
d(rBφ)
dr − Jz = 0

∂(Er−Bφ)
∂ζ − Jr = 0

∇2
⊥Ez = 1

r
d
dr (rJr) = 0

. (6.2.3)

The QSA for plasma macro particles introduces the invariant of motion [51]:

γ − ψ − uz = 1 (6.2.4)

, as follows from applying the QSA on the Hamiltonian for a plasma electron in the

wake potential ψ = eφ/mc2 − az.
In accordance with the QSA principle, for all quasi-static particles βz < 1, and hence

their longitudinal trajectories ζ(τ) are strictly monotonic in τ . It is therefore possible to

introduce the change of variable xj(τ) = xj(ζ) for all the particle quantities, changing the

temporal variable to the comoving one. Applying the chain rule ∂τ → ∂τζ ·∂ζ = (βz−1)∂ζ

and Eq 6.2.4 (in the form βz− 1 = (1 +ψ)/γ ), the particle equations are recast to 6.2.2:

∀j ∈ 1, 2, ..., Np

drj
dζ = − ur,j

1+ψ j

dur,j
dζ =

Flaser+γ(Er−Bφ)
1+ψ +Bφ

dψ
dζ =

ur.j
1+ψ (Er −Bφ)− Ez

γj − uz,j − ψj = 1

(6.2.5)
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On the contrary, beams (driver beams or injected beams) are usually highly relativistic

βz ' 1, and hence the QSA does not apply for their dynamics and they must be treated

separately from plasma particles, as they evolve in τ .

In INF&RNO, the quasi-static equations 6.2.3 and 6.2.5 are integrated numerically

backwards in ζ, from ζ = ζmax, where the driver fields are zero and the particles at rest,

towards ζmin.

During an integration in ζ (a “swipe”), when computing the ζk slice, the state of the

system is fully known on the right, for k′ > k. The integration of the particle equations,

performed using a fifth order Adams-Bashforth method, provides xj(ζk−1), using xj(ζk),

the fields at ζk for all particle quantities x. Currents are then computed at ζk−1 using

xj(ζk−1). The fields are computed at ζk−1 using Jz(ζk−1) and Jr(ζk−1). Er − Bφ is

integrated in ζ with a simple longitudinal integration and Ez is computed by inverting

the transverse laplacian in Eq 6.2.3/3, discretizing the operator a second order numerical

derivative resulting in a tridiagonal system. A recurrence equation is then used for solving

Eq 6.2.3/1 and obtain Bφ.

The integration of this system is numerically unstable, with an instability arising from

the presence of both the terms Ez and Bφ in Eq 6.2.3/1. In INF&RNO, the instability

is resolved using an iterative method, in which a succession of magnetic field solutions

Bn
φ(ζk) “adiabatically” converges to the Bφ(ζk) solution, for each slice ζk. During the

first iteration Bφ,0 = 0. Then, for each iteration n, the particles equations are integrated

for obtaining xj(ζk−1) using the fields at ζk, and, in particular, Bn
φ(ζk):

∀j ∈ 1, 2, ..., Np

drj
dζ = − ur,j

1+ψ j

dur,j
dζ =

Flaser+γ(Er−Bφ)
1+ψ +Bn

φ

dψ
dζ =

ur.j
1+ψ (Er −Bφ)− Ez

γj − uz,j − ψj = 1

(6.2.6)

The longitudinal field Ez(ζk−1) is then computed using Eq 6.2.3/3 (∇2
⊥Ez = 1

r
d
dr (rJr)).

A, new, consistent, magnetic field B∗φ(ζk) is then computed by solving Eq 6.2.3/1 at

ζk, discretized using a centered derivative in Ez that uses the newly computed Ez(ζk−1).

∂Ez
∂ζ

+
1

r

d(rB∗φ)

dr
− Jz = 0. (6.2.7)
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The next (n+ 1) iteration magnetic field Bn+1
φ (ζk) is obtained smoothly blending the

n− th iteration magnetic field and the newly computed one:

Bn+1
φ = αBn

φ + (1− α)B∗φ (α ' 0.98). (6.2.8)

The iterations are continued until the convergence criterion maxr(B
n+1
φ − Bn

φ) < t

is satisfied. Once the scheme has converged, the new (Er −Bφ) (ζk−1) is computed

integrating Eq 6.2.3/2 .

The convergence speed of the method can be improved by replacing the magnetic field

e 6.2.7 and blending equations 6.2.8, by

∇2
rB

n
φ = ∂ζJr + ∂rJz

, in which a smoothing term is added to the laplacian operator:

(∇2
r + k)Bn+1

φ = (∂ζJr + ∂rJz) + kBn
φ (6.2.9)

The introduction of the smoothing term can be seen as the introduction of a “support”

temporal derivative k
(
Bn+1
φ −Bn

φ

)
= −∇2

rB
n+1
φ + ∂ζJr + ∂rJz, as in Ref. [49].

This way, high frequency modes (for which ∇2
r � k) are instantaneously propagated,

while the propagation of low frequency modes, the ones that give rise to the instability

(being responsible for instantaneous signal propagation) happens slowly.

Figure 6.2.1 shows the convergence of both the iterative schemes to the explicit PIC

solution, computed with INF&RNO with adiabatic initialization. The figure shows the

longitudinal electric field of a bubble wake generated by a non-evolving gaussian pulse

with parameters a0 = 3.5, 5.0, L = 2, W = 2
√
a0, computed using the multi-frequency

blending and resolution dζ = 1/100 (blue lines), uniform blending with resolution dζ =

1/100 (red lines), the explicit PIC solution (green lines) and uniform blending with double

resolution dζ = 1/200. We notice that the quasi-static scheme is able to reproduce the

explicit PIC results, even in this very non-linear bubble regime case. Both the quasi-

static blending schemes converge to the same solution, but the simulation using the

multi-frequency blending scheme was 10x faster than one using uniform blending. In

these very non-linear cases, the quasi-static particles may cross very low wake potentials

ψ ' −1 (that can result in trapping if the wake evolves). Since all particle equations

contain a term (1+ψ)−1 (the factor γ/(1+ψ), introduced by the change of variables, can
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be interpreted as “the weight with which the temporal change contributes to the change

along the comoving variable” [51]), singularities might happen both due to numerical

errors and inconsistencies with the QSA approximation assumptions. INF&ERNO quasi-

static detects these singularities and reruns part of the integration discarding the particles

reaching a negative potential below a (dynamic) threshold value. Laser evolution (for

short pulses the laser shape is approximately 0 where the singularity happens) and most

of the wakefield formation are unaffected by this changes, which are mainly inconsistent

only with phenomena that are inconsistent with the QSA in the first place (i.e. self-

trapping and beam loading).

102



Figure 6.2.1.: Longitudinal electric field of a bubble wake generated by a non-evolving
gaussian pulse with parameters a0 = 3.5, 5.0, L = 2, W = 2

√
a0, com-

puted using the multi-frequency blending and resolution dζ = 1/100 (blue
lines), uniform blending with resolution dζ = 1/100 (red lines), the explicit
PIC solution (green lines) and uniform blending with double resolution
dζ = 1/200. The quasi-static scheme successfully converge to the explicit
reference solution, but is much more efficient. The simulation using the
multi-frequency blending scheme was 10x faster than one using uniform
blending.

6.3. Parallelization via pipelining

Parallelizing a quasi-static plasma code presents new challenges.

A single longitudinal integration in ζ is numerically time-like, and the computation of

each slice in ζ depends on the solution of the ones at its right.

The code 3D HiPACE [51] manages to have efficient parallelization in all the two trans-
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verse dimensions, but in INF&RNO quasi-static we are limited by the fact that, having

only the radial coordinate as a transverse dimension, the very few particles trajectories

and grid points (only a thousand in total) we have to compute are not enough to satu-

rate the parallelism required by highly parallel processor: the technique we tried (shared

memory parallelization with OpenMP) has shown to stop to scale past 2-4 cores.

For simulations with driver evolution, one longitudinal quasi static integration is re-

quired after each driver evolution timestep (an “epoch”). The key idea is then to use the

“pipelining” technique [49, 50].

The the longitudinal domain is divided in N (the number of processors) subdomains

Di, numbered by the index i from right to left. Each processor Pi is responsible for a

subdomain Di, but processors process different driver epochs (physical times).

Since the ζ integration happens from right to left, when the processor Pi finishes the

computation of the domain Di at time tj , it can send its result (for fields, the boundary

is enough) to the processor Pi+1 and start the computation of (Di, tj+1). The processor

Pi+1 can then start the computation of (Di+1, tj). Hence, at each CPU “clock” time sk,

the processor Pi computes the domain/time (Di, tk − i) and stays idle if tk < i (the time

for filling the pipeline).
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Figure 6.3.1.: Left: traditional computation scheme, all processors compute their subdo-
main at the same time.
Right: processors compute subdomains epochs in a pipeline.
Subdomain evolution depends on the status of the same subdomain in the
previous driver epoch (for driver evolution) and the status of the right
subdomain in the current epoch. Once the two dependency requirements
are met, the subdomain is ready to be advanced to the next epoch. If the
driver is subluminal, there are no dependencies on the left.

The dependencies that processor Pi needs to wait for computing (Di, tj), are the

statuses of the driver and quasi-static wakefield locally at the previous epoch (Di, tj−1)

and of the domain on the right at the current epoch (Di−1, tj) as shown in figure 6.3.1.

The mechanism works only if the non-quasi-static driver/beam evolution can be inte-

grated in a right to left fashion, i.e. if the driver is subluminal and there is no information

propagation traveling in the positive ζ direction. The envelope field solver (Subsection

5.1.2) in INF&RNO supports this way of splitting the integration in ζ subdomains.

6.4. Pipeline load balancing

The parallelization using pipelining provides ideal scalability if the time for transfer-

ring the subdomain boundaries across processors is smaller than the time required for

computation and all the subdomains Di require the same amount of CPU time to be

computed.

Due to our iterative scheme (section 6.2), the latter condition is not satisfied for highly

nonlinear cases a0 > 2. In fact, the number of iterations required for the convergence
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of the scheme dramatically varies along the longitudinal coordinate ζ. As an example,

the slices in proximity of the back Ez zero crossing point of a bubble wake require up

to hundredths of times more iterations than the average. This kind of distribution of

the number of iterations is the least favorable for achieving parallel speedups, as the

processors computing the “difficult” slices slow down the entire pipeline, making the

work of all other processors worthless. Figure 6.4.1 shows the issue in detail.

Figure 6.4.1.: Left: Ez lineout for laser-plasma parameters: a0 = 4, L = 2,W = 2
√
a0,

computed serially and in parallel (pipelining). The right box shows the
number of iterations (y-axis) versus ζ-slices (x-axis). More load/iterations
for the processors/subdomains containing the bubble wake Ez zero crossing
point located at the back of the bubble. Such subdomains slow the entire
pipeline and the maximum speedup achievable is always less than 2x.

The solution we have implemented in INF&RNO/quasi-static is to dynamically resize

the subdomain sizes in order to restore the load balance across processors.

Every other driver evolution step, the load of a processors is measured and compared
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with the first neighbors. The processor with the highest load ratio with its left/right

(the direction of comparison alternates every other rebalance step) neighbor’s domain is

shrinked by moving the boundary with the unloaded neighbor. Dynamic re-balancing is

required because the wake geometry changes as the driver evolves, but the initial wake

longitudinal radius (Eq. 2.1.1) could be in principle used to start from an initially good

load distribution.

Dynamic load re-balancing is performed on the fly, without restarting the pipeline at

each modification.

The domain boundary reassignment must be performed enforcing the physical time

synchronicity and ensuring the continuity of the integration in ζ. Since neighbor proces-

sors compute different physical times, that means performing the boundary shift must

occurs at different CPU “clocks” on neighbor processors. For example, if the domain Di

is shrinked on the left side after the epoch tj , the domain Di+1 (on its left) is expanded

(on its right) in the next CPU “clock”, when Di+1 computes tj (as in figure 6.4.2 (c)):

this way the tj integration in ζ is continued from the point where Pi+1 left it so the

integration in Di−1 at tj−1 . A similar rule is followed when shrinking a node on its

right side, but in this case the first move is to expand the domain on the right (i.e. the

first subdomain to be resized is always the one on the right, which is an epoch ahead).

In this case, when the unloaded subdomain Di is expanded on its left side at tj+1, it is

necessary that the left neighbor Di+1 (which is shrinking) sends it the data for the part

of the driver that was not in the Di subdomain at the past epoch tj .
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Figure 6.4.2.: (a)(b)(c)
a) Unbalanced load across subdomains (horizontal axis) causes the pipeline
to stall, as most of CPU time (vertical axis) is spent in idle status by
processors.
b) If the most loaded subdomain is shrinked, the pipeline starts working
efficiently.
c) Temporal synchronization at the right ζ coordinate when shrinking the
second subdomain from the right.

6.5. INF&RNO/Quasi Static Benchmark: ~10 GeV

acceleration stage simulation

The efficiency of INFERNO/Quasi Static was measured by running a virtual, staged (

injector+accelerator), LWFA experiment, fig 6.5.1.

A BELLA-class [25] 40J laser pulse (100fs (fwhm) long and with a transverse waist

of 63µm) is first used to inject and accelerate up to ∼ 300MeV an electron bunch, self-

injected in the negative density gradient (density downramp) following a ∼ 100µm-long

electron density peak (generated by a gas jet). The pulse then is propagated for 50cm in a

plasma channel (gas cell) of axial density of 2.0 · 1017 cm−3, and a radial realistic profile

calculated using MHD simulations. In the second stage, the laser, guided for many

Rayleigh ranges by the plasma channel, drives a quasi-linear wakefield that manages

to accelerate the bunch until its dephasing with the wake. The quasi-static code can

reproduce the acceleration behavior and the laser evolution in the second stage, after the
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injection. Simulations show that dephasing is reached after 45mm of propagation, with

the injected beam reaching a maximum energy of ∼ 9.5GeV .

The acceleration stage was modeled using the quasi static code, for various numerical

(the Bφ-blending scheme) and parallelization configurations. In the following table we

summarize the overall speedup (time to wait for a simulation result) and the computa-

tional efficiency (total number of core hours) obtained by using the quasi-static code.

With the quasi-static code, the same simulation results can be obtained using about one

thousand less computing power and waiting tens of times less for the result. Compared

to the baseline version (serial and uniform Bφ-blending), the parallel, multi-frequency

Bφ-blending version of the quasi-static code is ∼ 20 times faster, using 8 cores.

Method Processors Time (h) Time (CPU h) Speedup Efficiency

Explicit INF&RNO 200 ~250 ~50000 1x 1x

Quasi-Static 1 122 122 2x 410x

Quasi-Static 8 18 144 14x 347x

Q-S (Multi-frequency) 1 20 20 12.5x 2500x

Q-S (Multi-frequency) 8 6 48 42x 1040x
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Figure 6.5.1.: Quasi-static stage of a two-stage (explicit PIC+quasi static) simulation,
the injected beam is obtained with an explicit PIC simulation. Accelera-
tion continues until dephasing, where the beam has reached an energy of
~9.6GeV (left and top right plots). Good guiding of the pulse over ~50cm
is achieved by the matched radial profile of plasma channel (as can be
seen from the bottom right plot, showing the normalized vector potential).
Laser-plasma parameters are: 40J laser pulse, length 100fs (fwhm), waist
63µm, plasma density: 2.0 · 1017 cm−3. The propagation length is 50cm.
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Part III.

Modeling of Experiments
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7. Electron acceleration case studies

7.1. INFN-LNF FLAME

The INFN-LNF FLAME (Frascati Laser for Acceleration and Multidisciplinary Experi-

ments) laser [40] is a nominal 220TW laser system that uses 11 YAG pump lasers and 5

titanium-sapphire multi-pass amplifiers to produce linearly polarized pulses with a cen-

tral wavelength of λ0 = 0.805µm, pulse duration of τL < 30fs and maximum energy 7J

at a 10Hz repetition rate. The laser is focused via an f/10 off-axis parabolic mirror in a

15µm diameter (FWHM) spot inside the vacuum chamber.

Laser wakefield electron acceleration experiments were run with FLAME in the frame-

work of the self-injection acceleration programme, aimed at establishing the specifications

of self-injected bunches required for the on-going all-optical γ-ray source development [41]

based upon the Thomson scattering.

7.1.1. Interaction with flat top density profile

The laser FLAME meets both the conditions of short pulse length and high intensity for

self-injecting and accelerating electrons in the laser driven bubble regime. In order to

have a “controlled” acceleration process, which ensures a better final bunch quality, the

initial plasma and laser parameters were chosen according to the phenomenological theory

described in Ref. [56, 55]. For instance, for generating a “matched” (non oscillating)

bubble, it is required to focus the laser pulse according to kpw0 ' 2
√
a0 (' kpRbub).

If self-guiding occours, the maximum energy of accelerated elctrons is limited by the

dephasing and the pump-depletion length. According to the model presented in Ref.

[56, 55], from injection, trapped electrons outrun the accelerating wakefield inside the

bubble after a distance Ldephasing ' 2
3
k20
k2p
Rbub and the laser pulse is depleted after a

distance of Ldepletion '
k20
k2p
cτfwhm of propagation in the plasma.

Analytical/numerical studies were performed in order to define the possible optimal

working point of the laser FLAME for the INFN-SITE experiment (Ref. [43]). Given
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these constraints, a possible working point was choosen to be w0 = 13µm, yielding a peak

normalized vector potential intensity a0 = 5.8 and an electron density np = 3.8·1018cm−3.

For this case, the theretical energy gain would be ∆W = 0.9GeV and the acceleration is

limited at 4mm of propagation by both pump depletion and dephasing.

3D simulations, performed with the code jasmine (chapter 4 and Ref. [9]) show that,

after 2.8mm of propagation, the accelerated beam is already dephased with the acceler-

ating wakefield. Figure 7.1.1 (left) shows the snapshot of a 3D simulation at ct = 2.8mm,

in which the decelerating effect of dephasing is clearly visible, limiting the final energy

gain to ∼ 0.65GeV . The anticipated dephasing is due to nonlinear effects that alter the

laser shape, and hence the accelerating wakefield, at propagation times of the order of

the pump depletion time (Ref. [44]).

To prevent this effect, the pump depletion length was increased by lowering the density

to 3·1018cm−3, and the waist was increased to 15.5µm (yielding a0 = 4.9 for FLAME), in

order to increase the bubble size and restore the maximum accelerating field ([43]). In this

optimized case, acceleration continues past the 2.8mm of propagation and simulations

show a final 0.9GeV beam, with momentum spread ~5% and a total charge of ∼ 0.6nC.

7.1.2. Structured Gas Jet

In this chapter we discuss the numerical modeling of the recent results obtained using

the FLAME (Frascati Laser for Acceleration and Multidisciplinary Experiments) laser

[40] , focused on a “structured” gas-jet target, generated by a 10mm×1.2mm rectangular

nozzle (Helium). Laser propagation was set to be longitudinal, along the 10 mm side,

which is characterized by a structured longitudinal profile consisting of a double-peak

density profile (see Figure 7.1.2).

Propagation along the double-peaked, 10mm, density profile was therefore experimen-

tally investigated to explore the possibility of future schemes of staged acceleration and

to primarily investigate laser and electron propagation in such a structured plasma pro-

file, with the first part of the profile acting as the accelerating region and the second part

acting as a target plasma for the accelerated bunch.

Experiments were run at three different gas-jet backing pressures, namely 5, 8 and

15 bars, corresponding to plasma densities of 1.2 − 3.6 · 1019cm−3 in the peaks and

3.5− 10 · 1018cm−3 in the central plateau, and the results are presented in Ref. [42].

3D Particle-in-Cell simulations have been performed using the jasmine (chapter 4 and
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Ref. [9]) code to unfold the electron acceleration regime activated in the first peak and to

calculate expected bunch properties at the exit of the first peak. The laser was modeled

using a gaussian pulse with normalized vector potential a0 = 2.45, waist w0 = 15.5µm

laser and pulse duration τfwhm = 30fs . The plasma was modeled using the structured

density profile reported in Fig. 7.1.2, for the 5 bar gas-jet backing pressure.

Simulations show the formation of a bubble in the first density peak, which then

propagates through the plateau gradually losing its shape as the laser driver intensity

decreases. In the initial bubble, a bunch of electrons is self-injected and accelerated up

to 242 MeV with a peak in the energy spectrum at 186 MeV with 6.1% relative energy

spread and ~10 mrad divergence (Figure 7.1.3, left).

While the laser depletes and defocuses due to the lower density in the plateau, the

bubble loses its shape and the electron bunch partially loses energy and increases its

divergence and its relative energy spread (Figure 7.1.3, right). During defocusing, at

the simulated density, simulations show the formation of a wake driven by a bunch

propagating in the plateau. This is clearly visible in the density plot of Figure 7.1.4 left:

the laser pulse is visible at 6525µm of propagation and at this stage has expanded to a

diameter of ∼ 60µm and so is the first electron bunch just behind. A second, moderately

collimated bunch is located at 6505 µm and has created a strong wake just behind. A

third, smaller bunch injected in this wake is also visible at 6495µm.

Simulation snapshots at later times (Figure 7.1.4 (right)) show that as the pulse propa-

gates further and enters the second density peak, a partial refocusing of the residual laser

light occurs, due to relativistic self- focusing, which drives a new bubble that accelerates

additional electrons.

Additional numerical simulations were carried out at higher densities, to better un-

derstand its roles in these processes. Indication from these simulations is that at the

maximum density explored experimentally, stronger self-focusing occurs in the propaga-

tion in the first density peak, with consequent strong defocusing and significant reduction

of the acceleration length in the plateau. On one hand, better conditions for a cleaner

beam–plasma interaction are set in this case, free from laser-driven wakefield effects.

On the other, the higher density in the acceleration peak, makes acceleration peak less

optimal, with lower energy and broader spectrum.
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7.2. Experiments at ILIL

The 10TW Ti:Sa laser system (delivering up to 400mJ on target and featuring a nanosec-

ond contrast better than 109) installed at the Intense Laser Irradiation Laboratory of

the INO of the CNR in Pisa is currently used for the study of two acceleration regimes

[24], one aimed at producing high charge∼ 15MeV bunches for radiobiology applica-

tions using high density (> 5 · 1019el./cm3) targets and the other aimed at producing

monochromatic bunches suitable for developing all-optical Thomson X-ray sources [41].

In both regimes, the target consists of a supersonic nitrogen (N2) gas-jet, generated from

a rectangular nozzle, with the laser propagating across the (shorter) 1.2mm side.

7.2.1. High density regime for radiobiology applications

The first regime has been tuned for radiobiology studies where the accelerated electron

beam is delivered on a sample for dosimetry and in-vitro sample exposure. The electron

energy was tuned to match the spectral and beam divergence features of IORT linacs,

with maximum energies up to 15MeV and high energy spread. This regime can be

accessed with the ILIL laser system focusing the pulse in a spot size of 6.2µm (FWHM),

using a f/4.5 off-axis parabolic mirror, yielding an intensity IL = 8 · 1018W/cm2 (a0 =

1.92). The optimal density for this regime has been found at 1.6 · 1019 atoms/cm3. In

these conditions, accelerated electrons are emitted in a 0.5rad cone and energies up to 20

MeV. In dosimetric measurements and monte-carlo simulations, cumulated doses up to

10 Gy have been observed, in approximately 1 minute of exposure at 1Hz laser repetition

rate (Ref.[24]). The estimated overall average energy was 1.5MeV , with a total charge

of 2.6nC per shot.

Due to the high density, both experimental data (Thomson scattering images) and sim-

ulations, performed in 3D with the code jasmine, show that the laser plasma interaction

is limited by depletion to the first 300µm of propagation.

In this regime, a 3D simulation was performed for laser intensity a0 = 1.92 and a

plasma density profile with peak density np = 1 · 10201/cm3 and a linear 100µm long

entrance ramp. Laser depletion is reached after ∼ 300µm of propagation, and a high

divergence, high-energy spread (>50%) electron bunch is accelerated with an average

energy of 9MeV (Figure 7.2.1).
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7.2.2. Low density regime for Thomson scattering

The second regime is accessed at lower densities and focusing the pulse to a spot size

of 20µm FWHM, giving an intensity on target of about 2 · 1018W/cm2 (a0 = 0.96).

Prerequisites for Thomson scattering sources are reproducibility, collimation and small

energy spread. Laser-plasma sources require a significant amount of optimization before

acceptable conditions are satisfied. An extensive experimental study was carried out for

optimizing the acceleration and select the optimal density for acceleration. The injection

threshold has found to occur at a ion density of ∼ 1.2 · 1018cm−3. In experiments,

the most stable conditions were found with nitrogen density in the range 1.4 − 1.6 ·
1018cm−3. In this configuration, electron bunches with energies up to 60MeV , with a

40MeV monoenergetic component of less than 10% BW were observed [24].

According to numerical simulations, the ionization degree on axis is expected to exceed

N5+. The ionization map in Figure 7.2.2 was obtained via a fully consistent 3D PIC

simulation run with the code jasmine, in which the ionization process was modeled

using the ADK model as described in section 4.4.1. For Nitrogen atom density nN =

2 · 1018cm−3 , the simulations shows that during early propagation in the plasma, the

laser pulse self-focuses until the normalized peak potential reaches a0 > 2, allowing the

ionization beyond the N5+ state within a radius of ∼ 3µm (Figure 7.2.2, top right) from

the propagation axis and self-injection of electrons after ∼ 500µm of propagation. In our

simulation, electrons reach maximum energies of ∼ 70MeV .
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Figure 7.1.1.: FLAME, flat top plasma density profile, 3D PIC simulation snapshots at
ct = 2.8mm of propagation, for the case with w0 = 13µm (left) and for
the optimized one w0 = 15.5µm (right). With the original parameters
(np = 3.8 · 1018, w0 = 13µm), the bend in the phase space plot (top
right quadrant in the left simulation) clearly shows (anticipated) dephasing
(due to nonlinear laser pulse evolution), while acceleration continues for
the optimized case with lower density np = 3 · 1018cm−3 and waist w0 =
15.5µm.
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Figure 7.1.2.: (Left) Plasma density structured profile scheme.
(Right) Thomson scattering image, from experimental runs. Intensity pro-
file of the red light integrated on the shorter side of the gas-jet.
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Figure 7.1.3.: Electron density slices and spectra after the first density ramp (left) and
after 4.6mm of propagation (right).
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Figure 7.1.4.: Electron density plot obtained from simulations after 6525µm (left) and
9350µm (right) of propagation in the plateau and in the second density
peak of the density profile. The wake produced by the electron bunch is
visible in the left plot at 6505µm.
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Figure 7.2.1.: Simulation in the ILIL laser high density regime (a0 = 1.92 and np =
1 ·1020cm−3). Temporal evolution of laser energy (normalized to the initial
value, bottom left) and of the average bunch energy (top left). Simulation
snapshot after ct = 153µm of propagation, showing the phase space and
wakefield structure (top right) and a 2D slice of the density grid (bottom
right).
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Figure 7.2.2.: 3D jasmine simulation in the ILIL laser low density regime. The simula-
tion shows higher ionization status than N5+ on-axis ionization, injection
and acceleration up to maximum energies of 70MeV . A laser pulse with
a0 = 1.0, w0 = 20µm, τ = 40fs is focused on a Nitrogen target with atom
density nN = 2 · 1018cm−3 and 150µm long ramps. See the discussion in
the text for interpretation.
(Top Left) Maximum electron energy and laser energy depletion versus
propagation distance.
(Top Right) Ionization map: charge density of ionized nitrogen atoms
divided by the absolute value of the elementary charge, showing f after
∼ 1.1mm of propagation.
(Bottom Left) Accelerating wakefield and longitudinal phase space after
∼ 1.1mm of propagation.
(Bottom Right) Plasma density after ∼ 1.1mm of propagation.
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Conclusions

Understanding the details of the propagation of short and intense laser pulses in plasmas

and the properties of the generated wakefield are a topics of fundamental importance in

the field of laser-plasma interaction and, in particular, for the design and optimization

of laser-driven plasma-based electron accelerators, which have recently demostrated the

capability to accelerate high quality multi-GeV electron bunches over extremely short

distances (of the order of the centimeter) and are interesting candidates for applications

to future high energy colliders and radiation sources.

In Chapter 1, laser evolution and plasma wave excitation are characterized, includ-

ing the effects of pulse steepening and energy depletion, for a relativistically intense,

short-pulse laser propagating in a preformed parabolic plasma channel. Novel analytical

expressions are derived in 3D, and in the weakly-relativistic intensity regime (a0 < 1),

for the initial values laser energy depletion, the pulse self-steepening rate, the laser in-

tensity centroid velocity, and the phase velocity of the plasma wave. Analytical results

have been succesfully validated numerically using the 2D-cylindrical, ponderomotive code

INF&RNO. The dependence of the phase velocity on laser driver evolution, identifying

and discussing the role of transverse and longitudinal evolution. We found that, in 3D,

the evolution of the phase velocity is mainly determined by the details of the trans-

verse laser evolution, whereas changes in the phase velocity related to longitudinal driver

evolution only play a role over propagation distances comparable with depletion length.

Due to the high nonlinearity and complexity of the phenomena involved, numerical

simulations are necessary tools for studying of laser plasma-interaction at higher inten-

sities, both for modeling experiments and for creating theoretical models.

In Chapter 2, the wake properties and the process of electron self-injection in the non-

linear bubble wake generated by a short and intense laser pulse propagating in a uniform

underdense plasma are systematically studied by means of fully self-consistent Particle-

in-Cell simulations. Considering a wake generated by a non-evolving laser pulse traveling

with a prescribed velocity the injection dynamics is decoupled from driver evolution, but
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a realistic structure for the wakefield is retained. It has been demostrated that a thresh-

old for self-injection into a non-evolving bubble wake exists, and the dependence of the

self-injection threshold on laser intensity and wake velocity has been characterized for a

range of parameters of interest for current and future laser-plasma accelerators.

3D Particle-in-Cell simulations are the most robust tools available for simulating non-

linear laser-plasma interaction physics, but they are extremely demanding in terms of

computational power. In Part II, we have reviewed the numerical methods, and the nu-

merical and computational optimizations that allow to accurately model the 3D Physics

of laser plasma accelerators with present supercomputing architectures.

In Chapter 4, we have presented the GPU Particle-in-Cell code jasmine and we have

shown its single-GPU performance benchmark. The code scalability was measured for

a warm plasma test simulation run on multiple GPU nodes. A GPU-friendly load-

balancing algorithm has been proposed, helping to efficiency for laser plasma acceleration

simulations in which the load imbalance across nodes would severely hurt performance.

The relative performance of jasmine, versus our CPU PIC implementation ALaDyn [3],

has been measured running full scale, 3D, benchmark simulations in the same numerical

conditions. The performance of jasmine per single, Fermi-generation, GPU board has

shown to be roughly equivalent to the one of ALaDyn run on 40-50 modern CPU cores.

In addition, GPU performance is scaling (and it is planned to scale) well with years, while

single core performance is not following the same trend. In jasmine, we have observed

a “free” ~25% performance increase moving from the Fermi to the Kepler architectural

generation. Furthermore, we think that the algorithms we have developed for GPUs

today can fit future high performance computing architectures. The code jasmine has

been used to model recent LWFA experiments (Sections 7.1 and 7.2) run with the 220TW

INFN-LNF FLAME laser system and with the 10TW laser system installed at the Intense

Laser Irradiation Laboratory (ILIL) of the INO of the CNR in Pisa, with the goal of

studying optically driven electron beam sources for Thomson scattering [41].

Scaling to longer acceleration lengths is the key to success for multi-GeV LWFA ac-

celeration schemes. Modeling such long stages with full 3D Particle-in-Cell models is

computationally prohibitive, with present supercomputing architectures, because of the

extremely large scale separation between the shortest distance to resolve, the laser wave-

length, and the interaction (acceleration) length.

The LBNL codes INF&RNO and INF&RNO/quasi-static use reduced models to scale

down the computational demands by several orders of magnitude, but, for accurately
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describing the nonlinear 3D Physics of high energy laser-plasma accelerators, several

thousands of CPU core hours are still requried. For these codes, efficient parallelization

is therefore still of fundamental importance. The advanced numerical schemes required

to develop advanced parallelization techniques. The two codes, and the numerical and

computational optimizations, that only combined give the possibility to accurately model

multi-GeV LWFA stages with present architectures in practical times, were described in

Chapter 5 and 6.
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