Catalytic processes for the transformation of ethanol into acetonitrile

Folco, Federico (2013) Catalytic processes for the transformation of ethanol into acetonitrile, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica industriale, 25 Ciclo. DOI 10.6092/unibo/amsdottorato/5743.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (5MB) | Anteprima

Abstract

This thesis deals with the transformation of ethanol into acetonitrile. Two approaches are investigated: (a) the ammoxidation of ethanol to acetonitrile and (b) the amination of ethanol to acetonitrile. The reaction of ethanol ammoxidation to acetonitrile has been studied using several catalytic systems, such as vanadyl pyrophosphate, supported vanadium oxide, multimetal molibdates and antimonates. The main conclusions are: (I) The surface acidity must be very low, because acidity catalyzes several undesired reactions, such as the formation of ethylene, and of heavy compounds as well. (II) Supported vanadium oxide is the catalyst showing the best catalytic behaviour, but the role of the support is of crucial importance. (III) Both metal molybdates and antimonates show interesting catalytic behaviour, but are poorly active, and probably require harder conditions than those used with the V oxide-based catalysts. (IV) One key point in the reaction network is the rate of reaction between acetaldehyde (the first intermediate) and ammonia, compared to the parallel rates of acetaldehyde transformation into by-products (CO, CO2, HCN, heavy compounds). Concerning the non-oxidative process, two possible strategies are investigated: (a) the ethanol ammonolysis to ethylamine coupled with ethylamine dehydrogenation, and (b) the direct non-reductive amination of ethanol to acetonitrile. Despite the good results obtained in each single step, the former reaction does not lead to good results in terms of yield to acetonitrile. The direct amination can be catalyzed with good acetonitrile yield over catalyst based on supported metal oxides. Strategies aimed at limiting catalyst deactivation have also been investigated.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Folco, Federico
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze chimiche
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Ethanol Acetonitrile Ammoxidation Amination Catalyst
URN:NBN
DOI
10.6092/unibo/amsdottorato/5743
Data di discussione
12 Aprile 2013
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^