Valente, Giordano
(2013)
Subject-specific musculoskeletal models of the lower limbs for the prediction of skeletal loads during motion, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Bioingegneria, 25 Ciclo. DOI 10.6092/unibo/amsdottorato/5561.
Documenti full-text disponibili:
Abstract
The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion.
The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing.
The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective.
Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.
Abstract
The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion.
The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing.
The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective.
Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.
Tipologia del documento
Tesi di dottorato
Autore
Valente, Giordano
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Subject-specific musculoskeletal modeling; Dynamic simulations of movement; Muscle forces; Joint contact forces; Sensitivity analysis; Monte-Carlo simulations;
URN:NBN
DOI
10.6092/unibo/amsdottorato/5561
Data di discussione
12 Aprile 2013
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Valente, Giordano
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Subject-specific musculoskeletal modeling; Dynamic simulations of movement; Muscle forces; Joint contact forces; Sensitivity analysis; Monte-Carlo simulations;
URN:NBN
DOI
10.6092/unibo/amsdottorato/5561
Data di discussione
12 Aprile 2013
URI
Statistica sui download
Gestione del documento: