Documenti full-text disponibili:
Abstract
Fibre-Reinforced-Plastics are composite materials composed by thin fibres with high mechanical properties, made to work together with a cohesive plastic matrix. The huge advantages of fibre reinforced plastics over traditional materials are their high specific mechanical properties i.e. high stiffness and strength to weight ratios. This kind of composite materials is the most disruptive innovation in the structural materials field seen in recent years and the areas of potential application are still many.
However, there are few aspects which limit their growth: on the one hand the information available about their properties and long term behaviour is still scarce, especially if compared with traditional materials for which there has been developed an extended database through years of use and research.
On the other hand, the technologies of production are still not as developed as the ones available to form plastics, metals and other traditional materials. A third aspect is that the new properties presented by these materials e.g. their anisotropy, difficult the design of components.
This thesis will provide several case-studies with advancements regarding the three limitations mentioned.
In particular, the long term mechanical properties have been studied through an experimental analysis of the impact of seawater on GFRP. Regarding production methods, the pre-impregnated cured in autoclave process was considered: a rapid tooling method to produce moulds will be presented, and a study about the production of thick components. Also, two liquid composite moulding methods will be presented, with a case-study regarding a large component with sandwich structure that was produced with the Vacuum-Assisted-Resin-Infusion method, and a case-study regarding a thick con-rod beam that was produced with the Resin-Transfer-Moulding process. The final case-study will analyse the loads acting during the use of a particular sportive component, made with FRP layers and a sandwich structure, practical design rules will be provided.
Abstract
Fibre-Reinforced-Plastics are composite materials composed by thin fibres with high mechanical properties, made to work together with a cohesive plastic matrix. The huge advantages of fibre reinforced plastics over traditional materials are their high specific mechanical properties i.e. high stiffness and strength to weight ratios. This kind of composite materials is the most disruptive innovation in the structural materials field seen in recent years and the areas of potential application are still many.
However, there are few aspects which limit their growth: on the one hand the information available about their properties and long term behaviour is still scarce, especially if compared with traditional materials for which there has been developed an extended database through years of use and research.
On the other hand, the technologies of production are still not as developed as the ones available to form plastics, metals and other traditional materials. A third aspect is that the new properties presented by these materials e.g. their anisotropy, difficult the design of components.
This thesis will provide several case-studies with advancements regarding the three limitations mentioned.
In particular, the long term mechanical properties have been studied through an experimental analysis of the impact of seawater on GFRP. Regarding production methods, the pre-impregnated cured in autoclave process was considered: a rapid tooling method to produce moulds will be presented, and a study about the production of thick components. Also, two liquid composite moulding methods will be presented, with a case-study regarding a large component with sandwich structure that was produced with the Vacuum-Assisted-Resin-Infusion method, and a case-study regarding a thick con-rod beam that was produced with the Resin-Transfer-Moulding process. The final case-study will analyse the loads acting during the use of a particular sportive component, made with FRP layers and a sandwich structure, practical design rules will be provided.
Tipologia del documento
Tesi di dottorato
Autore
Poodts, Ezequiel
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Ingegneria industriale
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Composite materials, cune kinetics, ageing, rapid tooling, thick composites, RTM, vari, sandwich structure
URN:NBN
DOI
10.6092/unibo/amsdottorato/5402
Data di discussione
31 Maggio 2013
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Poodts, Ezequiel
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Ingegneria industriale
Ciclo
25
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Composite materials, cune kinetics, ageing, rapid tooling, thick composites, RTM, vari, sandwich structure
URN:NBN
DOI
10.6092/unibo/amsdottorato/5402
Data di discussione
31 Maggio 2013
URI
Statistica sui download
Gestione del documento: