Sulfanyl Radical Addition to Alkynes: Revisiting an Old Reaction to Enter the Novel Realms of Green Chemistry, Bioconjugation, and Material Chemistry

Monesi, Alessandro (2012) Sulfanyl Radical Addition to Alkynes: Revisiting an Old Reaction to Enter the Novel Realms of Green Chemistry, Bioconjugation, and Material Chemistry, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze chimiche, 24 Ciclo. DOI 10.6092/unibo/amsdottorato/4555.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (8MB) | Anteprima

Abstract

In the last decade considerable attention has been devoted to the rewarding use of Green Chemistry in various synthetic processes and applications. Green Chemistry is of special interest in the synthesis of expensive pharmaceutical products, where suitable adoption of “green” reagents and conditions is highly desirable. Our project especially focused in a search for new green radical processes which might also find useful applications in the industry. In particular, we have explored the possible adoption of green solvents in radical Thiol-Ene and Thiol-Yne coupling reactions, which to date have been normally performed in “ordinary” organic solvents such as benzene and toluene, with the primary aim of applying those coupling reactions to the construction of biological substrates. We have additionally tuned adequate reaction conditions which might enable achievement of highly functionalised materials and/or complex bioconjugation via homo/heterosequence. Furthermore, we have performed suitable theoretical studies to gain useful chemical information concerning mechanistic implications of the use of green solvents in the radical Thiol-Yne coupling reactions.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Monesi, Alessandro
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze chimiche
Ciclo
24
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
radical, Ionic Liquids, water, DFT, Molecular dynamics, CPMD
URN:NBN
DOI
10.6092/unibo/amsdottorato/4555
Data di discussione
12 Aprile 2012
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^