Three dimensional seismic imaging and earthquake locations in a complex, segmented fault region in Southern Apennines (Italy)

Amoroso, Ortensia (2012) Three dimensional seismic imaging and earthquake locations in a complex, segmented fault region in Southern Apennines (Italy), [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Geofisica, 24 Ciclo. DOI 10.6092/unibo/amsdottorato/4287.
Documenti full-text disponibili:
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (17MB) | Anteprima


The southern Apennines of Italy have been experienced several destructive earthquakes both in historic and recent times. The present day seismicity, characterized by small-to-moderate magnitude earthquakes, was used like a probe to obatin a deeper knowledge of the fault structures where the largest earthquakes occurred in the past. With the aim to infer a three dimensional seismic image both the problem of data quality and the selection of a reliable and robust tomographic inversion strategy have been faced. The data quality has been obtained to develop optimized procedures for the measurements of P- and S-wave arrival times, through the use of polarization filtering and to the application of a refined re-picking technique based on cross-correlation of waveforms. A technique of iterative tomographic inversion, linearized, damped combined with a strategy of multiscale inversion type has been adopted. The retrieved P-wave velocity model indicates the presence of a strong velocity variation along a direction orthogonal to the Apenninic chain. This variation defines two domains which are characterized by a relatively low and high velocity values. From the comparison between the inferred P-wave velocity model with a portion of a structural section available in literature, the high velocity body was correlated with the Apulia carbonatic platforms whereas the low velocity bodies was associated to the basinal deposits. The deduced Vp/Vs ratio shows that the ratio is lower than 1.8 in the shallower part of the model, while for depths ranging between 5 km and 12 km the ratio increases up to 2.1 in correspondence to the area of higher seismicity. This confirms that areas characterized by higher values are more prone to generate earthquakes as a response to the presence of fluids and higher pore-pressures.

Tipologia del documento
Tesi di dottorato
Amoroso, Ortensia
Dottorato di ricerca
Scuola di dottorato
Scienze matematiche, fisiche ed astronomiche
Settore disciplinare
Settore concorsuale
Parole chiave
seismic tomography, seismic data processing
Data di discussione
16 Marzo 2012

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi