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Introduction

The southern Apennines of Italy is a seismically active belt characterized by

a complex crustal environment in response of a very intense geodynamic ac-

tivity. The area has been interested by large earthquakes both in historic and

recent time. The last destructive earthquakes was the 23 November 1980, M

6.9, Irpinia earthquake which killed more than 3000 people and produced huge

damage. Then a moderate magnitude earthquake (ML 4.9) occurred on 3

April 1996. The present day seismicity is characterized by small-to-moderate

magnitude earthquakes (ML≤3.2). Although the present seismicity does not

represent a real threat for the region and its inhabitants, it can be a useful

probe for a deeper knowledge of the fault structures where the largest earth-

quakes occurred in the past.

In this framework, the present Thesis would be a contribution to improve the

present day knowledge about seismicity location and the velocity model for the

area. The Thesis has a twofold aim. First, benefiting from the recent installa-

tion in the area of a dense seismic network, that is, the Irpinia Seismic Network

(ISNet), which allows the recording of microearthquakes, a 3D velocity model

is retrieved for both P-wave and S-wave. Second, the three-dimensional image

of the fault area based on a joint interpretation of the velocity models and

the earthquakes location. To this aim two main directions have been followed.

This first direction focused on one of the most critical aspects of data analysis

concerning the optimal seismic phases identification. In this respect, a tech-

nique devoted to improve the S-phase identification has been developed which

combines polarization analysis of single three components recording of a seis-
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mic event with the analysis of lateral waveform coherence in a trace gathers

(Amoroso et al., 2012). As a further improvement, a refined re-picking algo-

rithm based on the waveforms similarity has been applied providing with a

high-accurate observed travel-times dataset (Rowe et al., 2002). The second

direction involved the adoption of a specific tomographic inversion strategy

which allowed to infer more accurate velocity models and earthquakes location

compared with those present in the literature. Specifically, an iterative, lin-

earized, damped, tomographic approach (LeMeur et al., 1997, Latorre et al.,

2004, Vanorio et al., 2005, Battaglia et al., 2008) has been implemented in

which the arrival times of both P- and S-phase are simultaneously inverted for

earthquakes location and velocities distribution estimation (Thurber, 1992).

The inversion strategy is based on a multiscale approach ( Bunks et al., 1995)

consisting in a series of inversions with a progressively decreasing grid spacing.

The Thesis is organized in four chapters. In the first chapter a description of

the geological setting of the are under study is presented. The second chapter

concerns the data selection criteria and the techniques adopted for the mea-

surement of the seismic phases. The formulation of the inverse problem, the

description of the tomographic inversion strategy are described in the third

chapter. The fourth chapter contains the main results and the resolution anal-

ysis.



Chapter 1

Geological and structural

setting of the Southern

Apennines, Italy

1.1 Introduction

The Southern Apennines are one of the areas in Italy that are characterized by

a very intense geodynamic activity. The formation of the Southern Apennines

is related to westward subduction of the Apulian-Ionian lithosphere. Starting

from the Upper Pliocene, the internal sector of the chain began to be affected

by a NNW-SSE extensional tectonics (Doglioni et al., 1996). From the Up-

per Middle Pleistocene, a major change in the geodynamic evolution of the

tectonic features triggered a phase of fast lifting which added an extension

tectonic to the dominant NE-SW component (Westaway, 1993). The normal

faults NW-SE oriented, parallel to the principal axis of the chain, developed in

response to this extension (Valensise and Pantosti, 2001). As can be inferred

from seismic catalogs, the Southern Apennines have been affected by several

destructive earthquakes. In accordance with the extensional tectonics the fault

plane solutions of these earthquakes, whose epicenters are confined within a

narrow belt along the axis of the mountain chain, show predominantly normal
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fault mechanisms in the NE-SW direction (Amato and Montone, 1997; Anzidei

et al., 2001; Pasquale et al., 2009). In particular, the 23 November 1980 Ms

6.9 earthquake, was associated with a normal fault system consisting of three

segments that were activated at three different instant of time (Bernard and

Zollo, 1989). In this scenario, the analysis of background seismicity and three-

dimensional crustal velocity models can help to improve understanding of the

geometry of active faults and the recent tectonic evolution of the area.

1.2 Structure and regional geology

The structural architecture of the Southern Apennines is schematically de-

scribed by a buried duplex system orogenically transported over the flexured

southwestern margin of the Apulia foreland. The duplex system consists of

the carbonate deriving from the Apulia Carbonate Platform (ACP) overlain

by a pile of rootless nappes (Patacca and Scandone, 1987). The ACP consists

of 78 km thick Mesocenozoic carbonate sequence, which overlies Permotriassic

clastic deposits (Verrucano Fm., Roure et al., 1991). PlioPleistocene terrige-

nous deposits stratigraphically cover the flexed ACP in the eastern margin of

the Bradano Trough (Casnadei, 1998). Moving westward to the external zone

of the belt, the ACP progressively dips below the rootless nappes and is in

turn involved in the folds and thrusts of the thrust belt (Figure 1.1).

The thrust sheet stacks overlying the ACP are derived from the deformation

of three main palegeographic domains (Patacca et al., 1992):

• the Lagonegro Basin located between the Apulia Carbonate Platform

and the Western Carbonate Platforms;

• the Western Carbonate Platforms, consisting of Mesozoic and Paleogene

carbonate sequences followed by Upper Miocene siliciclastic flysch de-

posits;

• internal basin domains, which are related to the Sannio and Sicilide Com-
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Figure 1.1: Simplified geological map of the southern Apennines showing the
major structural features (DeMatteis et al., 2010). 1. Molise - Sannio - Lagonegro
pelagic basin and related foredeep deposits; 2. Apennine carbonate platform; 3.
Apulia carbonate platform (ACP); 4. Pliocene - Quaternary terrigenous deposits;
5. Ligurides and Sicilides; 6. Magmatic units; 7 Main thrust front.

plexes.

Syntectonic terrigenous sequences do not uniformly cover the thrust sheet

stacks and represent the infill of satellite basins of Late Tortonian to Early

Pleistocene age (Patacca and Scandone, 2001).

In additional to geological analysis our present knowledge of the upper crustal

structure has benefited from intense hydrocarbon exploration. Thanks to in-

dustrial seismic reflection survey and well data collected in the area the deep

structure of the Southern Appenines is well reconstructed to a depth of about

10 km (Mostardini and Merlini, 1986; Patacca and Scandone, 1989; Casero

et al., 1991; Roure et al., 1991; Menardi and Rea, 2000; Scrocca et al., 2005).

Moreover, recent cross section interpretation of the seismic reflection profile
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CROP04, shown in Figure 1.2, (Cippitelli, 2007) allowed the identification of:

the top of the Apennine Platform; the top of Lagonegro-Irpinia flysch sequence

or imbricate; the top of Apulia Platform carbonate and the base of carbonate

sequence (Figure 1.3).

are representing the range and develop an accretionary
wedge overthrusting, toward the east, over the Outer Apu-
lian Platform that represents the foreland. The aim of the
CROP-04 profile was to explore the shallow and deep
structures in the range and its foreland.

The Crop-04 Agropoli-Barletta seismic profile (fig. 1)
was acquired between November 1989 and April 1990, as
part of the CROP project regulated by the agreement
entered into by CNR, Agip and ENEL.

The profile acquisition has been carried out following
the standard techniques for such a type of surveying, nev-
ertheless, to achieve the best results, two different energy
sources – dynamite and Vibroseis – and a 120% folding,
have been utilized. In spite of these advanced field tech-
niques, the first data processing provided a very poor

result which did not allowed a realistic interpretation and
the definition of the deep structural setting. 

In order to improve the poor result, it was decided to
reprocess the acquired data, but, almost contemporane-
ously with the profile acquisition, very important oil dis-
coveries were made in the Agri Valley. Because of this
event, the oil companies operating in Southern Italy,
decided either to acquire or to reprocess a large number
of industrial seismic lines in order to achieve a quality
data better than the CROP-04 profile. Such an improved
quality is, in fact, suitable for defining the Southern
Apennines structural setting, at least up to a depth of
5000-6000 m, which is sufficient to outline a hydrocarbon
prospect. In this context the relevance of the CROP-04
profile was limited to delineate only the deeper structure

268 G. CIPPITELLI

Fig. 1 - Schematic structural map showing the layout of the CROP-04 seismic profile and the location of the most important exploration wells
drilled in the study area: 1) alluvial-pyroclastic Olocene sediments; 2) Vulture volcanics; 3) Liguride-Sicilide-Cilento flysch; 4) Apennine
Platform; 5) Lagonegro and Irpinia flysch imbricates; 6) Bradano Plio-Quaternary overburden; 7) Outer Apulia Platform.
– Mappa strutturale schematica che mostra la traccia del profilo sismico CROP-04 e l’ubicazione dei pozzi esplorativi più importanti perforati
nell’area studiata: 1) sedimenti continentali e piroclastici dell’Olocene; 2) prodotti vulcanici del Vulture; 3) complesso dei flysch Liguride-Sicilide e
del Cilento; 4) Piattaforma Appenninica; 5) Complesso delle falde lagonegresi e dei flysch irpini; 6) copertura plio-quaternaria della Fossa Bradanica;
7) Piattaforma Apula esterna.

Figure 1.2: Schematic structural map showing the layout of the CROP04 seismic
profile together with the location of the most important exploration wells drilled in
the study area (Cippitelli, 2007): 1) alluvial-pyroclastic Olocene sediments; 2) Vul-
ture volcanics; 3) Liguride-Sicilide-Cilento flysch; 4) Apennine Platform; 5) Lagone-
gro and Irpinia flysch imbricates; 6) Bradano Plio-Quaternary overburden; 7) Outer
Apulia Platform.
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Fig. 6 - Structural cross-section Agropoli-Barletta inferred by the depth conversion of the two way time structural features recognized by the CROP-04 seismic profile interpretation. 1) Apennine
Platform; 2) Apulian Platform; 3) Lagonegro and Irpinia Flysch; 4) Permo-Triassic substratun; 5) Cilento Flysch and Liguride-Sicilide complex; 6) Plio-Quaternary overburden; 7) Castelgrande
Sandstone; 8) reverse fault-overthrust plane; 9) normal fault; 10) unconformity.
– Sezione strutturale Agropoli-Barletta ottenuta convertendo in profondità i lineamenti strutturali in tempi doppi, riconosciuti attraverso l’interpretazione del profilo sismico CROP-04.

Figure 1.3: Structural cross-section Agropoli-Barletta inferred from the depth
conversion of the two-way time structural features recognized from the CROP04
seismic profile interpretation (Cippitelli, 2007). 1) Apennine Platform 2) Apulian
Platform 3) Lagonegro and Irpinia flysch 4) Permo-triassic substratum 5) Cilento
Flysch and Liguride-Sicilide complex 6) Plio-Quaternary everburden 7) Castelgrande
Sandstone 8) reverse fault-overthrust plane 9) normal fault 10) unconformity.

1.3 Seismicity

The southern Apennines have been experienced several destructive earthquakes

both in historic and recent times. Figure 1.4 shows the locations and the dates

of the most know earthquake as reported in CSI catalogue.

The 23 November 1980 Ms 6.9 Irpinia earthquake

The most recent destructive event is the 23 November, 1980, Ms 6.9 earth-

quake. This earthquake was characterized by three distinct rupture episode,
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Figure 1.4: Map of the instrumental seismicity of southern Apennines (period
1981-2008, from the CSI catalog, see http://csi.rm.ingv.it). Dates of historical earth-
quakes with magnitude larger than 6.0 are reported.

occurred at 0s, 18s and 39s, associated with normal faulting. The three seg-

ments together with their corresponding seismic moment and the beach balls

are shown in Figure 1.5. The first episode ruptured two faults striking north-

west before triggering the failure of an isolated fault in the north, with an

uncostrained mechanism, different from the earlier one (Bernard and Zollo,

1989). The Monte Marzano segment ruptured first and the associated fault

showed a normal mechanism on a plane dipping 60◦ toward the northeast (Fig.

1.5). The Monte Picentini segment ruptured from its southern edge about 2s

afterward, with the same mechanism and with a length of 20 km. The second

episode consisted in the rupture of the southern segment occurring on a low

dip-angle normal fault (20◦) asssociated with secondary shallower faults with

a length of 20 km. The last episode at 40s may have activated a fault plane

antithetic to the Monte Marzano segment (Fig. 1.5). This inusual pattern of



1.3 Seismicity 13

faulting is a consequence of the complex structural geology characterizing the

tectonic environment in which the fault system is embedded.

Since 1980, the largest event that occurred within the epicentral area of the

1980 earthquake was the 3 April 1996 ML=4.9 earthquake, which characterized

by a normal faulting mechanism (Cocco et al., 1999).

BEP•NAP•D AND ZOLLO: IP•PINIA, ITALY, 1980 EARTHQUAKE 1645 

The main difficulty in the modeling is the apparent in- 

compatibility between the 1 m of dislocation deduced from 
the teleseismic moment (from 0 to 7 s), in agreement with 
the surface observation, and the 3 m of dislocation required 

by the leveling data in the central area. This last value is ob- 
tained with a single fault along Monte Marzano's and Monte 
Picentini's northeastern edge, but adding the effect of fault 

F (0.2 m) is not enough to explain the amplitude of subsi- 
dence. This imposes an important aseismic deformation of 
the main fault or additional faults closer to the leveling line. 

The report of numerous shallow events between the fault F 
and the main fault is consistent with the second hypothesis. 

Note also the 0.1-m discontinuity on the leveling line plotted 

in the left upper corner of Figure 8b. 

CONCLUSION 

The image of the whole faulting, as deduced from the 

preceeding sections, is presented in the sketch of Figure 18, 

which depicts the three main episodes of the rupture. The 
focal mechanisms and some of the seismic moments were 

calculated by Westa•val/ and Jackson [1987]. Nevertheless, 
our preferred model differs from the one proposed by these 
authors in several major points, concerning the length of the 

first rupture and the identification of the fault planes of the 
two other events. Several faults were activated during these 

three episodes, whose characteristics can be summarized as 
follows. 

15ø10 ' 15 ø 

I I 

M. • 4.5 x I0 aNm 9 , 1,0 km 
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I 
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sw NE 

ß / 
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41 ø 00' 
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40'40' 

Fig. 18. Sketch of the rupture process and associated mecha- 
nisms for the Irpinia, November 25, 1980, earthquakeß This ear- 
thquake consisted mainly of three rupture episodes, beginning 
at 0, 18 and 39 s, associated with normal faulting. Focal me- 
chanisms and seismic moments are deduced from Westawal/ a•d 

Jackso• [1987]. The spatial extension of the first rupture and the 
source identification of the 20-s and 40-s teleseismic phases are 

results of the present study. The first episode ruptured two faults 
striking northwest before triggering the failure of an isolated fault 
in the north, with an unconstrained mechanism, different from the 
earlier one. The mean velocity was $ km/s. The second episode 
consisted in the rupture of the southern segment occurring on a 
low dip-angle normal fault associated with secondary shallower 
faults. The last episode at 40-s may have activated a fault plane 
antithetic to the Monte Marzano segment. 

Central Rupture and Northwestern Propagation 

The Monte Marzano segment ruptured first, and its nu- 

cleation occurred near its northeastern edge, close to the 

transversal Sele valley graben. It had a seismic moment Mo 

= 2.5 x 10 is N m and a duration of less than 4 s. Its timing 
is not constrained by strong motion data. This moment is 
consistent with a surface of 10 x 10 km 3 and 0.8 m of dislo- 

cation, as reported from field observations. In particular, the 

reported surface breakage is very likely to be the direct out- 

crop of the main fault. The fault shows a normal mechanism 

on a plane dipping 60 ø toward the northeast. 

The Monte Picentini segment ruptured from its southern 

edge about 2 s afterward, with the same mechanism. Its 

length was about 15 km, and its duration about 5 s. Assu- 

ming the same slip of 0.8 m, and a depth of 15 km, one gets 

a seismic moment Mo = 5.4 x 10 is N m, which is twice as 
small as the one proposed by Westaway and Jackson (Mo = 
10.7 x 10 Is N m}. This is because these authors added the 
moment release of the phases observed between 7 and 12 s. 

Our accelerogram analysis shows that these late phases are 

likely to come from a source located more to the north. If 

one does not consider these arrivals, the teleseismic phases 

give a reduced seismic moment of 6.2 x 10 Is N m, consistent 
with our estimation. 

The northern segment, at about 20 km from the main hy- 

pocenter, ruptured 7 s after nucleation, which gives a mean 

rupture velocity of 3 km/s. The main faulting occurred on a 
fault which has a different geometry from the previous one, 

and consequently the estimated moment from teleseismic 

data, Mo = 4.5 x 10 Is N m, is not reliable. Furthermore, 
this teleseismic phase is contaminated by the backswing of 

earlier, more energetic arrivals. The dimension of the after- 

shock distribution area suggests a smaller moment (possibly 
1 to 4 x 10 is N m). The low-frequency content associated 
with corresponding strong motion S phases suggests a shal- 

lower rupture in the low-velocity sediments. 

A clear correlation appears between the strength of the 

geological formations and the existence of surface breakage 

and shallow aftershock activity: These two phenomena ap- 

pear in the limestone formation of the pre-Tertiary nappea 

of Monte Marzano, but not in the deep fiysch basin near 
Monte Picentini. 

The Southern Rupture 

The southern segment rupture started 18 s after nuclea- 

tion of the first event and 15 km southeast of its hypocenter, 

on a low-angle normal fault (30 ø) dipping toward the nor- 
theast. Leveling imposes a slip of 0.3 m. Teleseismic wave- 

forms give a moment of 4 x 10 is N m (deduced from We•ta- 
wall and Jackson [1987]), corresponding to a fault of about 
30 km in length. The rupture propagated largely toward 

the southeast, as inferred by leveling data, strong motion 

records, and aftershock data. The reported surface rupture 

cannot be related directly to the main fault plane but may 

be associated with it through a secondary faulting system. 

The Eastern Rupture at 40 s 

The latest event started at 39 s and may have ruptured 

the northeastern side of a grabenlike structure striking NW, 

whose southwestern edge is the Monte Marzano segment. 

This is consistent with all data considered in the present 

study: leveling, time analysis of accelerograms, teleseismic 

Figure 1.5: Sketch of the rupture process and associated mechanism for the Irpinia,
November 23, 1980 earthquake (Bernard and Zollo, 1989).

The 5 May 1990 Ml 5.2 and 26 May 1991 mb 5.1 earthquakes

Ten years after the 23 November 1980 Irpinia Ms 6.9 earthquake, a moderate

event on 5 May 1990 ML = 5.2 occurred approximately 40 km east of the

southern end of the 1980 aftershock zone causing damage in the nearby town

of Potenza. Approximately one year later, the 26 May 1991 mb = 5.1 earth-

quake struck the same area, causing additional minor damage in the Potenza

area. Both the two earthquakes were characterized by strike-slip faulting on

an oriented plane approximately east-west (DiLuccio et al., 2005).
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Present-day background seismicity

The present-day micro-earthquakes distribution is characterized by event with

moment magnitude ranging between 0.9 and 3.2, and mainly occurs on the

NW-SE striking normal fault system along the Apenninic belt and on a nearly

E-W alignment in the Potenza region which transversely cuts the chain (De-

Matteis et al., 2012). The depth distribution is located in the uppermost 15

km of the crust except in the Potenza region where the earthquake can be

occur at larger depth (25 km).

1.4 Tomographic images of the Southern Apen-

nines: status at present

The velocity models currently available in literature for the area under study

provide substantial information about the P wave velocity structure on a wide

scale. In the present section the most important papers and findings are re-

ported:

• Amato et al. (1992) and Amato and Selvaggi (1993) have imaged the

three-dimensional velocity structure in the epicentral area of the 23

November 1980 earthquake, using Thurber’s inversion technique for both

hypocenter and velocity parameters. The used dataset consisted of the

both aftershocks recorded by a local network temporarily installed in

the area. Their results show that the main rupture occurred along a

sharp NW-SE trending velocity, due to a crustal discontinuities (Figure

1.6). The velocity variation along the fault reflects the complex feature

of the earthquake. The analyzed seismicity is concentrated beneath the

Marzano-Valva sub-segment, where the maximum slip was observed. The

region of the Sele Valley, where no surface slip was observed, is charac-

terized by strong low velocities in coincidence of a lack of seismicity in

the upper 7 km (Figure 1.7);
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here only the results from 3-9 km depth, as the 

resolution at 12 km depth ]s good only in a 

narrow central regmn (Fig 4(d)) 

The high-velocity anomahes at 3 km depth 

(Fig 4(b)) are probably due to the presence of 

the limestone umts of the buried Campama plat- 

form (Mostardmt and Merhnl, 1986). The low- 

velocity anomahes are determined by the basin of 

the Ofanto river, to the east, and by the N-S 

trending Sele Valley, which separates two high- 

velocity regions (Fig 4(a)) As pointed out by 

Bernard and Zollo (1989) and by Cocco and 

Pacor (1992) based on strong motion data, the 

region of the Sele Valley delayed the main rup- 

ture northwestward for about 2 s Furthermore, 

Pantostl and Valenslse (1990) found no surface 

shp in this region, which was interpreted as a 

'relaxation barrier.' The existence of low veloci- 

ties down to approximately 5-6 km depth, which 

correspond also to a rarefaction of the setsm]c]ty, 

suggests that the Sele barrier is determined by a 

lateral rheologlcal heterogeneity 

At greater depth, the prominent feature in the 

velocity distribution ]s the abrupt contrast be- 
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Fig (a) S]mphfied geologlc map of the ]rplma region The map comodes with the area of the computed 3-D veloclty model (I) 

Meso-Cenozolc hmestones of the Campama platform, (2) temgenous and flyscho]d formatmns, (3) Pho-Plelstocene sedlments (v's 

mdlcate the volcamc rocks of the Vulture Mtn ) (b), (c) and (d) are the P-veloclty anomahes at 3. 6, and 9 km depth, respectlvely 

T h e  d a s h e d  a r e a s  a r e  h igh  veloci t ies ,  the  d o t t e d  zones  a r e  low veloci t ies  

Figure 1.6: (a) Simplified geological map of the Irpinia region, (b), (c), (d) P ve-
locity anomalies at 3,6 and 9 km depth, respectively. The dashed area corresponding
to the high velocity, the dotted sones are low velocity (Amato et al., 1992).

• Chiarabba and Amato (1994) discussed the relationship between the seis-

mogenic behaviour of the faults and the velocity structure of the area

as inferred from seismic tomography. In particular, they interpreted the

high velocity zones as a brittle region with high-strength rock and the

low-velocity zones as a region where weak material are prevalent. Their

findings suggested that large lithological and rheological heterogeneities

in the shallow crust played a crucial role in the rupture process of the

Irpinia earthquake.

• Improta et al. (2003) analyzing and interpreting gravimetric data, seis-

mic reflection and information from deep wells, retrieved information on

the upper crustal structure in the Irpinia region. In particular, they
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tween high velocities in the southwestern region 

and low velocmes m the northeastern area (Fig. 

4(c), (d)). The location and strike (approximately 

NW-SE) of the boundary between high- and 

low-velocity regions (Fig. 4(b)-(d)) approximately 

correspond to the posmon and geometry of the 

normal fault at depth, which ruptured during the 

mamshock (strike = 314 °, dip = 60 °, rake = 270°; 

see Fig. 1). According to Westaway and Jackson 

(1987) the mamshock is located at approximately 

10 km depth, just below the depth where we 

detected the velocity change (Fig. 4(c), (d)). The 

mare rupture propagated close to the boundary 

between the high- and low-velocity zone, proba- 

bly w~thm the former. This suggests the existence 

of a discontmmty at depth that might have drwen 

the rupture process. 

The hlgh-veloc~ty region observed at 9 km 

depth (Fig. 4(d)) comcldes approximately wtth the 

extent of the main rupture (the so-called 0 s 

a 
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Fig 5 (a) Cross-section perpendicular to the main fault The rupture started m the high-velocity region, at approximately 10 km 

depth (sohd diamond), with a 60 ° dip, and becomes almost vert ical in the upper 6 -7  km '40s' indicates the antl thet lc fault  that 

ruptured 40 s after the mare shock, interpreted as a reactivated thrust (b) Cross-section paral lel  to the rnam fault  The selsmicity is 

concentrated beneath the Marzano -Va l va  sub-segment, where the maximum slip (1 m) was observed The region o f  the Sele 

Valley, where no surface slip was observed, is characterized by strong low velocities in coincidence with a lack o f  sclsmiclty in about 

the upper 7 km The surface shp prof i le is f rom Pantosti and Valcnslsc (1990) Figure 1.7: (a) Cross-section perpendicular to the main fault. (b) Cross-section
parallel to the main fault (Amato et al., 1992).

found that a) the velocity structure in the upper crust is strongly in-

fluenced by the geometry of the ACP, whose structural lows and highs

give rise to pronunced low- and high-velocity anomalies, respectively b)

a relationship between ACP geometry and the 23 Novembre 1980 Ms 6.9

Irpinia earthquake c) correlation between P-wave velocity and sedimen-

tary rocks composing the Apennines crust (see the table in Figure 1.8)

• In a recent work, DeMatteis et al., 2010 propose a 3D P-waves velocity

model retrieved from the inversion of the catalog data from 1988 through

2004. The tomographic images show the presence of a high-velocity zone

correlated with the Apennine and Apulia carbonatic platforms, while

the low velocities body are associated with basinal deposits. The distri-

bution of relocated seismicity in the obtained 3D velocity model, shows

that the largest part of the seismicity is well correlated with the faults of

the 1980 Irpinia earthquake. This evidence strongly supports the need
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P07 one (Fig. 11). This effect is modeled by thinning
the 2.25 g/cm3 shallow body and by rising the top of
both the 2.5 and the 2.7 g/cm3 layers. In the model
P07, the 2.25 g/cm3 body is only 300 m thick, while
the underlying two layers are corrugated by a broad
antiformal feature, which allows the fit of the gravity
high placed at about 24 km. As this gravity high
merges northwestward into the Frigento anomaly, this
antiformal feature may represent the southern ending
of the Frigento structure.

6.2.3. Southern sector (profiles P12–P15)
The density sections are characterised by an east-

ward extension of the 2.55–2.6 g/cm3 body (corre-
sponding to the LB lower sequence), which, along
with an eastward rise of the underlying 2.7 g/cm3

layer, allow to fit the NE-increasing trend of the large
wavelength anomalies (Fig. 12). As a consequence,
the shallow low-density (V 2.45 g/cm3) bodies, which
are associated with Tertiary basinal facies terrains,
thin on the eastern border of the sections. These

features are consistent with some structural profiles
across the southern sector of the Campania–Lucania
arc (Mostardini and Merlini, 1986; Casero et al.,
1988), which show the LB lower sequence largely
involved in the outer thrust system, as well as the
eastward rise of the ACP.

All the profiles show a marked high-frequency
positive anomaly in the central part bounded by two
secondary minima (Fig. 12). The positive anomaly is
clearly correlated with the S. Fele (profile P12) and
the Lifoi (profile P15) antiforms (Fig. 3), while the
gravity lows correspond to synforms involving Plio-
cene thrust sheet– top clastic deposits and/or of
Tertiary basinal sequences mainly consisting of var-
iegated clays (see Stagliozzo 1 well, Fig. 4C). An
anticlinal feature in the 2.55–2.6 g/cm3 layer, which
is featured upon surface and subsurface constraints,
allows the fit of the S. Fele and of the Lifoi
anomalies, while the secondary minima are mainly
modeled by shallow bodies with densities of 2.25
and 2.35 g/cm3.

Fig. 12. Gravity modeling across the profiles P12–P15 located in the southern part of the investigated area (see the locations in Figs. 3 and 7).

The thick dashed lines superimposed on model P15 correspond to the main discontinuities inferred from the reflection lines L4 and L5.

Densities are in g/cm3 (2.00 = Pleistocene deposits; 2.25 = Pliocene thrust sheet– top clastic deposits of the Ofanto Basin; 2.35 =Cenozoic

basinal successions (mainly variegated clays); 2.45 =Miocene siliciclastic flysch deposits and Cenozoic basinal successions (mainly calcareous

and arenaceous turbidites); 2.55–2.60 =Lagonegro Basin lower sequence (mainly radiolarites, cherty limestones, dolomites, siltstones);

2.60 =Western Carbonate Platfrom; 2.70 =Apulia Carbonate Platform).

Table 1

Tectono-stratigrafic units Prevalent lithology Density range

(g/cm3)

P-wave velocity

range (km/s)

Apulia carbonate platform limestones, dolomites, anhydrites 2.7 6.0–6.5

Western carbonate platform limestones, dolomites 2.60–2.65 5.3–6.0

Lagonegro Basin (Mesozoic) radiolarites, cherty limestones,

dolomites, siltstones

2.55–2.60 4.4–6.2

siliceous claystones

(Galestri Fm.)

2.5 3.5–4.4

Cenozoic basinal successions variegated clays, shales 2.35 2.8–4.2

(Lagonegro Basin, Silicide

and Sannio complexes)

siliciclastic flysch deposits

(Upper Miocene)

2.45 3.3–4.4

calcareous and arenaceous turbidites 2.45–2.50 4.0–5.2

Thrust sheet– top clastic sequences

(Pliocene–Early Pleistocene)

clays, sandstones, conglomerates 2.25 2.0–2.4

L. Improta et al. / Tectonophysics 361 (2003) 139–169 161

Figure 1.8: P wave velocities for Southern Apennines Rocks (Improta et al.,
2003).

to investigate the properties of the fractured zone on a local scale in re-

lation to the potential reactivation during future large earthquakes.

Vp/Vs ratio

The Vp/Vs ratio can be associated with the elastic characteristics of rock under

investigation and with the physic state of the pore fluid. The available infor-

mation on the Vp/Vs ratio for the area under study provide a single value for

the whole area. It has been found by optimizing the value of RMS residual of

1D and 3D localization patterns. The proposed values indicate that this ratio

is greater than or equal to 1.8 (Maggi et al., 2009; Deschamps and King, 1984;

DeMatteis et al., 2010, DeMatteis et al., 2011). The relatively high VP /VS ratio

value could be related to the presence of highly fractured zones characterized

by the presence of fluids.
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Figure 1.9: Epicentral distribution of the aftershocks of the Irpinia earthquake
located in the 3D tomographic model retrieved by DeMatteis et al. (2010). MM6
and MM7 indicate the vertical sections shown in Figure 1.10
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Chapter 2

Data and processing technique

2.1 Introduction

High-resolution imaging with microseismic events requires the use of large and

consistent data sets of seismic phase arrival times. The common procedure of

reading the arrival time of a phase (picking) involves the manual measuring of

P-and S arrivals on recordings of a single event at a time. Systematic errors

can be introduced due to inadequate working procedures such as: the inter-

action between the process of picking and the result of the location, which

can lead the operator to shift the pick to reduce the standard deviation of

the residuals (RMS) calculated for the location, when the picking activity is

shared by many operators, or when data have been collected at different net-

works. The inconsistency of the data can remain unnoticed when the data

are used to analyze the events independently from each other, but may clearly

appear when performing studies of joint determination of the hypocentral pa-

rameters and velocity model. The only way to reduce the inconsistency is to

completely revise the picking. However, the growing number of dense seismic

monitoring networks installed in areas of high seismicity offers a continuously

increasing availability of high-quality three-component recordings (3C) which

has motivated the study of techniques for automatic picking. The approaches

to automatic picking can be divided into main categories. The first one is to
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analyzes a single event at a time doing the picking on each seismogram inde-

pendently from the others. In this context, traditional methods quantify some

attributes of waveforms such ad amplitude, frequency content or polarization

in a characteristic function, and apply the automatic detection of the phase

directly to this function (Allen, 1978, Diehl et al., 2009). Other methods, such

as neural networks, working directly on the seismograms avoiding the need to

calculate attributes or characteristic functions (Dai and MacBeth, 1997). A

second approach works on several seismograms at once, exploiting the simi-

larity of waveforms from nearby events (Rowe et al., 2002) inheriting, in some

cases, from the passive seismic technique the collection of the traces in sec-

tions (Amoroso et al., 2012). The single-trace approach is more suitable for

real-time analysis because it is not based on restrictive criterion of similarity

of waveforms (Lomax et al., 2002; Vassallo et al., 2002 ). On the other hand,

the multi-trace approach is inherently more suitable for studies of relatively

small volumes such as those in which events tend to clusterize (Rowe et al.,

2002).

In this chapter I describe the used dataset, the selection made based on the

quality of the localization, the technique developed and adopted for the correct

identification of S-phase, and the approach followed for the refined re-picking

P and S.

2.2 Network and data selection

The dataset analyzed consists of 1312 events with local magnitude 0.1 ≤ Ml

≤ 3.2, recorded by 26 stations of the Irpinia Seismic Network (ISNet) and 16

stations of the network Istituto Nazionale di Geofisica e Vulcanologia (INGV)

in the period August 2005 through April 2011 (Figure 2.1). The P- and S-

phases were initially read manually on 3C ground velocity recordings. The

seismic events were located in the 1D reference velocity model for the area

(DeMatteis et al., 2011), by using the NLLoc code (Lomax et al., 2000). Figure

2.2 shows the distribution of the main earthquake location parameters. It can
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be noted that the mean horizontal error location is about 1.4 km while the

vertical error is about 1.5 km.
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Figure 2.1: Epicentral distribution of the analyzed seismic events (red dots)
recorded by ISNet (blue triangles) and INGV stations (green triangles) in August
2005 through April 2011.

A first selection of the whole dataset was performed on the basis of the

location quality: only the events that have at least 5 P- and 2 S- picked arrival

times, an azimuthal gaps lower than 200 degrees and RMS of location lower

then 0.5 s have been selected. The selection reduced the event from 1312 to

634.

In the analyzed dataset it was observed that similar event, recorded at the

same station, shows inconsistency P- and S-phases picking. This inconsistency

may be due to changes in the signal to noise ratio or to the presence of mul-

tiple arrivals (due to the phenomena of conversion or multi-path) producing



24 Data and processing technique

0

40

80

120

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

0.0 0.2 0.4 0.6 0.8 1.0

RMS (s)

0 10 20 30 40

Nph

0 100 200 300

Gap(o)

0

40

80

120

160

200

240

280

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

0 1 2 3 4 5 6

Erzz (km)

0 1 2 3 4 5 6

Erho (km)

Figure 2.2: Parameters which provide information on the reliability of the earth-
quakes location. RMS : root mean square travel time residuals. Nph: number of P
and S arrival-time observations used to compute the hypocenter location. Gap: the
largest azimuthal gap between azimuthally adjacent stations. Erho: the horizontal
location error defined as the length of the largest projection of the three principal
errors on a horizontal plane. Erzz: the depth error defined as the largest projection
of the three principal errors on a vertical line.
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uncertainties in hypocentral location or distribution of wave velocities in the

subsurface. In the next section the technique for the correct identification if

S-phase developed in the present thesis is introduced.

2.3 S-wave identification by polarization fil-

tering and waveform coherence analyses

Usually the S-waves are identified on one of the horizontal components of a seis-

mogram through the variation in amplitude and frequency of the signal with

respect to the preceding P-waves. The correct reading of the arrival times of

these waves can be complicated by various factors, such as the superposition of

the tail of the P-wave, the presence of converted waves generated at different

interfaces, and the splitting of S-waves caused by seismic velocity anisotropy

(Crampin, 1977). These factors often can have such large influences that an

operator can make significant errors in phase identification or even abandon

the reading of these waves.

In passive seismic studies, this problem is approached independently for every

single station, using different multicomponent filters applied to the individual

three-component records. These filters exploit the main characteristics of the

S-waves, such as, for example, their linear polarization and the perpendicular

direction of the particle motion of the S-waves with respect to those of the

P-waves (Vidale, 1986; Montalbetti and Kanasewich, 1970; Kanasewich, 1981;

Flinn, 1965). A characteristic function can be defined that, once cleaned of the

P-waves, clearly reveals the S-wave arrivals (Cichowicz, 1993). Recently, Diehl

et al., 2009 integrated this approach with automatic conventional detection

and picking techniques, to obtain in-situ estimations of the uncertainty and of

the quality of the corresponding waves recorded.

Lateral waveform coherence and the slowness of an arriving wave can be de-

termined with recordings from several stations, as it is done in array seis-

mology (Rost and Thomas, 2002). Moreover, processing methods in active

exploration seismics typically employ many records from different stations and
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sources simultaneously. Depending on the source and receiver geometry, traces

are grouped in various types of gathers, and move-out and stacking techniques

can be applied to enhance desired phases in these seismic sections (e.g. Ylmaz,

1987). The sum of the traces (stack trace) improves the coherent signal along

the chosen move-out curve, while reducing random noise and the amplitudes of

other, undesired phases appearing with a different slope in the seismic section.

In the present study, we propose a new data processing technique that aims

at an unequivocal identification of S-wave arrival times using the recordings

from all stations of a seismic network. In particular, the technique combines

polarization analysis of single three-component recording of an event with the

analysis of lateral waveform coherence in trace gathers. The proposed proce-

dure provides seismic sections in which the first arrivals are the S-waves. In a

novel approach the average S-wave velocity in the study area is measured from

these sections by a stacking velocity analysis similar to the techniques used in

exploration seismics. The efficacy of the technique is evaluated with synthetic

seismograms.

2.3.1 Method

The followed methodological approach can be outlined in the following way:

• P-wave picking and initial localization of the event and subsequent trace

rotation;

• Polarization filtering and construction of a characteristic function CFSW

for S waves;

• Gathering of the CFSW function traces in sections;

• Linear move-out and stacking velocity analysis.

First, to separate the P-wave energy from the SV and SH components, the

three-component records are rotated from the laboratory reference system de-

fined by the vertical component (Z), the north-south component (N) and the
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east-west component (E) into the ray-coordinate system defined by L, Q and

T. The L component represents the main direction of the particle motion of

the P-waves, the T component represents the transversal particle motion (the

SH energy), and the Q component represents the normal vector for both L

and T (the SV energy). The rotation is achieved using the incidence angle φ

and the backazimuth β of the first P-wave and the following rotation matrix

(Plesinger et al., 1986):




L

Q

T



 =





cosφ −sinφsinβ −sinφcosβ

sinφ cosφsinβ cosφcosβ

0 −cosβ sinβ



 .





Z

E

N



 (2.1)

Here the backazimuth β is determined from the epicenter location relative

to the analyzed station. The incidence angle φ is measured in a short (0.3 s)

time window starting at the P-wave pick using polarization analysis based on

the three-component covariance matrix (Montalbetti and Kanasewich, 1970).

After rotation into the ray coordinate system, several polarization attributes

are calculated in a moving time window to identify and enhance the S-wave

signals on the rotated seismograms. In order to choose the optimal window

length for the covariance matrix, Cichowicz, 1993 suggest it can be estimated

from the predominat frequency. For this purpose we use the parameter

τc =
2π√∫ t0

0 u̇2dt/
∫ t0

0 u2dt
(2.2)

introduced by Kanamori, 2005 which is a good estimator for the predominant

period of the signal having the advantage to be measured in time domain. In

Eq. (2), u̇ and u are the velocity and the displacement, respectively, while in

the following applications t0 is set to 3s.

The polarization attributes are computed from the eigenvalues and the eigen-

vectors of the covariance matrix. Particularly useful for S-wave detection are

the directivity D(t) , the rectilinearity P (t) and the ratio between the trans-

verse energy and the total energy H(t) . The directivity D(t) is defined as the

angle normalized to 1 between the L and the eigenvector corresponding to the
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maximum eigenvalue of the covariance matrix. Because the S-wave polariza-

tion is perpendicular to the P-waves, the directivity is 0 for the first P-wave

arrival and approaches 1 for the first S-wave arrival. To utilize the linear po-

larization of S-waves a measure of the level of linear polarization is calculated.

According to Samson, 2002 this rectilinearity P (t) it is given by:

P (t) =
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

2(λ1 + λ2 + λ3)
(2.3)

where λ1λ2λ3 are the eigenvalues of the covariance matrix at time t, sorted

in decreasing order. P (t) has values near 0 for the elliptical or undetermined

polarization states, and it reaches a value equal to 1 when the polarization

is perfectly linear, as expected for the first arrivals of both the P-waves and

S-waves. The ratio between the estimated energy on the transverse component

and the total energy is:

H(t) =

∑
j Q2

j + t2j∑
j L2

j + Q2
j + t2j

(2.4)

Also this operator is taken as tending to 1 for the first S-wave arrivals and to

0 for the first P-wave arrivals. Finally, as originally proposed by Cichowicz

(1993), the product of the squares of the three operators D(t), P (t) and H(t)

give the characteristic function for the detection of the S-waves:

CFS = D2(t) · P 2(t) ·H2)(t) (2.5)

In general, this characteristic function alone does not always allow an unequiv-

ocal identification of the S-wave arrivals because it depends on the assumption

that the angle of incidence can be calculated accurately from the analysis of

the polarization of the incident P-waves, and that the S-waves are linearly

polarized. In many cases, it can be advantageous to include amplitude infor-

mation in the form of a weights. As a weight function we propose the square

root of the sum of the squares of the transversal components:

W (t) =
√

Q2(t) + T 2(t) (2.6)
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To illustrate the three-component processing, Figure 2.3 shows the original

and rotated traces of a synthetic three-component seismogram together with

the computed polarization attribute traces D, P and H , and the weighted

characteristic function CFsw . The first P-wave arrival is at 0.0 s and the

S-wave arrival at about 3.4 s, the polarization window length is set to 0.25 s.

It can be seen that in correspondence with the S-wave there are simultaneous

increases in the functions D, P and H. These are also reflected in the absolute

maximum of the characteristic function CFsw (Fig. 2.3a, bottom trace), which

prominently marks the first S-wave arrival.

The polarization analysis produces only one time series CFsw, that summarizes

the polarization characteristics of S-waves measured from a three-component

recording of an event. To make the S-wave identification more robust, lateral

waveform coherence and the apparent velocity of a given phase is analyzed

in gathers of traces. Useful gathers are common receiver gathers (CRGs),

in which the recordings of one single station are combined, or common source

gathers (CSGs) in the case of recordings of the same source. In contrast to con-

ventional gathers used in exploration seismics, here the traces in each section

are sorted by hypocentral distance instead of the epicentral distance (offset),

because of the distribution of the earthquakes in depth. In a section sorted

by hypocentral distance, different types of seismic waves can be distinguished

by their different slopes, i.e. their different apparent velocities.As an exam-

ple, Figure 2.3b shows a synthetic CSG section of traces reduced at (bottom)

and the corresponding stack trace (top). The synthetic records were created

with AXITRA (Bouchon and Aki, 1997, Cotton and Coutant, 1997) for a local

earthquake on May 27, 2008, 16:19:33 UTC, recorded at ISNet stations. The

one-dimensional velocity model of Amato and Selvaggi, 1993 was used, and

noise had been added to the seismograms before computing the traces. Due to

the applied reduction velocity, the first S-wave arrival aligns near 0.0 s. The

stack trace clearly indicates the S-wave arrival, while energy visible at earlier

or later times on individual traces are suppressed in the stack. The time shift

of 0.1 s observed for all the traces shown in 2.3b can be attributed to the finite
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Figure 2.3: (a) Synthetic seismogram example of the three-component processing.
Z, N, E are the original and L, Q, T are the rotated components. H, P, D are the
polarization attributes, and CFsw is the weighted characteristic function. The first
P-wave arrival is at 0.0 s, and the direct S-wave arrives at about 3.4 s. (b) Common
source gather (CSG) of the CFsw traces from a single, simulated event recorded at
different station. The S-wave arrivals are aligned near 0.0 s, and the top trace is the
stack function.
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length of the polarization filter. A CSG section is only useful, if the event

under consideration is recorded by a large number of stations sampling a suf-

ficient range of hypocentral distances. If stations of a network in a region of

high seismicity are distributed rather sparsely, the number of sources may be

greater than the number of stations and CRG sections can be advantageous.

The alignment and stacking of the S-wave arrival as shown in 2.3b requires the

knowledge of the S-wave velocity or the average P-to-S velocity ratio in the

studied area. This velocity can be estimated by a stacking velocity analysis

similar to the one used in reflection seismics (e.g. Ylmaz, 1987) or vespagram

computation in array seismology (e.g. Rost and Thomas, 2002). First, the

traces of a seismic section are aligned at the picked first P-wave arrival. Sec-

ond, for each trace move-out time shifts are computed for an assumed P-to-S

velocity ratio, and the shifted traces are stacked using the following formula:

Si =
N∑

i=1

CF k
sw(t− tik) (2.7)

where N is the number of the traces, and tik is:

tik = tS − tP =
∆x

vP

(
vP

vS
− 1

)
(2.8)

where ∆ is the hypocentral distance, tS and tP are the travel time of S- and P-

phase, respectively. Third, this process is repeated for a set of P-to-S velocity

ratios. Finally, the velocity ratio that leads to the highest stack amplitude

also produces the best phase alignment and thus can be used to estimate the

arrivals of the S-waves. Since stacking is done along linear move-out curves,

this procedure can be termed linear velocity analysis.

2.3.2 3C analysis

Each three-component seismogram has been rotated from reference system

(ZNE) to that of the ray (LQT) using the P-wave incidence angle measured in

a 0.3 s time window and the theoretical backazimuth according to the source-

receiver geometry. Then the polarization attributes and the characteristic
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Figure 2.4: Examples of the three-component processing applied to two different
local earthquakes recorded at station SNR3. The gray lines indicate the theoretical
arrival times of the S-waves.
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function have been computed as described in the Methods section. Figure 2.4

shows the result of the multi-component processing applied to two different

local earthquakes recorded at station SNR3. The top six traces are the orig-

inal and rotated recordings, respectively, and the four traces below are the

polarization attributes and the characteristic function CFsw. In Figure 2.4 we

can see a good agreement with the theoretical S arrival and the simultaneous

increase of H, D, P and CFsw. In particular, the trace does not show signif-

icant energy in the time window between the first P-wave arrival (at 0.0 s)

and the S-wave arrival (near 2.4 s). However, the event shown in Figure 2.4 is

a rather bad example, where the characteristic function shows a strong max-

imum before the direct S-wave arrival. Probably this maximum corresponds

to a converted phase. Looking at just this single recording, the S-wave may

not be correctly identified. However, as will be shown in Figure2.5, the seis-

mic sections constructed from the characteristic functions clearly reveals the

S-wave, illustrating the relevance of these trace gathers.

2.3.3 S-phase sections

Because the number of earthquakes is much larger than the number of stations,

the CFsw traces are collected in common receiver gathers (CRG) to improve

the spatial sampling of the entire hypocentral distance range. Then the fol-

lowing seismic processing steps have been applied to all traces of each section.

Each trace amplitude is normalized individually to remove the amplitude vari-

ations due to the different magnitudes of the events, and due to the amplitude

decay with increasing distance. Then the trace envelopes are computed and

the mean is removed, which is also a simple but efficient procedure to account

for variable polarity. We applied high pass filter to improve visibility of co-

herent phase on section. Finally, traces with similar hypocentral distance in

one CRG are binned and stacked to equalize the distance sampling in that

gather. Figure 2.5 shows the resulting CRG sections for the stations VDS3,

COL3, CGG3, MNT3, SNR3 and STN3 (see Figure 2.1), together with linear

velocity analysis plots. The seismic sections in Figure 2.5 show an excellent
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Normalized stack amplitude

Figure 2.5: Common receiver gather (CRG) sections and linear velocity analysis
panels. For each station, the panel on the left shows the seismic section of the
filtered characteristic function , where the traces are aligned at the manual P-wave
arrival time picks. The first clear and coherent wave across the whole section is the
first S-wave arrival. The panel on the right of each section shows the corresponding
linear move-out and stacking velocity analysis in terms of stack amplitude. The
stack maxima in blue indicate the best average S-wave velocity for each section.
The ellipse is centered on the maximum value.
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Figure 2.6: Signal-to-noise ratio improvement. (a) (b) Comparison of raw
transverse-component seismogram sections (left) with the polarization-filtered sec-
tion (right), which is T multiplied by the characteristic function CFsw. (c) Proba-
bility of S/N exceedence for SNR3 and VDS3 stations and for all stations (right).
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lateral coherence of the waves as a function of the hypocentral distance. In-

deed, a clear first arrival can be seen that coincides with the first arrival of the

S-waves. This representation itself already provides a useful arrangement for

visual identification of the S-waves. The panels on the right of each seismic

section in Figure 2.5 show the results of a linear move-out and stacking veloc-

ity analysis for the corresponding sections in terms of the color-coded stack

amplitude. Each stack maximum (blue in Fig. 2.5) indicates the optimal av-

erage S-wave velocity for the respective section. In Table 2.1 we provide the

velocity range with normalized stack amplitude greater than 0.75 for each ana-

lyzed station. The average velocity is around 2.7 km/s and the lateral velocity

variation is small.

Station Vs range km/s P (S/N ≥ 3)T [%] P (S/N ≥ 3)CFxT [%]

AVG3 2.59÷ 2.85 0 35.7

BEL3 2.49÷ 2.11 2.1 57.4

CGG3 2.55÷ 3.00 7.00 28.6

COL3 2.59÷ 2.83 8.6 54.0

CSG3 2.60÷ 2.86 4.5 64.7

MNT3 2.53÷ 3.20 1.2 58.9

NSC3 2.55÷ 2.80 3.4 44.7

PGN3 2.49÷ 3.15 3.4 27.4

SNR3 2.54÷ 3.06 5.5 55.4

SRN3 2.54÷ 3.06 9.5 49.3

STN3 2.54÷ 2.90 7.9 73.2

TEO3 2.44÷ 2.86 15.4 56.5

VDS3 2.59÷ 2.96 18.5 68.0

Table 2.1: S velocity and probability of S/N exceedence for raw and filtered T-

component seismograms.

Figure 2.6 illustrates the overall improvement of the signal-to-noise ratio

(S/N) on seismic sections due to the application of the proposed polarization
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Figure 2.7: Travel time residuals. (a) Residuals as a function of hypocentral
distance for two stations and for all stations. (b) S-wave travel time curves.
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filtering procedure. For each station, the left-section shows the transverse-

component seismograms and the right-section represents transeverse-component

multiplied by the characteristic function CFsw . To quantify the S/N improve-

ment we represent in Fig. 2.6c the probability to have a S/N larger then a

given threshold value. The S/N is computed by using the signal RMS ampli-

tude value in a 2 s time window after the S-wave arrival time the noise RMS

amplitude in a 1 s window before the S-arrival time (i.e the P-wave coda).

Then we compute the normalized cumulative histogram Cdf of S/N and con-

vert this to a probability of exceedence by plotting 1 Cdf. Figure 2.6c shows

the probabilities for the two stations and for all stations (right). The dashed

line is the probability for the transverse-component section, and the solid line

the probability for the corresponding polarization-filtered section. For station

SNR3 the probability to observe a S/N larger than 3 (dotted line) increases

from 5.5% to 55.4% and at VDS3 from 18.5% to 68%. Table 1 summarizes

the probability of exceedence for a S/N value egual to 3, for all stations before

and after polarization filtering, and respectively. The improved S/N makes

it easier to identify the S phase on the polarization-filtered sections than on

the original seismograms. To verify that the identified phase is in fact an S

wave, we picked the first arrivals on the sections and calculate theoretical S

arrival times based on the measured velocities. Figure 5a shows the residuals

as a function of hypocentral distance for SNR3, VDS3 and for all stations,

and the travel times vs distance are shown in Figure 12.7. Qualitatively, the

distributions of the residuals and the travel times indicate the consistency of

the identified S-wave arrivals.

2.4 Refined re-picking based on cross-correlation

method

In order to obtain highly accurate readings the automatic refined re-picking

technique proposed by Rowe et al (2002) has been used. The technique uses

an algorithm for estimating the relative time delay, which is based on the
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similarity of the waveforms.

2.4.1 Technique

The used method may be outlined as follows:

• Data organization;

• Clustering catalogue based on waveform similarity;

• Adaptive window-length cross-correlation within clusters;

• Solving for consistent pick lags within clusters;

• Monte Carlo error estimations.

Prior to processing, waveforms must have a preliminary picks, and are ana-

lyzed from many events on a station-by-station basis. Once the data are have

been properly formatted, a preliminary cross-correlation is performed. The re-

trieved cross-correlation values for each pair of waveforms is used to divide the

catalogue into clusters of highly similar events. This subdivision, or clustering,

is followed by relative lag estimation among member traces within a cluster

using an adaptive time window length. After all possible waveforms compar-

ison has been made, the resulting, ovedetermined system of individual event

lags may be solved to obtained consistent pick adjustement and associated un-

certainties. This is obtained using an iterative conjugate gradinet approach,

while the 1-sigma error bars are calculated via a Monte Carlo pertubation of

the data vector.

2.4.2 Application to P and S dataset

The waveforms of all analyzed seismic events have been organized by station-

common gathers. The preliminary P-pick correspond to the manual pick on

vertical component; the preliminary S-pick was obtained manually revising all

the horizontal components using the characteristic function described in the



40 Data and processing technique

section 2.2. For each pair of traces recorded at the same station, the similarity

was evaluated by using cross-correlation function in a window around the refer-

ence pick. The choice of the appropriate time window for the cross-correlation

is assessed through preliminary tests. In particular, the distribution of cross-

correlation coefficients for each pair of waveforms is analyzed to varying the

length of the window. The optimal time window correspond to the window

which allows to have the largest number of couples with a cross-correlation

value greater than 0.5. This criterion leds the choice of 0.5 s and 1.0 s time

window for the P- and S-phase, respectively. Based on the degree of similar-

ity as assessed using cross-correlation coefficient, the catalog is divided into

clusters. The traces orphan are discarded from the analysis and all the wave-

forms belonging to a cluster are again cross-correlated. Even in this case an

automatic procedure allows the choice of the appropriate duration of the cross-

correlation time window. At this step the result is an amount of time that must

be added or subtracted to the all waveforms belonging to the same clusters.

These delay time are inverted using an iterative technique to the conjugate

gradient (Aster and Rowe, 2002, Rowe et al., 2002). The error is estimated by

Monte Carlo method. The end result is a correction to be made to the initial

reference time of the pick.

In Figure 2.8 the result obtained for six different clusters is shown. In par-

ticular, panel a) shows the results for the picking P while panel b) those for

picking S. An improvement in the waveforms reallineamente and their stack

traces (blue curve and red curve) is observed when moving from manual to

refined pick.

2.5 Modified Wadati diagram

The final catalog consists of 5078 P and 2071 S readings corresponding to

479 earthquakes. An evaluation of picking consistency has been performed

analyzing the modified Wadati diagram (Chatelain, 1978), which also provides

an estimate of an average VP/VS ratio. The differences between TPi−TPj and
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Figure 2.8: Waveforms cluster at stations COL3, SCL3, NSC3, and RDM3 VDS3
(see Figure 2.1): Panel a) shows the alignment of vertical component with respect
to the manual pick P (left panel) and pick P refined (right panel), while panel b)
we show sthe alignment of the horizontal components compared to manually pick S
(left panel) and the refined re-pick (right panel).

TSi − TSj arrival time, for each event, for each couple of station are evaluated

and represented on a diagram in which each point does not depend on the

origin time. Assuming an homogeneous half space, the differences between the

P and S arrival time are related through the following equation

TSi − TSj =
VP

VS
TPi − TPj (2.9)

and using a least square fitting line it’s possible to estimate a value for the

VP /VS ratio. The inferred VP /VS ratio value is equal to 1.88 (Figure 2.9).

2.6 Earthquake relocations

Using the 1D reference model for the area (Matrullo, 2012) and the estimated

VP /VS ratio we performed a relocation of the events using before only the

refined P reading (Figure 2.10a) and than using P and S refined readings

(Figure 2.10b). The mean value of the horizontal and vertical location errors,

reported in Figure 2.11, improve utilizing P and S reading.
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using a) only P refined re-picking and b) using P and S refined re-picking.
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Chapter 3

Tomographic inversion

procedure and approach

3.1 Introduction

The use of local earthquakes for the tomographic inversion of delay times

in a region affected by strong earthquakes, can provide a three-dimensional

image of seismic velocity models. These models allow to study the relation-

ship between the behavior of a fault and the physical-mechanical properties

of the host environment (Michael and Eberhart-Phillips, 1991). In particular,

Thurber et al., 1995 have emphasized the relationship between the Vp/Vs pa-

rameter and changes in physical properties of the rocks in seismogenic areas.

The location of earthquakes provides a primary information about the geome-

try of the structures on which they are generated allowing to study the possible

correlation of these structure with the destructive earthquakes occurred in the

past. The accuracy of the location techniques with the absolute time is criti-

cally controlled by several factors, among which the geometry of the network,

the number of available phases, the accuracy of arrival the times and the

knowledge of the crustal structure (Pavlis, 1986). For example, the use of a

one-dimensional reference model can affect the accuracy of the location. This

is because the three-dimensional heterogeneities of the propagation medium
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introduce systematic errors in the estimation of traveltimes. In order to par-

tially reduce the effect of using a 1D velocity model, the double differences

location techniques can be used. The idea behind these technique is to min-

imize the effect of poor knowledge of the structure based on the assumption

that two events, very close in space, recorded at the same station travel along

the same path, thus the contribution of the seismic velocity can be eliminate

from the equation of double differences Waldhauser and Ellsworth, 2000. How-

ever Michelini and Lomax, 2004 emphasize that the use of these methods is not

possible without an accurate knowledge of the velocity model. Only the joint

inversion of hypocenter and velocity parameters allow to overcome the simplis-

tic assumptions of the location methods mentioned above. The methods used

today for the joint tomographic inversion have made substantial progress with

respect to the basic concept expressed by Aki and Lee, 1990. These methods

include techniques for 3D ray tracing calculation of the traveltime field by the

integration of slowness along the ray (Latorre et al., 2004), the use of S waves,

for which the times can be inverted either alone or simultaneously with the P

waves to obtain the ratio Vp/Vs, and direct inversion of the ratio Qp/Qs. A

very important trend is that of double differences, through the use of them

Zhang and Thurber, 2005 show that a significant improvement in tomographic

image can be achieved when the technique is combined with the relative arrival

times. Monteiller et al., 2005 accompanying the double differences with the

Tarantola-Valette (Tarantola and Valette, 1987) approach pointed out that a

necessary conditions for the use of double difference tomography is the avail-

ability of an initial three-dimensional model.

In this chapter the general principles of tomography of the delay times, in

relation to the techniques implemented in the inversion code used in this work

are described.
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3.2 Problem formulation

The body wave travel time T from an earthquake i to a seismic station j is

expressed using ray theory as a path integral Thurber, 1993

Tij =

∫ receiver

source

uds (3.1)

where u is the slowness field (reciprocal velocity) and ds is the elementary path

length. The actual observations are the arrival times tij, where

tij = τi + Tij (3.2)

and τi is the earthquake origin time. In terms of inverse problem (Menke,

1989) the observed arrival times are the data, the source coordinates, the

origin times, the ray-paths, and slowness field are the unknowns (model pa-

rameters). Given a set of arrival times tobs
ij measured at a network of stations,

the calculated arrival times tcal
ij are determined from equations 3.1 and 3.2 us-

ing trial hypocenters and origin times and an initial seismic velocity model.

The mistfit between observed and predicted (calculated) arrival times are then

the residuals rij

rij = tobs
ij − tcal

ij (3.3)

The residulas can be related to the desired perturbation to both the hypocenter

and velocity model by using a linear approximation

rij =
3∑

k=1

∂Tij

∂xk
∆xk + ∆τi +

∫ reciever

source

δuds (3.4)

All the linearized local earthquake tomography methods are based on equation

3.4 and then diversify to some extent, on the basis of the different treatment

of some or all of the following aspects of the problem:

• the scheme adopted for representing of the velocity model;

• the technique for travel time and ray-path calculations;

• the treatment of the hypocenter-velocity structure coupling;

• the inversion procedure.



48 Tomographic inversion procedure and approach

3.2.1 Representation of the velocity structure

The Earth’s crust has heterogeneous structure on a vast range of spatial scales,

including complications such as discontinuities, faults, layering, intrusions, in-

clusions, zones of elevated temperature or partial melt, and random geological

heterogeneities. The spatial scale of heterogeneity that can be imaged through

the local earthquake tomography depends on the density of ray sampling, with

a lower bound proportional to the minimum wavelength of recorded seismic

wave energy. Model parametrization of the velocity model should be able

to delineate, as much as possible, shape and position of heterogeneities. A

nodal representation, in which the velocity filed is reconstructed by a three-

dimesional grid, does not assume a specific geometry of heterogeneities. In

the nodal representation the velocity perturbation filed (or the slowness filed)

δu(x, y, z) can be described with a meshed cube regularly spaced in the three

directions, is the specified at each node a value um,l,n and the following func-

tions are used:

δu(x, y, z) =
∑

cube

δum,l,nhm,l,n (3.5)

where

hmln =

{
1 at node

0 otherwise
(3.6)

The equation 3.4 thus becomes

rij =
3∑

k=1

∂Tij

∂xk
∆xk + ∆τi +

∑

cube

∂Ti,j

∂um.l,n
∆um,l,n (3.7)

Because no single scheme can faithfully represent all the aspects of the crustal

heterogeneities, a good inversion strategy is a multiscale approach: a series of

inversions is run by progressively refining the velocity grid, the starting model

for each inversion being the final model for the previous one. This procedure,

which was first introduced for velocity estimation by Lutter et al., 1990, allow

us to determine the large-scale components of the velocity model and then to

progressively estimate the smaller-scale components.
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3.2.2 Ray-path and travel time calculation

One of the practical problems that must be solved in seismic tomography is

the determination of the propagation path of the seismic waves between each

source-receiver pair, and the wave traveltime along that path. The travel time

is needed in order to calculate the arrival time residual, while the path is

needed for computing the hypocenter and velocity partial derivatives.

There are many technique for determine ray paths and traveltimes. The es-

timate of fisrt-arrival traveltimes by Podvin and Lecomte, 1991 algorithm re-

quires a finer grid of cubic cells because the technique assumes constant slow-

ness in each cell. These slowness values are deduced by trilinear interpolation

of the inversion grid. For each station, the solution of the eikonal equation

provides a first estimation of traveltimes at each node of the finer grid. By

following the gradient of the estimated traveltimes, it is thus possible to trace

the ray back from the source to the receiver. After this a posteriori ray tracing,

the finer grid is no longer used.

Once the rays are computed for each event-receiver pair, more precise travel-

times are recalculated by performing a numerical integration of the slowness

filed along the rays. Simultaneously, for each node of the inversion grid, trav-

eltime partial derivatives are computed for P and S slowness fileds, hypocentre

location and origin time (see 3.7). Latorre et al., 2004 have demonstrated that

traveltimes obtained with this procedure are less sensitive to the grid spacing

used for the wave front traveltime computation.

3.2.3 Hypocenter-velocity structure coupling

One of the nagging questions in tomography is the proper treatment of the

mathematical coupling between hypocenter parameters and the velocity model

that is apparent in equation 3.7. Traditionally, the term local earthquake to-

mography has usually implied the determination of three-dimensional velocity

structure keeping hypocenter parameters fixed at their inital values, while si-

multaneous inversion is usually construed to mean explicit treatment of the
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hypocenter-velocity structure coupling.

If N earthquakes and M stations are considered, the equation 3.7 must be

written for each couple station-earthquake. As a consequence we have an

equations system is setup in which the residual times (data) are linked to

the hypocentral parameters and the velocities at each grid node (parameters)

through the partial derivatives of the residual respect to the parameters. This

can be illustrated by following formula:
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(3.8)

or in a compact notation

r = Aδu (3.9)

The direct treatment of the hypocenter-velocity structure coupling requires

that the parameters should be inverted all together without using any param-

eters separation technique.

Scaling operation

Before solving the linearized system, the units used for different parameter

quantities must betaken into account. The P-wave velocity has the same units

as the S-wave velocity while hypocenter parameters (source coordinates and

origin time) have quite different units, changing this units will modify the shape

of the misfit function. The definition of the weighting which makes one class of
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parameters more or less sensitive to the data is performed through synthetic

examples assuming the real configuration of station and seismic sources, in

fact the different weights depend on the geometry of each experiment.

3.2.4 Inversion method

One of the methods used to solve the equation 3.9 consist in finding a solution

in the sense of least squares, which search the vector x which minimizes the

function

min‖Ax− b‖L2 (3.10)

Since the problem is underdetermined the solution may not be unique; it is

therefore necessary to introduce a regularization which is an additional condi-

tion that allows the convergence towards a single solution. A classical approach

to solve the underdetermined problems is to search for a solution in sense of

the damped least-squares (Menke, 1989). The system to be solved becomes

(
A

eI

)
x =

(
d

0

)
(3.11)

where I is the identity matrix and e is the parameter that controls the degree of

damping. This parameter defines the damping of the perturbation amplitudes

compared to the reference model, otherwise known as the distance between the

initial parameters and the final parameters of the model. This value controls

the relationship (trade-off) between the standard deviation of the data (misfit)

and the variance of the model obtained.

The equation 3.10 can be written as

min‖Ax− b‖L2 + ‖εIx‖L2 (3.12)

And the final solution is

)x =
(
AT A + ε2I

)−1
AT b (3.13)
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Damping

The damping parameter defines the perturbation amplitudes respect to the

reference model, ie the distance between the initial parameters of the model and

final parameters. If a too high value of damping parameter increase the mistfit,

a too small value makes it better, but increases the variance of the model and

leads to a solution physically impossible. Physically, the damping parameter

affects the solution of the inversion and uses choice requires a preliminary

study. The damping value can be selected based on an empirical approach.

For each data set, several one-step inversions were run with different damping

values. Then the reduction in data variance is compared to the variance of

the solution. The selected value was the one which greatly reduced the data

variance with a moderate increase in the solution variance.

3.3 Description of the tomographic inversion

procedure

We used an iterative, linearized, damped, tomographic approach (LeMeur

et al., 1997, Latorre et al., 2004, Vanorio et al., 2005, Battaglia et al., 2008)

in which the arrival times of P and S are simultaneously inverted for the

earthquakes location and velocities distribution (Thurber, 1992). The param-

eterization of the model is performed by nodal representation: the velocity

value is assigned to the vertices of a grid with regular spacing. The code for

the tomographic inversion used is TOMO TV, and was developed during the

thesis by the Professor J. Virieux of Joseph Fourier University in Grenoble,

and adapted by me, implemented it and verified through a series of numer-

ical tests on synthetic and real data. Each iteration consist of the following

operations:

• trilinear interpolation of the velocity model in a finer grid;

• calculation of the theoretical arrival times with the technique of finite

difference Podvin and Lecomte, 1991, in order to obtain a first estimate
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for each station of the traveltime at each node of the grid finer of 0.5 x

0.5 x 0.5 km3;

• ray tracing technique of back ray-tracing for each source-receiver pair

along the gradient of the traveltime estimates;

• accurate calculation of the traveltime field by integration of slowness

along the ray path Latorre et al. (2004);

• calculation of the partial derivatives of the traveltime field simultane-

ously for P and S slowness, hypocentral coordinate and origin time of

earthquakes;

• preconditioning and smoothing of the matrix of derivatives. The first

is the normalization and scaling of the matrix of derivatives in order to

control the quality of estimated parameters. This operation is controlled

by a set of four hyper-parameters (Cp, Cs, Cp0, CT0), one for each class

of parameters to be estimated. The smoothing is achieved by requiring

that the Laplacian of the slowness field is zero (Benz et al., 1996);

• inversion of linear system of equations, scaled and weighed, with the

algorithm LSQR (Paige and Saunders, 1982).

The regularization of the inversion is achieved by the damping factor.

3.4 Inversion parameters tuning

As we have seen in order to obtain the solution of an under-determined inverse

problem in the least squares sense requires the definition of a damping factor.

In addition, the joint inversion of different classes of parameters requires the

conditioning of the matrix of partial derivatives among the weighting factors

called hyper-parameters. The calibration of these factors is a necessary step to

do before the real data inversion. This operation is important for the tomog-

raphy process as they may significantly influence the final results.
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To determine the optimal combination of hyper-parameters should be carried

out synthetic tests, however, the choice of the damping factor must be made

through the inversion of real data in order to compare the variance of the data

compared to the variance of the model.

3.4.1 Hyper-parameters

To determine the optimal combination of hyper-parameters we performed a

sensitivity test, ie synthetic tests using the real earthquakes-station configura-

tion and the same parameters chosen for the tomographic inversions. Synthetic

P and S velocity model are designed by adding two velocity anomalies, one

positive (+1000m/s) and one negative (-1000m/s) with elliptical shape, in

the central part of the models within an homogeneous velocity model (Figure

3.1). Theoretical traveltimes are computed in these models and are used as
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Figure 3.1: Synthetic velocity models P (a) and S (b).

observed times. Homogeneous velocity models are considered as initial mod-
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els and earthquake are relocated to obtain an initial hypocenter location. We

performed several inversions for several combinations of hyper-parameters and

observing the evolution of the difference between the final model obtained and

the true model in function of the number of iterations, we chose the combi-

nation of parameters for which the trend of this curve is convergent for all

four classes simultaneously. In Figure 3.2 the curve represented the variance

in function of the iteration number are reported for five different combination

of hyper-parameters, Cp, Cs, Cp0 and CT0. The selected values, represented

by the blue line, are Cp= 1, Cs= 1, Cp0= 6 and CT0= 6.
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Figure 3.2: Variance in function of iteration number for each parameter inverted
to varying combinations of different hyper-parameters.

3.4.2 Damping factor

For the calibration of the damping factor we followed an empirical approach

(Eberhart-Phillips, 1986). Using real datasets P and S arrival times, we per-
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formed several inversions for different values of damping. We then compared

the variance of the data with the variance of the model, creating for each class

of parameters to estimate the trade-off curves (Figure 3.3). The value chosen

is the value of damping for which a small variance in the data corresponds to a

small variance of the model, for all four classes of parameters simultaneously.

The selected value correspond to 0.7.

3.5 Inversion strategy

In order to obtain a velocity structure the inversion strategy follows a multi-

scale approach.

The linearized inversions requires the choice of a starting velocity model close

to the reality. The 1D Vp velocity model optimized for the area is used.

3.5.1 1D initial velocity model

The used 1D Vp velocity model proposed by DeMatteis et al., 2011 was ob-

tained following the approach of Kissling et al., 1994, in which a P-wave Min-

imum 1D velocity model is computed by a joint inversion of layered velocity

model, station corrections and hypocenter locations. The used data correspond

to a sub-dataset of the whole dataset of P manual readings analyzed in this

work (Matrullo, Amoroso, Matteis, Satriano, and Zollo, Matrullo et al.). The

retreived Minimum 1D model (Figure 3.4) presents a P-wave velocity shallow

layer (until 2 km depth) of 3.25 km/s. This is consistent as average P-wave

velocity value due to the known strong lateral velocity variations due to differ-

ent lithologies varying from Carbonate Platoform domain (P-wave velocity of

5.3 ÷6.0 km/s) to thrust sheet- top clastic sequence (P-wave velocity of 2.01÷
2.4 km/s ). A layer of 4 km (from 2 to 6 km in depth) is caracterized by a

velocity of 4.72 km/s compatible with the seismic velocity of the Lagonegro

Basins units ( Improta et al., 2003). The layer velocity layer from 6 km to

12 km depth is representative of Apulian Platform domain (Improta et al.,

2003, Boncio et al., 2007). Then the velocity smoothly increases with depth,



3.5 Inversion strategy 57

0.35

0.40

0.45

da
ta

 v
ar

ia
nc

e 
[s

2 ]

0.00 0.05 0.10 0.15

model variance [(km/s)2]

0.1

0.30.50.71
1.5
2

6

0.35

0.40

0.45

0.00 0.05 0.10 0.15

model variance [(km/s)2]

0.1

0.30.50.71
1.5
2

6

0.35

0.40

0.45

da
ta

 v
ar

ia
nc

e 
[s

2 ]

1.0 1.5 2.0 2.5 3.0

model  variance [(km)2]

0.1

0.30.50.71
1.5

2

6

0.35

0.40

0.45

0.005 0.010

model variance [(s)2]

0.1

0.30.50.71
1.5

2

6

Vp Vs

X,Y,Z T0

Figure 3.3: Trade-off curve for selecting optimal value for real data set. The
data variance and solution variance are computed after one iteration for indicated
damping values.



58 Tomographic inversion procedure and approach

in agreement with the typically Basement velocities, until 35 km where the

Moho is espected. The distribution of station correction shows a strong lat-

eral variation in direction othogonal to the Apenninic chain (Figure A.1), a

physical interpretation is provided in the Appendix A.
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Figure 3.4: 1D reference Vp velocity model optimized for the area under study
DeMatteis et al., 2011

Vp/Vs estimation

In order to obtain a starting Vs velocity model the adopted strategy consist

of the following operation:

• determination of a 3D P velocity model by the inversion of real dataset;
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• conversion of the 3D P velocity model in 3D S velocity models by using

different V p/V s ratio ranging from 1.65 to 2.00;

• calculation of traveltime residuals for the S velocity model derived from

the P model;

• analysis of the RMS respect to the V p/V s values.

The parabolic shape of the curve of RMS vs V p/V s, reported in figure 3.5

exhibit the presence of a minimum value for RMS which corresponds to the

optimal value. The latter correspond to V p/V s equal 1.82. This value is

consistent with the result obtained in other studies in the same region (Maggi

et al., 2009; DeMatteis et al., 2012).
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Figure 3.5: RMS of S travel time residual vs V p/V s.

3.5.2 Multiscale approach

The stations/events distibution allows us to investigate a volume of 100x

100x30 km3. The velocity model parametrization is performed by a nodal
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representation, described by a tridimensional grid (Dx, Dy, Dz). The inver-

sion strategy is based on a multiscale approach ( Bunks et al., 1995), a series of

inversion progressively decreasing the grid spacing are performed. The start-

ing model for each inversion being in the final model of the previous one. This

procedure allow us first determine the large-scale components of the velocity

model and then to estimate progressively the smaller-scale component (Lut-

ter and Nowack, 1990; Zollo et al., 2002). The procedure was validated by

synthetic tests, we have, in fact, verified that using multiscale approach can

properly reconstruct small and large anomalies. In particular we before real-

ize a synthetic P and S velocity model by adding two velocity anomalies, one

positive (±1000m/s) and one negative (± − 1000m/s) with elliptical shape,

in the central part of the models within an homogeneous velocity model (Fig-

ures 3.6a 3.7a). Theoretical traveltimes are computed in these models and are

used as observed times. Homogeneous velocity models are considered as initial

models and earthquake are relocated to obtain an initial hypocenter location.

We perform several inversions progressively decreasing the grid spacing. In

particular the used parametrization are 12x12x4 km3, and 6x6x2 km3 3x3x1

km3 and the recovered pattern are displayed in Figures 3.6b 3.7b. Following

the same procedure we tried to reconstructed a velocity model designed by

checkerboard anomalies. They are generated using a sinusoidal function hav-

ing a wavelength corresponding to 3x3x1 km3 (Figure 3.8a). The synthetic

pattern is well recovered at the end of multiscale inversion in the central part

of the model compatibly with ray coverage.

3.5.3 Assessment of solution quality

Checkerboard tests are commonly used to assess model resolution in tomo-

graphic studies. A checkerboard model consists of an alternating anomaly

pattern of positive and negative regions superimposed on the final, initial or

on an average one-dimensional velocity model. Relatively small velocity per-

turbations can be used, so that ray paths through the model are minimally

perturbed compared to the background model. But the velocity perturba-
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Figure 3.6: Multiscale approach: synthetic test for P velocity model. a) Synthetic
pattern. b) Recovered pattern.
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Figure 3.7: Multiscale approach: synthetic test for S velocity model. a) Synthetic
pattern. b) Recovered pattern.
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Figure 3.8: Multiscale approach: synthetic test.
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tions must be large enough to yield traveltime perturbations above the noise

level. Firstly, synthetic traveltimes are calculated for the real source-receiver

geometry, secondly, these data are inverted using the background model of the

anomaly pattern as the starting model and the same method as for the real

experiment.

For each point of the nal model, the recovered anomaly pattern indicates the

ability to resolve features with a length scale equal to the anomaly spacing.

The semblance between exact and recovered checkerboard anomalies (resolv-

ability) provides a quantitative estimate for the resolution. The resolvability r

at a node is equal to

r =

∑N
i=1(∆vti + ∆vrj)

2

∑N
i=1(∆vti

2 + ∆vrj
2)

(3.14)

where ∆vti and ∆vri are the true and recovered velocity anomalies at ith node.

A qualitative indicator of the quality of the tomographic results are the ray

coverage. In particular total ray length represents the accumulated ray length

per cell sampled by wave arrival time dataset.



Chapter 4

Three dimensional P- and

S-velocity models and

earthquake locations

This section describes the application of the tomographic inversion of first ar-

rival travel-times to determine the three-dimensional P and S velocity structure

of the the Campania-Lucania region in the southern Apennines .

4.1 Gridding scheme and inversion strategy

The 3D P- and S-wave velocity models and earthquake locations have been

obtained by inverting the dataset described in Chapter 2. Following the mul-

tiscale approach, explained in Section 3.5.2, the complete procedure consisted

of three different inversions of 15 iterations in which the grid spacing is pro-

gressively decreased. Specifically, the used parametrizations are 12x12x4km3,

6x6x2km3 and 3x3x1km3. In order to analyse the effectiveness of the mul-

tiscale approach, it is worthwhile to look at the RMS reduction when mov-

ing from a coarse parametrization to a finer one. As shown in Figure 4.1 ,

it can be observed that starting from a value of 0.32s corresponding to the

12x12x4km3 parametrization, the RMS decreases to 0.14s in correspondence
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of the 3x3x1km3 parametrization with a total RMS reduction of 56%. The

corresponding variations in the residuals distribution, defined as the difference

between observed and computed travel-times, are shown in Figure 4.2. Al-

though some outliers still remain, it can be noted that both the central value

and the dispersion of the distributions largely improve with the decreasing of

the space grid.

Before interpreting the final velocity models, for each of the selected parametriza-

tion, it is necessary to consider the ray coverage which is shown in Figure 4.3.

In particular, panel (a) shows the map view of the grids while panels (b) and

(c) show the P- and S-wave total ray length computed as the sum of the single

ray lengths which cross the cell. Due to the relative sources-to-stations geom-

etry, it can be noted that outer parts of the model are scarcely sampled by the

rays. As a consequence, it is expected that these parts will be poorly resolved.

On the other hand, due to the earthquakes location and stations density, the

inner part of the model which is the main focus of the present Thesis, is ex-

pected to be better resolved. As a consequence of the adopted definition of

the total ray length, it can be noted that the number of cells with higher total

length values decreases with the increasing of the grid-spacing. The compar-

ison among the two models allows to identify for the S-wave model a smaller

covered region compared with the P-wave model at all the sampled depths.

This can attributed to a total smaller number of S-phase readings.

Concerning the details of the inversion, the starting velocity model for the first

parametrization corresponds to the 1D model optimized for the area and de-

scribed in section 3.5.1. On the other hand, the multiscale approach requires

that for subsequent parametrizations, the starting model corresponds to the

final model of the previous parametrization. Moreover, the final model corre-

sponds to the velocity values at each grid node.
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4.2 Results

4.2.1 Velocity models and earthquakes location

The final result of the inversion is a 3D model which is represented through

slices at several depths and cross-sections. In particular, according to the

results shown in Figure 4.3 the selected depths are: 0.0km, 4km, 8km and 12

km. Figures 4.4 and 4.5 show a map view of P- and S-wave velocity models

for each of the selected parametrizations at each of the selected depths. The

stations distribution is shown in the layer correspondent to 0 km depth while

black dots in all the panels indicate the earthquakes location. The regions not

covered by the ray paths are shown in grey. The contour line corresponds to

the 0.7 resolvability value is placed on each map. The P-wave model (Figure

4.4) indicates the presence of a strong velocity variation along a direction

orthogonal to the Apenninic chain (i.e., anti-Apenninic), from 4 through 8

km depth. This variation defines two domains which are characterized by a

relatively low (3.5 - 4.8 km/s) and high (5.2- 6.5 km/s) velocity, respectively.

This characteristic is not longer evident in the deeper part of the model. The

S-wave velocity model (Figure 4.5) shows a velocity change along the anti-

Apenninic chain direction. However, the changes in the S-wave velocity values

are weaker then the P-wave velocity values. In particular, at 8 km depth it is

evident the presence of a relatively low velocity anomaly of 2.7 km/s located

in south-east part of the model while a relatively high velocity anomaly (3.5-

3.7 km/s) is found in the north-east part.

Additional information about the mechanic and physic properties of the

rocks in the study are can be inferred from the analysis of the VP /VS ratio.

In fact, as shown by several authors among which DeMatteis et al. (2008) and

Chiarabba et al. (2009), the VP /VS ratio provides insights into effective stress,

pore pressure, and sediment consolidation. In particular, a large consensus

does exist about the correspondence between large values of the ratio indicate

and the presence of fluids. However, as indicated by Trippetta et al. (2010),

both laboratory data and tomographic analyses show that significant varia-
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tions are expected for an already fully saturated rock mass wit respect to dry

rock. The map of the VP /VS ratio deduced for the area under study is shown

in Figure 4.6. From 0 km to 4 km depth the model is dominated by a ratio

value lower than 1.8. At 8 km depth the ratio values increases showing values

higher than 1.9 which are mainly located in the south-west part of the model.

Additionally, the VP /VS ratio maps allow also to recognize that the area char-

acterized by the values observed at 8 km depth takes a slightly different form

in the second parametrization with respect to the other parametrizations. It

is worthnoting that this feature could not have been inferred from the analysis

of the single models separately.

Based on the results discussed so far, we deduced that the second parametriza-

tion is sufficient for a reasonable imaging of the velocity anomalies. This is

particularly evident when the velocity contrast observed in the anti-Apenninic

direction (Figure 4.4) is referred to. As a consequence, in the remaining part of

the section, only the model obtained by using this parametrization 6x6x2km3

will be discussed.

As stated above, a complete visualization of a 3D model requires that also

cross-section should be visualized and interpreted. To this aim, Figure 4.7

shows three different sections corresponding to the profiles reported in panel

(a) of the same figure. It can be observed that the velocity variations are more

important moving from northwest to southeast. The seismicity intercepted by

the profiles AA’ and and BB’ is more concentrated at depth larger than 10

km. On the other hand, the seismicity related to the CC’ profile shows a cloud

distribution which does not allow to identify any particular alignment.

As a final analysis, the cross-sections showing the percentage variations of the

final models with respect to the initial models have been produced. These

sections provide an additional support for interpreting the VP /VS ratio be-

cause they help in discriminating if a variation in the ratio has to be mainly

attributed to a variation in the VP values or in the VS values. As a general

observation, for all the considered cross-sections, the percentage values range

between ±25%. On the other hand, the section of the deduced VP /VS ratio
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shows that the ratio is lower than 1.8 in the shallow part, while for depths

ranging between 5 km and 12 km the ratio increases up to 2.1 in correspon-

dence to the area of higher seismicity. This confirms that areas characterized

by higher values are much more prone to generate earthquakes as a response

to the presence of fluids and higher pore-pressures.

4.2.2 Resolution analysis

To evaluate the spatial resolution of the inferred 3D models, a checkerboard

test was performed. The checkerboard has been generated by using a sinu-

soidal function having a wavelength corresponding the grid spacing and an

amplitude of 0.18 km/s. In practice the checkerboard was added to the start-

ing tomographic models and the travel-times, computed fixing the earthquake

locations, were inverted for both P- and S-wave velocity models.

The assessment of the recovered anomaly patterns was estimated through the

resolvability function reported in equation 3.14.

4.2.3 Comparison with previous studies

In order to give a geological interpretation to the inferred velocity values, a

comparison with a portion of the structural section obtained interpreting the

profile CROP04 (Cippitelli, 2007) has been made. In particular, the western

and axial sectors have been selected and the corresponding P-wave velocity

model has been overlapped. The result is shown in Figure 4.10 where the main

seismic reflectors, the top of the Apennine Platform, the top of Lagonegreo-

Irpina flysch sequence or imbricate, the top Apulian Platform and the base

of the carbonate sequence, can be identified. In correspondence of the San

Gregorio Magno well the uplift of the Apulian Platform is observed up to 5km

depth overlaid by Lagonegro-Irpinia flysch units. The part between the San

Gregorio Magno well and San Fele well contains several normal faults cutting

the accreationary wedge (Cippitelli, 2007). In particular, the fault outcropping

at the Piano delle Pecore on Mt Marzano, has been recognized as the fault on
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which the 1980 Irpinia earthquake nucleated (Pantosti and Valensise, 2001).

The analysis of panel (b) in Figure 4.10 shows that the inferred velocity model

reproduces the main geological features identified in the CROP04 profile.

Specifically, the uplift of the Apulian carbonate Platform is well identified by

the high-velocity anomaly whose value ranges between 6.0-6.8 km/s in agree-

ment with the values obtained by (Improta et al., 2003). The thickening of

the Lagonegreo units located in the axial sector are well reproduced by the

low velocity values ranging between 4.0-4.5km/s whose east-worth extension

is identified by the lower velocity values just above the Apulian Platform in

the depth range between 4.0 and 8.0 km. However, the poor resolution of the

shallower layers does not allow to identify the Apenninic carbonate Platform

whose velocity values range between 5.3 and 6.0km/s. Panel (c) of Figure

4.10 shows the 1D velocity profiles extracted from the velocity model in corre-

spondence of the Contursi, San Gregorio Magno and San Fele wells which are

indicated in the upper panel of the same figure. The profiles corresponding

to Contursi and San Gregorio Magno wells indicate that the P-wave velocity

linearly increase with the depth reaching a maximum value of about 7 km/s at

a depth of about 6 km. Additionally, concerning the San Gregorio Magno pro-

files a decrease of the velocity values can be noted starting from depth larger

than 8 km which reproduce the thickness of the Apulian carbonate Platform

in correspondence of the well. The profile corresponding to the San Fele well

features a slower velocity gradient as function of the depth.

The joint inversion of both earthquakes location and velocity models allows to

infer information about the analyzed seismicity distribution. Seismicty map

view is shown in panel (a) of Figure 4.10 together with the stations distribution.

Two main features can be discriminated from the analysis of the seismicity.

Specifically, the seismicity located in the northern part of the region is mainly

characterized by a north-west south-east elongation covering the area embed-

ding the faults system on which the 1980 Irpinia earthquake originated (Figure

1.5). The seismicity located in the southernmost part of the map is character-

ized by an east-west trend which can be linked with the faults on which the



4.2 Results 79

1990 Potenza earthquake and the 1991 Potenza earthquake originated char-

acterized by strike-slip mechanisms. The depth distribution of the seismicity

shown in panel (b) of Figure 4.10 reproduce the cloud distribution observed in

the cross-sections shown in 4.7. This result is compatible with the observation

that earthquakes in the area occur on a graben-like structure characterized by

a sequence of several trending sub-parallel faults (De Matteis et al, 2012).
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Figure 4.10: Results interpretation. (a) Map view of seismicity. (b) Comparison
between the inferred P-wave velocity model and structural section obtained inter-
preting the profile CROP04 (Cippitelli, 2007). (c) 1D Vp velocity profile extracted
in correspondence of the Contursi, San Gregorio Magno and San Fele wells.



Appendix A

Physical interpretation of

station static correction

The station correction are integral part of the minimum Minimum 1D model

obtained using the technique of Kissling et al. (1994). How they are dis-

tribuited is very important for our understanding of seismic images.

A.1 Evidence of static correction

The distribution of station corrections shows a strong lateral variation in the

anti-Apenninic direction, which is consistent with the transition between the

carbonatic platform outcrops at South-West and the Miocene sedimentary

basins at North-East (Matrullo, Amoroso, Matteis, Satriano, and Zollo, Ma-

trullo et al.). The comparison of the station corrections distribution with the

top of the Apula Carbonate Platform and the entity of the retreived station

corrections highlights that these station delays are clear indicators of strong

lateral velocity variations in the near-surface but also likely throughout the

crust (Figure A.1).
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Figure A.1: Spatial distribution of station correction (Matrullo, Amoroso, Matteis,
Satriano, and Zollo, Matrullo et al.). (a) Comparison with geological map proposed
by Improta et al., 2003 (a) Comparison with contour map of the top of the Apulia
Carbonate Platform proposed by Improta et al. (2003)

A.2 P-wave tomography

In order to interpret the observed station corrections pattern a three-dimensional

crustal velocity model has been obtained from the tomographic inversion of the

same data set of P first-arrival. The inversion is performed using an improved

method based on an accurate finite-difference traveltime computation and a

simultaneous inversion of both velocity models and earthquake locations (see

Chapter 3). To solve the inverse problem related to the non linear relation we

follow an iterative scheme by which a linearized delay traveltime inversion is

performed. First arrival travel times of wave fronts are computed through a

finite difference solution of the eikonal equation (Podvin and Lecomte (1991))

in a fine grid of 0.5 x 0.5 x 0.5 km3. The latter consists of constant slow-

ness cells computed by trilinear interpolation from the inversion grid. For

each event-receiver pair, travel times are recalculated by numerical integration

of the slowness field along the previously traced rays (Latorre et al. 2004).

Simultaneously, for each node of the inversion grid, travel time partial deriva-

tives are computed for P slowness field, hypocenter location and origin time.
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The parameters are inverted using the LSQR method of Paige and Saunders

(1982). The iteration limit is set to 5000 internal iteration while the number

of inversion step is set up to a maximum of 20 iterations. The control of the

model roughness is achieved by the requirement that the Laplacian of the slow-

ness file must vanish during the inversion procedure (Benz et al. 1996, Menke

1984). The mistfit function, defined as the sum of the squared time delay,

is a posteriori analysed and the convergence is usually reached after 10 or 15

iterations. We used a nodal representation, in which velocity field is recon-

structed by three-dimensional grid. In this way we dont́ introduce a specific

geometry of heterogeneities. Different grid spacing are tested and in particular

we performed several inversions progressively decreasing the distance of each

node corresponding at increasing of the number of parameters. We choose the

optimal parametrization according to the minimum of the Akaike Information

Criteria (AIC) (Akaike, 1974). The minimum was obtained for the model with

6x6x2 km3 grid spacing (Table A.1). We performed the inversion starting from

Grid Spacing (km3) RMS(s) AIC

24x2x8 0.165 −13386

12x12x4 0.135 −14900

6x6x2 0.105 −15398

3x3x1 0.086 −8759

1.5x1.5x0.5 0.075 19063

Table A.1: Estimate AIC for different model parametrizations.

the best 1D Minimum velocity model. The obtained model, with the associ-

ated static delay time for each station, are re-inverted to find the final model.

The station corrections computed in 3D velocity model become very close to

zero, indicating that the inversion procedure converges (Tables A.2 A.3). The

obtained a RMS reduction is about 68% with a final value of 0.1 s.

The tomographic image clearly indicates the presence of a strong velocity

variation along the direction orthogonal to the Apenninic chain, from 5 to 8-9
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Station Corr 1D Corr 3D

AND3 0.0204 0.0

AVG3 0.5730 −0.0565

BEL3 0.4973 −0.0184

CGG3 −0.4299 −0.0144

CLT3 0.3978 −0.0009

CMP3 −0.2309 −0.011

COL3 −0.5693 −0.0011

CSG3 0.0 0.0207

LIO3 −0.6667 0.0246

MNT3 −0.6662 0.011

NSC3 −0.9273 −0.0313

PGN3 0.0002 −0.0235

PST3 −0.2245 −0.1055

RDM3 0.9312 −0.0219

RSA3 0.8284 −0.1346

RSF3 −0.7930 −0.0460

SCL3 -0.2876 0.0208

SFL3 -0.5275 -0.0240

SNR3 -0.4424 -0.0243

SRN3 -0.4359 -0.0204

STN3 -0.5039 -0.0488

TEO3 -0.4318 -0.0258

VDP3 -0.4735 -0.0376

VDS3 -0.236 -0.0127

CAFE -0.4850 -0.0235

Table A.2: Station corrections in 1D and 3D velocity models.
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Station Corr 1D Corr 3D

CDRU -0.2691 -0.013

CMPR -0.6982 0.0070

CSSN 0.4003 -0.0188

FG4 -0.7665 -0.0325

MCEL -0.8069 0.0021

MCRV -0.6055 -0.0042

MRB1 -0.1658 -0.0877

MRLC 1.0332 -0.0062

PALZ 0.3268 -0.0046

PTRP -0.3537 -0.0050

SGO 0.1805 0.0024

SGTA -0.3221 -0.0230

SNAL -0.4138 -0.0150

VULT 0.4505 0.0087

MRN3 -0.7777 0.0012

SALI -0.5160 -0.0656

SLCN -0.3221 0.032554

Table A.3: Station corrections in 1D and 3D velocity models.
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km of the crust, defining two domains characterized by relatively low (3.5 - 4.8

km/s) and high (5.2 - 6.5km/s) velocity respectively (Fig.6a). To verify the

spatial resolution of the inferred 3-D model, standard checkerboard test were

performed. We add a small anomaly pattern to grid node values of our final

velocity models in order to keep the same ray coverage. In Fig.6 we display the

synthetic and the recovered pattern. Resolved anomalies are located between

4 and 15 km depth. The anomaly pattern is not recovered at the surface

and for depth grater than 15 km. However lateral smearing is detected where

ray distribution in not able to reconstruct small features. The comparison

of retrieved Vp anomalies with the spatial distribution of 1D derived station

corrections confirms that the latter reflects the large-scale geological changes.
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Figure A.2: Final tomographic model of P velocities and checkerboard test. (a)
Map view show velocity layers between 0 and 15 km depth, the regions that are not
covered by the ray paths have been masked in grey. (b) Synthetic pattern added to
the 3D final tomographic model. (c) Map view at different depth of the recovered
pattern.
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A.3 Interpretation

The 3D P-wave velocity model provides a physical explanation of the station

corrections distribution and confirm that the station corrections reflect lateral

variations of P-wave velocity at great depths. A good agreement on the large

scale between the tomographic sections and the geological sections obtained

from the interpretation of other geophysical data was obtained. The 3D Vp

images show that the crust is characterized by a complex tectonic pattern:

the high velocity body can be correlated with the Apenninic and the Apulia

carbonatic platforms whereas the low velocity bodies can be associated to the

basinal deposits. The velocity ranges associated to the main geological units

of the area are compatible with previous study in the area. The tomographic

result clearly indicates the presence of a strong velocity variation along the

direction orthogonal to the Apenninic chain, with anomalies correlated the

carbonatic platform outcrops at South-West and the sedimentary basins at

North-East consistent with the margin of the Western Carbonate Platform. It

should be emphasized that the NE rather deep sedimentary basins are clearly

visible which dominate the velocity values considerably
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Conclusions

The purpose of the present Thesis was to infer a three dimensional image of

the faults system in Southern Apennines of Italy on which the last destructive

23 November 1980 M 6.9 earthquake occurred. The analysis was carried on by

jointly interpreting both P- and S-waves velocity models and re-locating the

background seismicity recorded by the Irpinia Seimic Network (ISNet) and

some stations from the national network managed by the Istituto Nazionale di

Geofisica e Vulcanologia (INGV).

In order to achieve promising results both the problem of data quality and the

selection of a reliable and robust inversion strategy have been faced. The Thesis

has been thus developed along two main lines. The first part has been devoted

to develop optimized procedures for the measurements of P- and S-wave ar-

rival times, through the use of polarization filtering and to the application of

a refined re-picking technique based on cross-correlation of waveforms. The

second problem was faced by adopting a technique of iterative tomographic

inversion, linearized, damped combined with a strategy of multiscale inversion

type.

The methodological approach aimed at an unequivocal identification of the S-

wave arrival times is based on the integration of polarization analysis on single

three-components recordings with the analysis and the estimation of lateral

waveforms coherence through multichannel processing techniques applied to

seismic sections.

In order to obtain highly accurate readings, the automatic refined re-picking

technique proposed by Rowe et al (2002) has been used. The technique was
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applied to both the P- and S-phase first arrival-times read manually and those

obtained from the polarization analysis. The application of this technique

produces a significant improvement when we look at the re-alignment of the

waveforms with respect to the new estimated arrival-time.

Once solved the problem of P- and S-phase reading accuracy the problem of

the determination of an accurate velocity model has been addressed . The code

for the tomographic inversion used is TOMO TV. It was developed during the

thesis by Professor Jean Virieux from Joseph Fourier University in Grenoble,

and adapted, implemented and tested in the present Thesis through a series of

numerical tests on synthetic and real data. The software was also integrated

with a package of procedures for calibrating the damping parameters and for

studying the resolution of the retrieved tomographic images. Considering the

real events-to-stations distribution, sensitivity analyses were performed, con-

sidering an ideal model, the initial and final velocity model to perform the

correct tuning of the hyper-parameters, the damping parameter and the opti-

mal velocity model parametrization. In particular, we adopted a multi-scale

approach, which allows for the reconstruction of velocity anomalies with a

scale length ranging from ten of kilometres down to less then on kilometre in

correspondence of the central part of the investigated area.

As a main result, the retrieved P-wave velocity model indicates the presence of

a strong velocity variation along a direction orthogonal to the Apenninic chain

from 4 km through 8 km depth. This variation defines two domains which

are characterized by a relatively low (3.5 - 4.8 km/s) and high (5.2- 6.5 km/s)

velocity values. On the other hand, the S-wave velocity model shows a veloc-

ity change along the anti-Apenninic chain direction. However, the changes in

the S-wave velocity values are weaker than the P-wave velocity values. The

availability of both P- and S-wave velocity models allowed to investigate the

VP /VS which has been proved to be related to the physical and mechanical

properties of the rocks. The deduced VP /VS ratio shows that the ratio is lower

than 1.8 in the shallower part of the model, while for depths ranging between

5 km and 12 km the ratio increases up to 2.1 in correspondence to the area of
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higher seismicity. This confirms that areas characterized by higher values are

more prone to generate earthquakes as a response to the presence of fluids and

higher pore-pressures.

From the comparison between the inferred P-wave velocity model with a por-

tion of the structural section obtained interpreting the profile CROP04 (Cip-

pitelli, 2007) the uplift of the Apulian carbonate Platform is well identified

by a high-velocity anomaly whose value ranges between 6.0-6.8 km/s in agree-

ment with the values obtained by Improta et al, (2003). The thickening of

the Lagonegreo units located in the axial sector are well reproduced by the

low velocity values ranging between 4.0-4.5km/s whose east-worth extension

is identified by the lower velocity values located above the Apulian Platform

in the depth range between 4.0 and 8.0 km.

Concerning the re-located seismicity two main features can be discriminated.

Specifically, the seismicity located in the northern part of the region is mainly

characterized by a north-west south-east elongation covering the area embed-

ding the faults system on which the 1980 Irpinia earthquake originated. The

seismicity located in the southernmost part of the map is characterized by an

east-west trend which can be associated the faults on which the 1990 Potenza

earthquake and the 1991 Potenza earthquake originated which are character-

ized by strike-slip mechanisms. Moreover, the depth distribution of the seis-

micity is characterized by a cloud distribution. As noted in a recent study by

De Matteis et al, (2012) this characteristic can be ascribed to the fact that the

earthquakes located in the study area occur on a graben-like structure char-

acterized by a sequence of several trending sub-parallel faults and not along a

unique well define fault.
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