Cerioni, Alessandro
(2011)

*Cosmological perturbations in generalized theories of gravity*, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in

Fisica, 23 Ciclo. DOI 10.6092/unibo/amsdottorato/3562.

Documenti full-text disponibili:

## Abstract

The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating.
The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.

Abstract

The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating.
The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.

Tipologia del documento

Tesi di dottorato

Autore

Cerioni, Alessandro

Supervisore

Co-supervisore

Dottorato di ricerca

Scuola di dottorato

Scienze matematiche, fisiche ed astronomiche

Ciclo

23

Coordinatore

Settore disciplinare

Parole chiave

induced gravity, Horava-Lifshitz gravity, theory of cosmological perturbations, cosmological inflation, theories of gravity beyond General Relativity

URN:NBN

DOI

10.6092/unibo/amsdottorato/3562

Data di discussione

5 Aprile 2011

URI

## Altri metadati

Tipologia del documento

Tesi di dottorato

Autore

Cerioni, Alessandro

Supervisore

Co-supervisore

Dottorato di ricerca

Scuola di dottorato

Scienze matematiche, fisiche ed astronomiche

Ciclo

23

Coordinatore

Settore disciplinare

Parole chiave

induced gravity, Horava-Lifshitz gravity, theory of cosmological perturbations, cosmological inflation, theories of gravity beyond General Relativity

URN:NBN

DOI

10.6092/unibo/amsdottorato/3562

Data di discussione

5 Aprile 2011

URI

## Statistica sui download

Gestione del documento: