Documenti full-text disponibili:
Abstract
It is well known that the best grape quality can occur only through the achievement of optimal source/sink ratio. Vine balance is in fact a key parameter in controlling berry sugar, acidity and secondary metabolites content (Howell, 2001; Vanden Heuvel et al., 2004).
Despite yield reduction and quality improvement are not always strictly related, cluster thinning is considered a technique which could lead to improvement in grape sugar and anthocyanin composition (Dokoozlian and Hirschfelt, 1995; Guidoni et al., 2002).
Among several microclimatic variables which may impact grape composition, the effect of cluster light exposure and temperature, which probably act in synergistic and complex way, has been widely explored showing positive even sometimes contradictory results (Spayd et al., 2001; Tarara et al., 2008). Pre-bloom and véraison defoliation are very efficient techniques in inducing cluster microclimatic modification. Furthermore pre-bloom defoliation inducing a lower berry set percentage
On these basis the aim of the first experiment of the thesis was to verify in cv Sangiovese the effects on ripening and berry composition of management techniques which may increase source/sink ratio and /or promote light incidence on berries throughout grape ripening.
An integrated agronomic, biochemical and microarray approach, aims to understand which mechanisms are involved in berry composition and may be conditioned in the berries during ripening in vines submitted to three treatments.
In particular the treatments compared were:
a) cluster thinning (increasing in source/sink ratio)
b) leaf removal at véraison (increasing cluster light exposure)
c) pre-bloom defoliation (increasing source sink ratio and cluster light exposure).
Vine response to leaf removal at véraison was further evaluated in the second experiment on three different varieties (Cabernet Sauvignon, Nero d’Avola, Raboso Piave) chosen for their different genetic traits in terms of anthocyanin amount and composition.
The integrated agronomic, biochemical and microarray approach, employed in order to understand those mechanisms involved in berry composition of Sangiovese vines submitted to management techniques which may increase source/sink ratio and induce microclimatic changes, bring to interesting results.
This research confirmed the main role of source/sink ratio in conditioning sugars metabolism and revealed also that carbohydrates availability is a crucial issue in triggering anthocyanin biosynthesis.
More complex is the situation of pre-bloom defoliation, where source/sink and cluster light increase effects are associated to determine final berry composition. It results that the application of pre-bloom defoliation may be risky, as too much dependent on seasonal conditions (rain and temperature) and physiological vine response (leaf area recovery, photosynthetic compensation, laterals regrowth). Early induced stress conditions could bring cluster at véraison in disadvantage to trigger optimal berry ripening processes compared to untreated vines. This conditions could be maintained until harvest, if no previously described physiological recovery occurs. Certainly, light exposure increase linked to defoliation treatments, showed a positive and solid effect on flavonol biosynthesis, as in our conditions temperature was not so different among treatments.
Except the last aspects, that could be confirmed also for véraison defoliation, microclimatic changes by themselves seemed not able to induce any modification in berry composition. Further studies are necessary to understand if the peculiar anthocyanic and flavonols composition detected in véraison defoliation could play important role in both color intensity and stability of wines.
Abstract
It is well known that the best grape quality can occur only through the achievement of optimal source/sink ratio. Vine balance is in fact a key parameter in controlling berry sugar, acidity and secondary metabolites content (Howell, 2001; Vanden Heuvel et al., 2004).
Despite yield reduction and quality improvement are not always strictly related, cluster thinning is considered a technique which could lead to improvement in grape sugar and anthocyanin composition (Dokoozlian and Hirschfelt, 1995; Guidoni et al., 2002).
Among several microclimatic variables which may impact grape composition, the effect of cluster light exposure and temperature, which probably act in synergistic and complex way, has been widely explored showing positive even sometimes contradictory results (Spayd et al., 2001; Tarara et al., 2008). Pre-bloom and véraison defoliation are very efficient techniques in inducing cluster microclimatic modification. Furthermore pre-bloom defoliation inducing a lower berry set percentage
On these basis the aim of the first experiment of the thesis was to verify in cv Sangiovese the effects on ripening and berry composition of management techniques which may increase source/sink ratio and /or promote light incidence on berries throughout grape ripening.
An integrated agronomic, biochemical and microarray approach, aims to understand which mechanisms are involved in berry composition and may be conditioned in the berries during ripening in vines submitted to three treatments.
In particular the treatments compared were:
a) cluster thinning (increasing in source/sink ratio)
b) leaf removal at véraison (increasing cluster light exposure)
c) pre-bloom defoliation (increasing source sink ratio and cluster light exposure).
Vine response to leaf removal at véraison was further evaluated in the second experiment on three different varieties (Cabernet Sauvignon, Nero d’Avola, Raboso Piave) chosen for their different genetic traits in terms of anthocyanin amount and composition.
The integrated agronomic, biochemical and microarray approach, employed in order to understand those mechanisms involved in berry composition of Sangiovese vines submitted to management techniques which may increase source/sink ratio and induce microclimatic changes, bring to interesting results.
This research confirmed the main role of source/sink ratio in conditioning sugars metabolism and revealed also that carbohydrates availability is a crucial issue in triggering anthocyanin biosynthesis.
More complex is the situation of pre-bloom defoliation, where source/sink and cluster light increase effects are associated to determine final berry composition. It results that the application of pre-bloom defoliation may be risky, as too much dependent on seasonal conditions (rain and temperature) and physiological vine response (leaf area recovery, photosynthetic compensation, laterals regrowth). Early induced stress conditions could bring cluster at véraison in disadvantage to trigger optimal berry ripening processes compared to untreated vines. This conditions could be maintained until harvest, if no previously described physiological recovery occurs. Certainly, light exposure increase linked to defoliation treatments, showed a positive and solid effect on flavonol biosynthesis, as in our conditions temperature was not so different among treatments.
Except the last aspects, that could be confirmed also for véraison defoliation, microclimatic changes by themselves seemed not able to induce any modification in berry composition. Further studies are necessary to understand if the peculiar anthocyanic and flavonols composition detected in véraison defoliation could play important role in both color intensity and stability of wines.
Tipologia del documento
Tesi di dottorato
Autore
Pastore, Chiara
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze agrarie
Ciclo
22
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Vitis Vinifera; grape composition; defoliation; cluster thinning; flavonoids; source/sink ratio; cluster microclimate
URN:NBN
DOI
10.6092/unibo/amsdottorato/2714
Data di discussione
19 Maggio 2010
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Pastore, Chiara
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze agrarie
Ciclo
22
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Vitis Vinifera; grape composition; defoliation; cluster thinning; flavonoids; source/sink ratio; cluster microclimate
URN:NBN
DOI
10.6092/unibo/amsdottorato/2714
Data di discussione
19 Maggio 2010
URI
Statistica sui download
Gestione del documento: