Sonni, Francesca
(2010)
Study of the components of quality in SO2-free wines obtained by innovative vinification protocols. Evaluation of the pre-fermentative addition of lysozyme and oenological tannins., [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze e biotecnologie degli alimenti, 22 Ciclo. DOI 10.6092/unibo/amsdottorato/2598.
Documenti full-text disponibili:
Abstract
The research performed during the PhD candidature was intended to evaluate the quality of white wines, as a function of the reduction in SO2 use during the first steps of the winemaking process.
In order to investigate the mechanism and intensity of interactions occurring between lysozyme and the principal macro-components of musts and wines, a series of experiments on model wine solutions were undertaken, focusing attention on the polyphenols, SO2, oenological tannins, pectines, ethanol, and sugar components.
In the second part of this research program, a series of conventional sulphite added vinifications were compared to vinifications in which sulphur dioxide was replaced by lysozyme and consequently define potential winemaking protocols suitable for the production of SO2-free wines.
To reach the final goal, the technological performance of two selected yeast strains with a low aptitude to produce SO2 during fermentation were also evaluated.
The data obtained suggested that the addition of lysozyme and oenological tannins during the alcoholic fermentation could represent a promising alternative to the use of sulphur dioxide and a reliable starting point for the production of SO2-free wines. The different vinification protocols studied influenced the composition of the volatile profile in wines at the end of the alcoholic fermentation, especially with regards to alcohols and ethyl esters also a consequence of the yeast’s response to the presence or absence of sulphites during fermentation, contributing in different ways to the sensory profiles of wines. In fact, the aminoacids analysis showed that lysozyme can affect the consumption of nitrogen as a function of the yeast strain used in fermentation.
During the bottle storage, the evolution of volatile compounds is affected by the presence of SO2 and oenological tannins, confirming their positive role in scaveging oxygen and maintaining the amounts of esters over certain levels, avoiding a decline in the wine’s quality.
Even though a natural decrease was found on phenolic profiles due to oxidation effects caused by the presence of oxygen dissolved in the medium during the storage period, the presence of SO2 together with tannins contrasted the decay of phenolic content at the end of the fermentation. Tannins also showed a central role in preserving the polyphenolic profile of wines during the storage period, confirming their antioxidant property, acting as reductants.
Our study focused on the fundamental chemistry relevant to the oxidative phenolic spoilage of white wines has demonstrated the suitability of glutathione to inhibit the production of yellow xanthylium cation pigments generated from flavanols and glyoxylic acid at the concentration that it typically exists in wine. The ability of glutathione to bind glyoxylic acid rather than acetaldehyde may enable glutathione to be used as a ‘switch’ for glyoxylic acid-induced polymerisation mechanisms, as opposed to the equivalent acetaldehyde polymerisation, in processes such as microoxidation. Further research is required to assess the ability of glutathione to prevent xanthylium cation production during the in-situ production of glyoxylic acid and in the presence of sulphur dioxide.
Abstract
The research performed during the PhD candidature was intended to evaluate the quality of white wines, as a function of the reduction in SO2 use during the first steps of the winemaking process.
In order to investigate the mechanism and intensity of interactions occurring between lysozyme and the principal macro-components of musts and wines, a series of experiments on model wine solutions were undertaken, focusing attention on the polyphenols, SO2, oenological tannins, pectines, ethanol, and sugar components.
In the second part of this research program, a series of conventional sulphite added vinifications were compared to vinifications in which sulphur dioxide was replaced by lysozyme and consequently define potential winemaking protocols suitable for the production of SO2-free wines.
To reach the final goal, the technological performance of two selected yeast strains with a low aptitude to produce SO2 during fermentation were also evaluated.
The data obtained suggested that the addition of lysozyme and oenological tannins during the alcoholic fermentation could represent a promising alternative to the use of sulphur dioxide and a reliable starting point for the production of SO2-free wines. The different vinification protocols studied influenced the composition of the volatile profile in wines at the end of the alcoholic fermentation, especially with regards to alcohols and ethyl esters also a consequence of the yeast’s response to the presence or absence of sulphites during fermentation, contributing in different ways to the sensory profiles of wines. In fact, the aminoacids analysis showed that lysozyme can affect the consumption of nitrogen as a function of the yeast strain used in fermentation.
During the bottle storage, the evolution of volatile compounds is affected by the presence of SO2 and oenological tannins, confirming their positive role in scaveging oxygen and maintaining the amounts of esters over certain levels, avoiding a decline in the wine’s quality.
Even though a natural decrease was found on phenolic profiles due to oxidation effects caused by the presence of oxygen dissolved in the medium during the storage period, the presence of SO2 together with tannins contrasted the decay of phenolic content at the end of the fermentation. Tannins also showed a central role in preserving the polyphenolic profile of wines during the storage period, confirming their antioxidant property, acting as reductants.
Our study focused on the fundamental chemistry relevant to the oxidative phenolic spoilage of white wines has demonstrated the suitability of glutathione to inhibit the production of yellow xanthylium cation pigments generated from flavanols and glyoxylic acid at the concentration that it typically exists in wine. The ability of glutathione to bind glyoxylic acid rather than acetaldehyde may enable glutathione to be used as a ‘switch’ for glyoxylic acid-induced polymerisation mechanisms, as opposed to the equivalent acetaldehyde polymerisation, in processes such as microoxidation. Further research is required to assess the ability of glutathione to prevent xanthylium cation production during the in-situ production of glyoxylic acid and in the presence of sulphur dioxide.
Tipologia del documento
Tesi di dottorato
Autore
Sonni, Francesca
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze agrarie
Ciclo
22
Coordinatore
Settore disciplinare
Settore concorsuale
URN:NBN
DOI
10.6092/unibo/amsdottorato/2598
Data di discussione
19 Maggio 2010
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Sonni, Francesca
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze agrarie
Ciclo
22
Coordinatore
Settore disciplinare
Settore concorsuale
URN:NBN
DOI
10.6092/unibo/amsdottorato/2598
Data di discussione
19 Maggio 2010
URI
Statistica sui download
Gestione del documento: