Alimenti Funzionali e Componenti Nutraceutici come Biomodulatori

Leoncini, Emanuela (2009) Alimenti Funzionali e Componenti Nutraceutici come Biomodulatori, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Biochimica, 21 Ciclo. DOI 10.6092/unibo/amsdottorato/1645.
Documenti full-text disponibili:
Documento PDF (Italiano) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (1MB) | Anteprima


Recent knowledge supports the hypothesis that, beyond meeting nutrition needs, diet may modulate various functions in the body and play beneficial roles in some diseases. Research on functional foods is addressing the physiologic effects and health benefits of foods and food components, with the aim of authorizing specific health claims. The recognition that oxidative stress plays a major role in the pathophysiology of cardiac disorders has led to extensive investigations of the protective effects of exogenous antioxidants, but results are controversial. A promising strategy for protecting cardiac cells against oxidative damage may be through the induction of endogenous phase 2 enzymes with the enhancement of cellular antioxidant capacity. Sulforaphane (SF), a naturally occurring isothiocyanate abundant in Cruciferous vegetables, has gained attention as a potential chemopreventive compound thanks to its ability to induce several classes of genes implicated in reactive oxygen species (ROS) and electrophiles detoxification. Antioxidant responsive element (ARE)-mediated gene induction is a pivotal mechanism of cellular defence against the toxicity of electrophiles and ROS. The transcription factor NF-E2-related factor-2 (Nrf2), is essential for the up-regulation of these genes. We investigated whether SF could exert cardioprotective effects against oxidative stress and elucidated the mechanisms underpinning these effects. Accordingly, using cultured rat neonatal cardiomyocytes as a model system, we evaluated the time-dependent induction of gene transcription, the corresponding protein expression and activity of various antioxidant and phase 2 enzymes (catalase, superoxide dismutase, glutathione and related enzymes glutathione reductase, glutathione peroxidase and glutathione S-transferase, NAD(P)H: quinone oxidoreductase 1 and thioredoxine reductase) elicited by SF. The results were correlated to intracellular ROS production and cell viability after oxidative stress generated by H2O2, and confirmed the ability of SF to exert cytoprotective effects acting as an indirect antioxidant. Furthermore, to get better insight into SF mechanism of action, we investigated the effect of SF treatment on Nrf2 and the upstream signalling pathways MAPK ERK1/2 and PI3K/Akt, known to mediate a pro survival signal in the heart. The use of specific inhibitors of ERK1/2 and Akt phosphorylation demonstrated their involvement in phase 2 enzymes induction. The concentration of SF tested in this study is comparable to peak plasma concentration achieved after dietary exposure giving clear relevance to our data to support dietary intake of Cruciferous vegetables in cytoprotection against oxidative stress, a common determinant of many cardiovascular diseases.

Tipologia del documento
Tesi di dottorato
Leoncini, Emanuela
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Settore disciplinare
Settore concorsuale
Parole chiave
oxidative stress, cardiomyocytes, functional food, sulforaphane, phase 2 enzymes
Data di discussione
23 Aprile 2009

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi