Integrative metagenomics: compositional analysis, network based methods and computational pipeline development

Fuschi, Alessandro (2024) Integrative metagenomics: compositional analysis, network based methods and computational pipeline development, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 36 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 1 Maggio 2025 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (50MB) | Contatta l'autore

Abstract

This PhD thesis delves into the utilization and analysis of metagenomic data, employing next-generation sequencing (NGS) technologies to unravel microbial biodiversity and functions across diverse ecosystems. Central to the research is network analysis, revealing intricate relationships within microbial communities. Addressing challenges of compositional data and spurious correlations, the study develops theoretical methodologies, explores spurious correlations through simulations, and applies these approaches to various environmental contexts. Methodologically, the thesis focuses on minimizing spurious correlations in network construction, employing Aitchison's theory and the centered log-ratio transformation. Synthetic data generation models are developed to mimic real data characteristics. Case studies on wastewater and gut bacterial ecology showcase the effectiveness of tailored network methodologies, offering insights into temporal patterns and community dynamics. Computationally, the research harnesses High-Performance Computing (HPC) infrastructures, utilizing tools like Snakemake and Conda for efficient workflow management. In summary, the thesis advances metagenomics by elucidating microbial community interactions, tackling methodological hurdles, and introducing innovative computational approaches to unravel microbial ecology intricacies.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Fuschi, Alessandro
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
metagenomic; network-based analysis; compositional data analysis; compositional data analysis; modelling data distribution; synthetic data generation; ecology; gut microbiome; sewage.
URN:NBN
Data di discussione
17 Giugno 2024
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^