Beyond normality: small area estimation based on generalized additive models for location, scale, and shape.

Mori, Lorenzo (2024) Beyond normality: small area estimation based on generalized additive models for location, scale, and shape., [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze statistiche, 36 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 1 Maggio 2027 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (34MB) | Contatta l'autore

Abstract

This research presents three papers that explore new methodologies at the intersection of Small Area Estimation (SAE) and Generalized Additive Models for Location, Scale, and Shape (GAMLSS), contributing novel insights to socioeconomic statistics. The first proposal introduces a SAE model based on GAMLSS, SAE-GAMLSS, for estimating household indicators. This model challenges traditional assumptions of normality by allowing more than 100 different distributions (Rigby et al., 2019). In GAMLSS each parameter can depend on covariates. Simulation results demonstrate that SAE-GAMLSS outperforms the empirical best linear unbiased predictor in various scenarios. In the application, per-capita consumption at the regional level is estimated, distinguishing between urban and rural areas, and reveals nuanced findings regarding the North-South economic divide for foreigners in Italy. The second study focuses on economic inequality among foreigners in Italy at the regional level, distinguishing between urban, peri-urban, and rural areas. A Simplified SAE-GAMLSS is proposed to overcome two common challenges in unit-level SAE: difficulties in finding covariates and high computational times. The Simplified SAE-GAMLSS, even without covariates, effectively reduces the variability of the direct estimator, minimizing computational burden. Simulation results support these findings. In the application, the Atkinson index is estimated. Findings indicate significant disparities in inequality between foreigners and natives, providing valuable insights for formulating targeted policies promoting equity and immigrant integration. Lastly, the third investigation addresses the critical issue of measuring the Carbon Footprint (CFP) at the household level. The study proposes the use of a conversion factor matrix to bridge macroeconomic data with consumption data and suggests employing the Generalized Beta Distribution of the Second kind (GB2) to describe households’ CFP. To obtain reliable per-capita CFP estimates at the provincial level, a SAE-GAMLSS based on a GB2 distribution is introduced.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Mori, Lorenzo
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Small Area Estimation
URN:NBN
Data di discussione
3 Luglio 2024
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^