Deep learning for massive multiple access in 6G

Khan, Muhammad Usman (2024) Deep learning for massive multiple access in 6G, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria elettronica, telecomunicazioni e tecnologie dell'informazione, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/11414.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Creative Commons Attribution Non-commercial No Derivatives 4.0 (CC BY-NC-ND 4.0) .
Download (1MB)

Abstract

In recent years, the number of massive Internet of Things (mIoT) has grown tremendously, giving rise to the term massive machine-type communications (mMTC). Cellular Internet of Things (IoT) is an economical solution for connecting devices wirelessly because it reuses existing cellular infrastructure. 3rd Generation Partnership Project (3GPP) has recognized mMTC as one of the use cases of 6G. However, providing massive access to the IoT devices within the constraints of limited system resources has been an ongoing challenge in cellular networks. On the other hand, Deep learning (DL) has emerged as a powerful method for various applications, such as image processing and natural language processing. More recently, DL has been successfully applied to a wide range of wireless communication tasks. Given that, this thesis aims to design massive multiple-access protocols using DL algorithms for both cell-based and cell-free networks.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Khan, Muhammad Usman
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
6G, massive MIMO, massive machine-type communication, cell-mMIMO, deep Learning, grant-free, random access, active user detection, preamble detection, pilot assignment, power allocation.
URN:NBN
DOI
10.48676/unibo/amsdottorato/11414
Data di discussione
12 Luglio 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^