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Abstract

In recent years, the number of massive Internet of Things (mIoT) has grown

tremendously, giving rise to the term massive machine-type communica-

tions (mMTC). Cellular Internet of Things (IoT) is an economical solution

for connecting devices wirelessly because it reuses existing cellular infrastruc-

ture. 3rd Generation Partnership Project (3GPP) has recognized mMTC as

one of the use cases of 6G. However, providing massive access to the IoT

devices within the constraints of limited system resources has been an ongo-

ing challenge in cellular networks. On the other hand, Deep learning (DL)

has emerged as a powerful method for various applications, such as image

processing and natural language processing. More recently, DL has been

successfully applied to a wide range of wireless communication tasks. Given

that, this thesis aims to design massive multiple access protocols using DL

algorithms for both cell-based and cell-free networks.

Firstly, a synchronized uplink grant-free (GF) non-orthogonal multiple

access (NOMA) scenario is considered in which only a small number of de-

vices out of several devices are active at a given time. In contrast to orthog-

onal multiple access, NOMA permits sharing of the same time-frequency

resource; therefore, can support a massive number of devices. Since there

is no grant procedure, the base station (BS) must identify the active users.

Consequently, a DL-based solution, comprised of two novel deep neural net-

work (DNN) architectures, is proposed, one for sparsity estimation and the

other for identifying the users.

Secondly, an asynchronous GF random access uplink scenario is consid-

ered where users are uniformly distributed around the BS. Asynchronous

schemes are important for ultra-low-cost IoT devices, as the signaling over-

vii



viii Abstract

head is reduced to the minimum. When a user becomes active, it initiates a

virtual frame (VF) comprising of slots with each slot duration equal to the

packet length. Each active user transmits multiple replicas in the chosen slot

to boost performance. As there is no coordination between the BS and active

device, the packet detection tasks need to be performed at the BS. For this

task, DNN is designed that predicts if the received symbols are preamble or

not.

Finally, a cell-free massive MIMO (CF-mMIMO) scenario is considered

in which access points (APs) are arranged in a grid form and users are dis-

tributed in an area. CF-mMIMO can improve the quality of the service for

the users at the end of the cell and can reduce inter-cell interference. Strate-

gic power control and careful pilot assignment are pivotal in mitigating inter-

user interference and enhancing network performance. Taking into account,

a DNN is designed for joint pilot and data power and pilot assignment that

maximizes the minimum user rate.

Artificial intelligence (AI) integration in 6G network holds significant

potential for adaptive and efficient network performance. AI can analyze

real-time data to predict and manage traffic congestion. AI can strengthen

network security by identifying threats and responding proactively. The re-

sult is higher efficiency, improved quality of service, and an enhanced user

experience.
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Chapter 1

Introduction

Recent years have witnessed the explosion of wireless Internet of Things (IoT)

communications across several application domains, including home appli-

ances, surveillance cameras, smart grid, smart factories, and intelligent trans-

portation systems [1, 2, 3]. The global count of Internet of Things (IoT)

devices is projected to nearly double, rising from 15.1 billion in 2020 to sur-

pass 29 billion by 2030 [4]. Owing to the rapid and widespread adoption of

IoT across various application domains, the density of connected objects (in

terms of devices per unit area) has recently become so large that the termi-

nology massive machine-type communications (mMTC) has been introduced

[5, 6, 7] to refer to wireless networking between the devices that are physi-

cally located in the same geographic area. Each of these devices is commonly

powered by batteries. The device produces data intermittently, with short

periods of activity separated by long periods of inactivity. The active period

is typically used for transmitting a single message in the form of a short

packet. This communication may occur either between devices or from the

device to a remote server through the network [8, 9]. In the uplink, i.e., the

wireless link from the devices to the base station (BS) or access point (AP),

a massive number of devices contend to transmit short data packets over

the radio access network, giving rise to term massive multiple access (MMA)

[10, 11]. As devices wake up sporadically, unpredictably, and independently,

the receiver lacks a priori knowledge of the number and subset of concur-

5
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Base Station
Active device

Inactive device

Figure 1.1: A massive multiple access scenario.

rently active devices within a specific time window. A typical MMA scenario

is depicted in Fig. 1.1.

Providing multiple access within the constraints of limited system re-

sources has been an ongoing challenge in cellular networks [3]. Over the evo-

lution of cellular technology, various multiple-access techniques have been

proposed. In earlier and current wireless networks, orthogonal multiple

access (OMA) constitutes the fundamental aspects. For instance, in first-

generation (1G) and second-generation (2G) time division multiple access

(TDMA) and frequency division multiple access (FDMA) are employed, re-

spectively. While third-generation (3G) systems utilize code division multiple

access (CDMA), and fourth-generation (4G) and fifth-generation (5G) sys-

tems implement orthogonal frequency division multiple access (OFDMA).

To minimize the interference between the adjacent blocks and perform signal

detection, these systems divide resource blocks orthogonally across time, fre-

quency, or code domains [12]. Yet, supporting a massive number of devices in

beyond 5G (B5G) networks is a non-trivial task and consists of the following

challenges.

1. The conventional information-theoretic approach typically concentrates

on facilitating a limited number of devices, where the user count is de-

terministic and pre-known. Extending this traditional multiple-access

theory to the more intricate multiple-access scenarios is not a trivial

task [13, 14, 15].
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2. Grant-based schemes employed in a conventional multiple access sce-

nario allow orthogonal resource allocation due to the small number

of devices. However, in MMA applications grant-based access leads

to long delays for resource allocation and is inefficient due to control

signaling overhead that may even outnumber data [16].

3. Majority of the current IoT networks employ OMA schemes, which

simplifies the transceiver design but it often results in a lower overall

spectral efficiency (SE). Therefore, implementing OMA schemes in a

massive Internet of Things (mIoT) network is inefficient due to under-

utilization of the radio spectrum [17, 18].

4. To prolong battery life, the IoT devices transmit with a low power

which makes signal detection at the BS difficult. As a remedy, IoT de-

vices increase the coverage by employing strategies like re-transmission

of the packets and considering low-order modulation, such as binary

phase shift keying (BPSK), quadrature phase-shift keying (QPSK) [19].

However, these techniques come at the expense of inefficient utilization

of system resources.

5. The broadcast nature of wireless signals introduces the risk of unin-

tended devices intercepting confidential signals, potentially leading to

information leakage [20, 21]. Traditionally, security in wireless access

relies on cryptography-based encryption techniques. However, due to

limited battery and computational capability, the IoT devices cannot

employ advanced encryption techniques.

1.1 5G and B5G

The 3rd Generation Partnership Project (3GPP) has classified 5G cellu-

lar system services into three distinct categories: enhanced mobile broad-

band (eMBB), ultra-reliable and low-latency communications (URLLC), and

mMTC [22]. Each category has its own set of key performance indicators

(KPIs) and requirements to meet the specific needs of different applications.
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Figure 1.2: The evolution from 5G to B5G.

In 5G mMTC services, the primary focus is on scalability, meaning the net-

work’s ability to handle a large number of devices with sporadic traffic, with

a minimum target per-device quality of service. Latency and reliability are

less critical factors for mMTC applications. URLLC services, on the other

hand, demand extremely low latency and high reliability, even when dealing

with a smaller number of devices. Scalability is not as critical for URLLC ap-

plications. While eMBB specifically targets the provision of exceptional data

transfer speeds to support demanding broadband applications like virtual re-

ality (VR) and augmented reality (AR). The 3GPP has established specific

requirements for mMTC services in 5G, which are summarized in Table 1.1.

The transition from 5G to 6G will mark a significant shift from the tra-

ditional ”connected people and things” paradigm to a more advanced ”con-

nected intelligence” paradigm. This evolution will involve not only enhance-

ments to the existing communication service classes eMBB, URLLC, and

mMTC to eMBB+, URLLC+, and mMTC+, but also introduce a new sens-

ing dimension, with artificial intelligence (AI) playing a pivotal role in unify-

ing all services and applications. In fact, IMT-2030 envisioned expanding on

existing use cases like eMBB, URLLC, and mMTC and enabling new ones

using the capabilities of AI [23]. Notably, 6G networks will also feature a con-

vergence of services, addressing the need for flexible and adaptable networks

that can seamlessly support a wide range of IoT use cases, including indus-

trial applications, vehicle-to-infrastructure communications, and smart city

initiatives. This convergence will require a rethinking of the rigid 5G service

classification, particularly for applications that demand a balance between
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Table 1.1: 5G and B5G IoT key performance indicators (KPIs) and target values [3, 24]

5G B5G

Connectivity 5 · 104 per cell 107 per km2

Battery life 10 years 20 years
Coverage Ground Space-air-ground-sea
Latency 1 ms 0.3 ms

Reliability 10−4 10−6

scalability, latency, and reliability. While scalability will remain a primary

concern for mMTC services, tighter reliability and latency requirements will

emerge to accommodate the growing demands of emerging IoT applications.

Additionally, new performance indicators (KPIs) are likely to be introduced

in 6G, one of which is the environmental impact of the network, i.e., carbon

dioxide (CO2) footprint. These advancements will pave the way for a more

sustainable and intelligent wireless ecosystem that supports a diverse range

of applications, enhancing the quality of life for all.

The mIoT networks provide an ideal setting for uncoordinated grant-

free (GF) access protocols, where a vast number of devices transmit small

data packets at arbitrary times without prior coordination or synchroniza-

tion. Several examples of GF protocols have been proposed in recent litera-

ture, including [25, 26, 27]. These protocols enable machine-type devices to

access the channel without any coordination with the BS and other devices.

This uncoordinated approach ensures scalability and efficiency for mIoT de-

ployments. The key advantage of GF protocols lies in their simplicity and low

overhead on the device side. These approaches simplify device-side imple-

mentation but place increased computational demands on the BS. Overall,

GF protocols offer a promising solution for enabling mIoT connectivity while

maintaining efficient resource utilization and low device-side complexity.

1.2 Deep Learning

Deep learning (DL), a subset of machine learning, has revolutionized the field

of AI by enabling machines to learn complex patterns and make intelligent
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Input

Hidden

Output

neuron

Figure 1.3: Deep Neural Network

decisions, such as speech recognition [28], computer vision [29], and language

translation [30]. Depending upon the complexity of the network, it can learn

a large number of piecewise smooth functions [31]. DL algorithms are trained

on massive datasets. This training process involves adjusting the weights of

the network to minimize the error between the network’s predictions and

the actual data labels. Once trained, deep neural networks (DNNs) can

perform complex tasks with low computational cost, as their computations

primarily involve multiply–accumulate operations and element-wise nonlin-

ear operations. Among the plethora of DL algorithms, notable ones that have

garnered widespread use include DNN, convolutional neural network (CNN),

recurrent neural network (RNN), and the groundbreaking Transformer model

proposed in [32]. Notably, the Transformer model has revolutionized the field

of natural language processing giving rise to large language models, such as

Google’s BERT and OpenAI’s ChatGPT. The subsequent section serves as

an introduction to DNN and CNN.

1.2.1 Deep Neural Networks

DNNs, also known as feedforward neural networks or multilayer percep-

trons (MLPs), are the foundation of deep learning. These networks aim to

approximate a given function f ∗. A DNN establishes a mapping y = f(x;θ)

and learns the optimal parameter values θ to achieve the best possible func-
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tion approximation [33].

A DNN comprises an input layer, an output layer, and multiple hidden

layers as shown in Fig. 1.3. Layers are composed of a node, similar to a

neuron, carrying out a sum-of-products operation by multiplying the weights

with the inputs and then adding a bias value as follows

z =
m∑
i=1

wixi + b (1.1)

where, x, w, and b represent the input, weight, and bias values, respectively.

The intermediate result z is then sent through an activation function to

introduce non-linearity into the system

y = f(z) . (1.2)

The non-linear operation f(·), known as the activation function, is a crucial

component of the DL model. A fully-connected layer composed of many

neurons can be conceptualized as [33]

z = f(Wx+ b) (1.3)

where W ∈ Rout×in represents the weight matrix. The input to the layer

is denoted by x ∈ Rin×1, while the bias is represented by b ∈ Rout×1 [33].

The activation function enables the network to learn non-linear relationships

between input and output. Some of the most common activation functions

are given in Table 1.2.

1.2.2 Convolutional Neural Networks

Convolutional networks are a type of neural network that are designed to

efficiently process data that is arranged in a grid-like form, such as images

or audio signals [33]. They achieve this by using a mathematical operation
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Table 1.2: Common activation functions

Function

Rectified linear unit (ReLU) g(z) = max(0, z)
Leaky ReLU g(z) = max(0.01 ∗ z, z)
Sigmoid g(z) = 1/(1 + e−z)

Hyperbolic Tangent g(z) = (ez − e−z)/(ez + e−z)

Exponential linear unit (eLU) g(z) =

®
Γ · (ez − 1), if z < 0,

z, otherwise

called convolution

si = (x ∗ w)i =
∞∑

n=−∞

xnwi−n (1.4)

where x is the input and w is the kernel. In machine learning applications,

the data is often represented as a multi-dimensional array; thus, the filters

used to extract features are also multi-dimensional arrays. These arrays are

known as tensors. The convolution operation is simplified since the values of

the tensors being convolved are defined only at a finite set of points. Due to

this fact, the convolution can be implemented as a sum over a finite number

of array elements instead of an infinite summation as

Si,j = (I ∗K) =
∑
m

∑
n

Im,nKi−m,j−n (1.5)

where Si,j represents the element at the ith rows and jth column of S.

In the convolution process, an odd and square-dimension kernel or filter is

traversed across the input. Each convolutional operation involves multiplying

the values of the filter with the corresponding values in the input, followed

by summing up the results. The outcome of this summation replaces the

original value in the input. The kernel is moved to adjacent values, defined

by a stride, and convolution operation is applied. The process is iteratively

applied to obtain feature maps. The convolution operation leads to a feature

map with smaller dimensions than the input. To counteract this, values are
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padded to maintain dimension. Based on the input size (NI), kernel size (F ),

stride (T ), and padding (P ), the output size (NO) can be calculated as

NO =

õ
NI − F + 2P

T
+ 1

û
. (1.6)

The feature maps are passed through an activation function to introduce

non-linearity. This step is crucial for enabling the network to learn complex

patterns and relationships in the data. The feature maps are modified further

using the pooling operation. The pooling operation involves replacing a

specific value in the feature map with a derived value based on its magnitude

and that of its neighboring values. The max pooling operation is the most

popular technique that outputs the maximum value within a rectangular

region. Other pooling functions include: computing the average or L2 norm

within the rectangular region [33].

1.2.3 Training DL-algorithm

The objective of the training is to determine the suitable weights of the

DL model that minimizes the loss function. The loss, cost, or objective

function is dependent on the problem that we are trying to solve. For a binary

classification scenario, where the task involves assigning input to one of two

categories, or in a multi-label classification context, where the objective is to

classify the input into non-mutually exclusive categories, the binary cross-

entropy loss function is employed. It is defined as follows

J (q, q̂) = −q log q̂ − (1− q) log(1− q̂) (1.7)

where q is the true label and q̂ is the predicted value by the DL algorithm.

For a multi-class classification problem, which involves categorizing input

into three or more mutually exclusive categories, categorical cross-entropy is
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Algorithm 1 Gradient Descent Algorithm

1: Initialize the weights W and bias b of the network randomly.
2: while not converged do
3: Compute Gradient ∂J

∂W
and ∂J

∂b

4: Update weights: W ←W − α ∂J
∂W

▷ α is the learning rate.
5: Update bias: b← b− α∂J

∂b

6: end while

Return: W , b

employed

J (p, p̂) = −
M∑
i=1

pi log p̂i (1.8)

where p is the one-hot encoded vector of length M , indicating the category

position with a value of 1 and all other positions with a value of 0. The DL

algorithm outputs p̂ providing the probability for each class.

To update the weights of the network, it is supplied with training exam-

ples, for which the network generates the outputs commonly known as the

forward propagation step. In the backpropagation step, the loss is computed

on these examples, and the weights are updated using the gradient descent

algorithm, which involves computing gradients of the loss with respect to

the weight [33]. The gradient descent algorithm is presented in Algorithm 1.

Both steps are repeated until the weight of the model converges, i.e., there

is no significant change in the weight values.

1.3 Thesis Structure

The rest of the thesis is organized as follows.

Chapter 2: proposes the implementation of a GF non-orthogonal mul-

tiple access (NOMA) scheme to provide services to a large number of devices

and to reduce the communication overhead in mMTC scenarios. For NOMA

with sparse spreading, a DNN-based approach is proposed for active users

detection (AUD) called active users enumeration and identification (AUEI).
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It consists of two phases: firstly, a DNN is used to estimate the number of

active users; then in the second phase, another DNN identifies them. To

speed up the training process of the DNNs, a multi-stage transfer learning

technique is proposed. The numerical results show a remarkable performance

improvement of AUEI in comparison to previously proposed approaches.

Chapter 3: proposes a DL-based solution for detecting preambles in an

asynchronous GF random access uplink scenario, assuming multiple antennas

at the BS. In GF random access protocols, a large number of devices activate

sporadically and transmit short packets, typically containing a preamble (or

a pilot sequence), without any resource allocation from the BS. One of

the critical tasks to be accomplished by the BS is thus the preamble-based

detection of the transmitted packets. The DL-based approach outperforms

the classical correlator-based approach.

Chapter 4: introduce a DNN-based approach for joint power control and

pilot assignment, aiming to maximize the minimum user rate, commonly re-

ferred to as a max-min problem in a cell-free massive MIMO (CF-mMIMO)

network. A custom loss function is designed for training the network. Ex-

tensive simulations demonstrate that the proposed method outperforms the

existing deep learning power control and random pilot assignment strate-

gies. The model versatility and adaptability are assessed by simulating two

different scenarios, namely a urban macro (UMa) and an industrial one. Ad-

ditionally, the advantage of the proposed approach is demonstrated in terms

of energy efficiency by evaluating the per-user average pilot and data transmit

power.

Chapter 5: concludes with final remarks and considerations.
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Chapter 2

Enumeration and Identification

of Active Users for GF NOMA

2.1 Introduction

In recent years, mMTC has gained a lot of attention due to applications

such as smart grid and metering, smart factories, autonomous driving, and

public health [1],[2]. In cellular scenarios, mMTC has to provide connectivity

between BSs and a very large number of devices [3].

In a conventional multiple-access scenario consisting of a relatively small

number of human-type users, the BS assigns radio resources in a coordinated

fashion to each user. On the contrary, in mMTC scenario, the resource

allocation approach will yield tremendous control signaling overhead which

may be large in comparison to the size of the data, making the protocol

highly inefficient.

To cope with these limitations, GF-based approaches have been proposed.

In GF random access, signalling overhead and latency are reduced as the

active devices transmit data without a grant procedure. In contrast to or-

thogonal multiple access, NOMA permits sharing of the same time-frequency

resources, therefore, it can support a massive number of devices in a limited

radio spectrum. In the code domain NOMA, each user is assigned a sparse

spreading sequence, known to the BS. The length of the spreading sequences

21
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is kept low to efficiently utilize the radio spectrum. Due to a large number of

users, the sequences are non-orthogonal. Despite this, decoding is possible in

mMTC because the number of active devices at any given time is a small frac-

tion of the total number of devices. Since there is no previous coordination

or grant procedure, the BS must identify the active users to be able to decode

them by their respective spreading sequences. Thus, the first crucial step is

active user detection. Due to the sparseness of the users’ activation pattern,

compressed sensing (CS)-based techniques have been proposed in NOMA to

identify them [4, 5, 6]. In [7], the authors proposed a low-complexity algo-

rithm for active users detection using pilot sequences with a massive number

of antennas at the BS. A receiver which works independently of parameters

such as signal-to-noise ratio (SNR) and user activity ratio in a NOMA set-

ting is proposed in [8]. However, it has been shown that the performance of

CS-based detection schemes degrade considerably as the sparsity level (num-

ber of active devices) increases [6]. Moreover, CS-based algorithms fail to

consider time constraint [9]. For instance, the number of iterations of block

iterative hard thresholding (BIHT) presented in [10] depends on the sparsity

level, i.e., the algorithm will take more time to converge as the sparsity level

increases.

To overcome some of these issues, DL methods could be used instead

of CS. Indeed, it has been shown that a DNN can learn a large number

of piecewise smooth functions [11], and since then DL methods have been

successfully proposed in various fields, such as speech recognition [12], com-

puter vision [13], and language translation [14]. DL techniques find several

applications in the wireless communication domain as well [9, 15, 16, 17]. In

contrast to CS solutions, DL requires a large amount of data for training, but

once the algorithm is trained the complexity becomes low. Indeed, in the op-

erational mode, DL involves multiply-accumulate and element-wise nonlinear

evaluations, which are far less computationally expensive than the CS-based

techniques [9, 18]. Thus, some studies have been carried out to identify ac-

tive users in NOMA scenarios using DL algorithms [3, 18]. Specifically, a

RNN has been proposed for both AUD and channel estimation considering

a NOMA scenario with sparse spreading sequences in [3]. Another approach
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that deals with AUD using a DNN architecture with residual connections

has been proposed in [18]. The existing DNN-based algorithms for AUD can

be divided into three categories: i) assuming the number of active users is

perfectly known [19]; ii) without preliminary estimation of the number of ac-

tive users [3, 20, 21]; iii) estimating this number through thresholding-based

algorithms [18]. Assuming perfect knowledge of the number of active users

is unrealistic. Also, sparsity estimation by thresholding-based algorithms is

not an easy task, as the threshold level would depend on several system pa-

rameters in an unknown way, leading to poor results when compared with

the other categories [3].

In this chapter, it is assumed that at the beginning of the transmission

the BS is unaware of the number of active users. The main contributions of

this chapter are summarized as follows:

• A new solution to active users detection is proposed, which comprises of

two novel DNN architectures, one for sparsity estimation called active

users enumeration (AUE), and the other one for identifying the active

users called active users identification (AUI);

• The proposed solution is compared with previous approaches to assess

the performance improvement;

• False alarm rate is reported to completely characterize the performance

of the proposed model as it has never been analyzed in the literature

on AUD to the best of my knowledge;

• A multi-stage transfer learning approach is investigated to reduce the

training time of the DNNs.

The rest of the chapter is organized as follows. The system model along with

the concept of spreading sequences and multiple measurements is reported

in Section 2.2. In Section 2.3, the DNN architecture for AUD and sparsity

estimation is explained. Section 2.4 contains the simulation settings and

results. Section 2.5 concludes the study.

Boldface uppercase, boldface lowercase, and lowercase letters are used to

denote matrices, vectors, and scalars respectively. Also, abs(v) and arg(v)
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Base StationActive device Inactive device

Figure 2.1: The depiction of GF-NOMA uplink communication scenario where only a
few devices are active. The active devices are highlighted in blue color.

denote the magnitude and argument of the complex number v, respectively.

The operator diag(v) outputs a diagonal matrix with entries of the vector v

along the diagonal, and ∥ . ∥p represents the p-norm.

2.2 System Model

A synchronized uplink GF NOMA system scenario is considered as in [3, 18],

in which N machine-type devices can transmit to the BS (see Fig. 2.1), both

machine-type devices and BS are equipped with a single antenna, and each

device is assigned a preconfigured sequence (or codeword), known by the BS.

A small number of devices K are active at a given time, with 1 ≤ K ≤ Kmax

and Kmax ≪ N , where Kmax is a system parameter representing the maxi-

mum number of active users under consideration. The symbols generated by

each active device are spread with its device-specific non-orthogonal code-

word. Then, the samples are transmitted through parallel frequency-flat

channels, e.g., by Orthogonal Frequency-Division Multiplexing (OFDM).

For instance, if the ith device wants to send at time t a symbol s
(t)
i ∈ C,

it encodes it into q
(t)
i = c

(t)
i s

(t)
i ∈ CS, where c

(t)
i = [c

(t)
i,1, · · · , c(t)i,S]

T ∈ CS is

the codeword of length S associated with the ith device. The S elements of

q
(t)
i are sent over S parallel additive white Gaussian noise (AWGN) channels

with gains h
(t)
i = [h

(t)
i,1, h

(t)
i,2, . . . , h

(t)
i,S]

T . Overall, the received vector at the BS
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at time t can be written as

y(t) =
N∑
i=1

δi diag(c
(t)
i )h

(t)
i s

(t)
i + n(t) (2.1)

where n denotes the complex Gaussian noise vector n ∼ CN (0, σ2
nI). The

device indicator δi ∈ {0, 1} indicates the activity status of the ith device,

with δi = 0/1 for inactive/active devices, respectively.

To minimize the interuser interference, low-density signature (LDS) code-

words are employed, i.e., each codeword has only a small number nS of

non-zero values [22]. Similarly to [3, 18, 22], nS positions are randomly

picked to generate a codeword, and then the non-zero entries are generated

as independent and identically distributed (i.i.d.) according to a complex

Gaussian distribution CN (0, σ2
w).

Assuming the devices transmit Nd consecutive symbols, the received mea-

surements can be arranged in a vector as follows

ỹ =
î
Φ1 · · ·ΦN

ó δ1x1

...

δNxN

+


n(1)

...

n(Nd)

 (2.2)

where Φi = diag[(c
(1)
i )T · · · (c(Nd)

i )T ] are the codebook matrices of dimension

(Nd · S) · (Nd · S), c
(t)
i are the randomly generated codewords, and xi =

[(s
(1)
i h

(1)
i )T · · · (s(Nd)

i h
(Nd)
i )T ]T ∈ CNd·S·1 denote the composite channel vectors

and data symbols. For example, consider the case where only the 2nd and

4th users are active. Then, (2.2) reduces to

ỹ =
î
Φ2Φ4

ó[x2

x4

]
+


n(1)

...

n(Nd)

 . (2.3)

Assuming a maximum number of active users Kmax, AUD can be formu-
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lated as the support identification problem

Ω̂ = argmin
Ω, |Ω|≤Kmax

∥ ỹ −ΦΩxΩ ∥2 (2.4)

where Ω are the subsets of {1, 2, . . . , N}, and the Ω̂ contains the indexes of

the estimated active users.

One possible approach to solve (2.4) consists of applying CS-based tech-

niques, which however could be challenging for real-time applications [6, 10,

23, 24, 25]. On the contrary, once a DNN is trained, estimating Ω̂ will be

less computationally expensive with respect to CS-based approaches. In the

next section, the proposed DL approach is discussed.

2.3 Deep Learning-based AUD

Different approaches based on DNNs have been proposed in the literature

for AUD, all employing thresholding-based algorithms for determining the

number of active users [18, 26]. Here a different solution composed of two

separate DNN architectures is presented, one for active users enumeration

and the other for active users identification. To the best of my knowledge,

this is the first work which utilizes a DNN-based architecture for enumerating

the active users in a NOMA scenario. The task of the AUE network is to

output the number of active users, while a set of AUI networks, each trained

for a different sparsity level, identifies the active users. More precisely, the

former learns the mapping between the received vector ỹ and the estimated

number of active users K̂, while the latter learns the mapping between the

received vector ỹ and Ω̂ for the cardinality |Ω̂| = K̂.

The networks provide the result as follows

K̂ = f(ỹ; Ψ) (2.5)

Ω̂ = gK̂(ỹ; ΘK̂)

where Ψ and Θk are the sets of weights and biases associated with the enu-

meration DNN and the identification DNN for sparsity k ∈ {1, 2, . . . , Kmax},
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respectively.

2.3.1 DNNs Architecture

The received vector obtained through (2.2) has complex elements. To work

with common DNNs, which assume real numbers as input, the complex el-

ements are split into the magnitude and phase parts. More precisely, for a

received vector ỹ = [y1, . . . , ym]
T ∈ Cm then the input to the DNNs would

be

ŷ = [abs(y1), arg(y1), . . . , abs(ym), arg(ym)]
T .

Fig. 2.2 shows the architecture for the AUE and AUI. Both DNNs con-

sist of convolutional layers, fully-connected layers, batch normalization layers,

dropout layer, and activation layers. The difference between the AUE and

AUI is in the output layer, which is a softmax for the AUE, and a sigmoid

layer for the AUI. These output layers are described precisely below. The

input to the DNNs ŷ is reshaped to a 2-D feature map (Nd, 2S) using the

reshape layer, where the first dimension corresponds to the channels anal-

ogous to the channels in a colour image. The 1-D convolution operation is

performed using filters of size 2 and 4, with a stride equal to the filter size.

Here, valid convolution is performed, i.e., the output is only considered when

the filter is fully contained in the feature map and the output feature map is

reduced according to the input feature map, filter size and stride [27]. The

output feature maps from the convolutional layers are passed through a ReLU

activation function. The output from the activation function is reduced to

1-D and then concatenated through the concatenation layer. The rationale

behind using convolutional layers is to reduce the computational complexity

and to extract the features shared among Nd multiple measurements. The

fully-connected layers, defined in (1.3), consist of α neurons, except for the

last one. In fact, the last fully-connected layer dimension must agree with the

output layer dimension, so it contains Kmax and N neurons for the enumer-

ation and the identification DNNs, respectively. The fully-connected layers

employ a linear activation function.
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Instead of a single training example, DNNs are trained on a batch of

training examples called a mini-batch, B = [a(1), . . . ,a(n)]. The batch nor-

malization layer normalizes the mini-batch B to zero mean and unit variance

and then scales it using the trainable parameters γ and β

z
(k)
i =

γ(a
(k)
i − µi)√

σ2
i

+ β i = 1, . . . , α (2.6)

where µi and σ2
i are estimates of the mean and variance of the ith element

of the vector, respectively, obtained by moving average [28]. The activation

layers are introduced so that the DNNs can learn non-linear functions. ReLU

is a common choice as an activation function in the hidden layers for numer-

ous DNN architectures [27, 29] and ReLU can be mathematically described

as

a = max(0, z) (2.7)

where the operation is to be considered element-wise.

A DNN consists of many hidden layers, and it becomes challenging to

train due to the vanishing/exploding gradient problem [30]. Therefore, the

residual connections scheme is adopted, proposed in [31]. Residual connec-

tions directly pass information from the previous layer to the next layer as

depicted in Fig. 2.2.

The output layer of the AUE has dimension equal to the maximum spar-

sity level Kmax. The softmax layer takes as input a vector and normalizes it

to a probability distribution

p̂i =
ezi∑Kmax

j=1 ezj
(2.8)

where zi and zj are the ith and jth element of z, while p̂i is the ith element

of p̂. The final estimate is

K̂ = argmax
i

p̂i . (2.9)
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For active user identificationKmax neural networks g1(·), g2(·), . . . , gKmax(·)
are used, as defined in (2.5). The architecture of all the Kmax AUI networks

remains the same as shown in Fig. 2.2b, only the dataset used for training

each AUI is different. For instance, for training gk(·), a dataset comprising of

k active users is considered. Here, a dropout layer is employed to avoid over-

fitting of the model on the training dataset. In this layer, during the training

phase, a fraction of the input and output connections from the neurons are

dropped [28]. To identify active users, a sigmoid layer with N outputs is

adopted as output, one per user. Each output is calculated as

q̂i =
1

1 + e−zi
i = 1, . . . , N (2.10)

where q̂i represents the likelihood of user i being active. In previous ap-

proaches, a comparison with a threshold was proposed to decide which users

were active, but these methods suffer from difficulties in finding a suitable

threshold value. In this approach, summarized in Algorithm 2, the foun-

dation is built upon K̂ derived from the AUE network. Subsequently, AUI

network is employed which is trained for K̂ active users. With this network,

using ỹ as input, the K̂ users with the largest likelihoods are considered as

active

Ω̂ = argmax
Ω,|Ω|=K̂

∑
i∈Ω

q̂i . (2.11)

2.3.2 DNNs Training

Sparsity estimation can be seen as a multi-class classification, in which the

input ỹ is categorized in one of the categories ranging from 1 to Kmax. To

this aim, a categorical cross-entropy loss is employed. The true label vector

is indicated as p = [p1, p2, . . . , pKmax ]. If the number of active users is k, it

will be pk = 1 and pj = 0∀j ̸= k. For instance, if the number of active users

is 2, then p = [0, 1, 0, . . . , 0]. The categorical cross-entropy JS(p, p̂) loss is
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Algorithm 2 Deep learning-based AUEI
Input: ỹ, Kmax

Output: Ω̂

1: Pass ỹ through the enumeration DNN to obtain p̂
2: K̂ ← argmax

i∈{1,...,Kmax}
p̂i

3: Ω̂← gK̂(ỹ,ΘK̂)

Return: Ω̂

defined as

JS(p, p̂) = −
Kmax∑
i=1

pi log p̂i = − log p̂K . (2.12)

User activity identification can be seen as a multi-label classification prob-

lem, in which K̂ out of N users are selected. To this aim, a binary cross-

entropy loss is employed. The true label vector is indicated as q = [q1, q2, . . . , qN ]

where each element represents the user as active (qi = 1) or inactive (qi = 0).

For instance, if Ω = {2, 4} then q = [0, 1, 0, 1, . . . , 0]. The binary cross-

entropy loss is defined as

JA(q, q̂) = −
N∑
i=1

(qi log q̂i + (1− qi) log(1− q̂i)) . (2.13)

In order to determine the parameters Ψ and Θk in (2.5), the loss functions

JS(p, p̂) and JA(q, q̂) are needed to be minimized for enumeration and iden-

tification tasks, respectively. For that purpose, the well-known Adam opti-

mizer is employed [32].

With the proposed approach, Kmax AUI networks have to be trained

which is a time and computationally expensive task. To counter that, a multi-

stage transfer learning technique is proposed. To train the AUI network gk(·)
in (2.5) for k ≥ 2 through this technique, start from the trained weights of

gk−1(·). More precisely, the weights of g1(·) are initialized according to [33].

Then, g1(·) is trained until the network converges, i.e., there is no significant

change in the network weights. Instead of initializing the weights of g2(·)
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randomly, they are initialized with the trained weights of g1(·); this way,

g2(·) leverages the information learnt by g1(·) and converges faster than its

randomly initialized counterpart. In general, the weights of gk(·) are hence

initialized through the trained weights of gk−1(·), for k = 2, . . . , Kmax.

2.3.3 Computational Complexity

In this subsection, the computational complexity of the AUEI is presented in

terms of floating point operations (FLOPs). The addition, subtraction, and

multiplication computation are assumed as a single FLOP whereas division

and exponential computation are considered as 4 and 8 FLOPs, as in [34].

The FLOPs of the convolutional layers are given by

Cconv2 = 2 ·Nconv2 · Fconv2 ·Nd · outconv2
Cconv4 = 2 ·Nconv4 · Fconv4 ·Nd · outconv4

where Nconv∗ , Fconv∗ and outconv∗ represent the number of convolution filters,

size of the filter and output shape, respectively. The output of the convolu-

tional layers is fed into a ReLU, having computational complexity

CReLU2 = Nconv2 · outconv2
CReLU4 = Nconv4 · outconv4 .

The number of FLOPs in a fully-connected layer (1.3) is dictated by the

input (in) and output (out) size

CFC = in · out+ (in− 1) · out+ out .

The number of multiplication and addition operations in Wa is given by

the term (in · out) and (in · out − out), respectively. The last term (out)

is the number of addition operations due to the bias b. The computational

complexity of the fully-connected layer simplifies to

CFC = 2 · in · out .
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Consequently, the FLOPs of the input fully-connected layer can be defined

as

CFCin
= 2α · [Nconv2 · outconv2 +Nconv4 · outconv4 ] .

The batch normalization (2.6) involves four operations, therefore, the com-

plexity of the input batch normalization layer can be expressed as

CBNin
= 4α .

The hidden layer is composed of two fully-connected layers, two batch nor-

malization layers, two activation functions, one dropout layer and one resid-

ual connection. The dropout layer and residual connection are elementwise

multiplication and addition operations; therefore, each will contribute α com-

plexity to the algorithm. The overall complexity of L hidden layers is given

by

Chidden = (2α2 + 2α2 + 4α + 4α + 2α + α + α)L

= 4α2L+ 12αL .

The computational cost incurred at the output fully-connected layer of AUE

and AUI is

CAUE
FCout

= 2αKmax

and

CAUI
FCout

= 2αN

respectively. The softmax layer (2.8) in AUE invokesKmax exponential, Kmax

divisions and Kmax − 1 additions operations

Csoftmax = 13Kmax − 1 .
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Similarly, the number of FLOPs in a sigmoid layer (2.10) is:

Csigmoid = 13N .

According to [35], finding the largest probabilities in (2.9) and (2.11) yields

the following complexity

CAUE
max = Kmax − 1

and

CAUI
max = KN − K(K + 1)

2

respectively. The overall computational complexity of the AUE is described

below

CAUE = Cconv2 + Cconv4 + CReLU2 + CReLU4 + CFCin

+ CBNin
+ Chidden + CAUE

FCout
+ Csoftmax + CAUE

max

= 2 · (Nconv2 · outconv2)(Fconv2 ·Nd + α)

+ 2 · (Nconv4 · outconv4)(Fconv4 ·Nd + α)

+ 4α + 4α2L+ 12αL+ 2αKmax + 14Kmax − 2 . (2.14)

Likewise, the computational complexity of AUI is given as

CAUI = Cconv2 + Cconv4 + CReLU2 + CReLU4 + CFCin

+ CBNin
+ Chidden + CAUI

FCout
+ Csigmoid + CAUI

max

= 2 · (Nconv2 · outconv2)(Fconv2 ·Nd + α)

+ 2 · (Nconv4 · outconv4)(Fconv4 ·Nd + α)

+ 4α + 4α2L+ 12αL+ 2αN + 13N +KN

− K(K + 1)

2
. (2.15)
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Finally, the complexity of the AUEI is

CAUEI = CAUE + CAUI . (2.16)

In the next section, this complexity is compared with that of the algorithm

presented in [18].

2.4 Implementation and Results

2.4.1 Simulation Setup

The samples are generated according to the system model described by (2.2)

for training and testing the DNNs networks. To compare the proposed ap-

proach with other algorithms from the literature, the same simulation pa-

rameters are chosen as in [18], namely a total number of users N = 100, a

maximum number of active users Kmax = 8, spreading codewords with spar-

sity nS = 2 and length S = 10, and Nd = 7 successive measurements. The

case of zero active users can be handled with less computationally expensive

spectrum sensing techniques or machine learning algorithms, as described,

e.g., in [36, 37, 38]. The non-zero values of the LDS codewords are generated

from the distribution CN (0, σ2
w) with σ2

w = 1. A Rayleigh fading channel

model with perfect power control is employed, so that hi,j ∼ CN (0, 1) are

i.i.d. complex Gaussian. Note that owing to perfect power control, the dis-

tance of the devices from the BS does not contribute towards the received

vector. The data symbols si are unit energy QPSK, so that the SNR is

defined as SNR = 1/σ2
n.

For the AUE network dataset, the number of active users in each sample

varies from 1 to Kmax. For the training, 13.5 · 106 samples are generated.

The dataset generation for the kth AUI network gk(·) involves randomly

activating k users from a total of N . For training and testing, 9 · 106 and 106

samples are generated per AUI network.

The architecture of both the AUE and AUI DNNs consists of L = 2

hidden layers. The convolutional layers consist of 64 filters. Except the



36 2.4. Implementation and Results

last fully-connected layer, each fully-connected layers consists of α = 1000

neurons. In case of AUE and AUI, the last fully connected layer contains

Kmax = 8 and N = 100 neurons, respectively.

The sparsity estimation DNN is trained for 10 epochs. Regarding the AUI

networks, to minimize the training time, the multi-stage transfer learning

approach is adopted. Hence, the first AUI network, g1(·), is trained for 10

epochs with He initialization [33], while for the gk(·) network the weights

are initialized from the trained weights of gk−1(·). The Adam optimizer is

adopted for learning the weights in both DNN networks. For the optimizer,

the following configuration is considered: learning rate = 0.001, β1 = 0.9,

and β2 = 0.999. In the training phase, a mini-batch of size |B| = 1000 is

considered. The drop out rate is set to 0.1.

For the implementation of the deep learning algorithms, Keras deep learn-

ing framework with Tensorflow as backend is employed [28],[39]. The DNN

algorithms are trained on a GPU server consisting of two Nvidia Quadro

RTX 5000 cards, two Intel Xeon Gold 5222 Processors and 128 GB RAM.

2.4.2 Results

As for performance metrics, recall defined as R = TP/(TP + FN) and the

false alarm rate F = FP/(FP + TN) is used, where TP, TN, FP, and FN

stand for true positive, true negative, false positive, and false negative, re-

spectively. True positives (TP) and true negatives (TN) indicate the number

of occurrences when the active/inactive users are correctly identified as ac-

tive/inactive, respectively. Similarly, false positives (FP) and false negatives

(FN) represent the number of occurrences when the inactive/active users

are misclassified as active/active, respectively. In the following one iteration

means updating the weights over a mini-batch. The rate of convergence of

the weights in the training phase is investigated for the AUI networks. In

this regard, in Fig. 2.3 the loss versus the number of iterations is reported.

Comparing the curves with and without transfer learning, where gk(·) for

k = 2, 4 and 8 is trained for 3 epochs using the transfer learning approach,

a considerable improvement in the speed of convergence of the training can
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Figure 2.3: Training Loss with Transfer Learning and without Transfer Learning, SNR =
10 dB.
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Table 2.1: Recall, K = 8, SNR = 10dB.

Epochs Without TL With TL

1 0.706 0.736
2 0.728 0.740
3 0.735 0.741
4 0.738 0.742
5 0.739 0.743
6 0.740 0.743
7 0.741 0.744
8 0.741 0.744
9 0.742 0.744
10 0.742 0.744

be observed. The improvement is substantial for all sparsity levels K, and

it is particularly important for the networks designed for large K (see, e.g.,

the case K = 8). In the case K = 2 the advantage due to transfer learning

is less pronounced. The improvement also in terms of recall is tabulated in

Table 2.1, where the results with and without transfer learning is reported

for K = 8 and SNR = 10 dB. For obtaining the recall values through the

multi-stage transfer learning, g1(·) is trained for 10 epochs while gk(·) for

2 ≤ k ≤ 8 are trained for epochs as in the first column of the Table 2.1.

The networks which are trained without the transfer learning approach are

initialized through [33].

The recall for the proposed architecture is compared with the points taken

from the literature proposing other algorithms, under the same simulation pa-

rameters, namely the Deep AUD (D-AUD) [18], and the compressed-sensing

Approximate Message Passing (AMP) [18]. The curves for the proposed

AUEI are obtained through the multi-stage transfer learning approach. The

g1(·) is trained for 10 epochs while gk(·) for 2 ≤ k ≤ 8 is trained for 3 epochs.

The proposed approach shows improved recall values with respect to the

other algorithms, as can be seen in Fig. 2.4 and Fig. 2.5 for SNR = 10 dB

and SNR = 20 dB, respectively. In contrast to the proposed approach, the

other algorithms suffer from substantial performance degradation for high

sparsity levels.
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Table 2.2: False Alarm rate, Transfer Learning, epochs= 3.

Sparsity Level (K) SNR = 10 dB SNR = 20 dB

1 3.87× 10−5 1.11× 10−7

2 2.50× 10−4 2.05× 10−6

3 9.46× 10−4 4.50× 10−5

4 2.32× 10−3 2.54× 10−4

5 4.88× 10−3 8.10× 10−4

6 9.00× 10−3 1.96× 10−3

7 1.49× 10−2 4.59× 10−3

8 1.94× 10−2 6.24× 10−3

The false alarm rate for the proposed architecture with multi-stage trans-

fer learning is presented in Table 2.2. It can be observed that the proposed

approach, besides the previously discussed high recall, yields a negligible false

alarm rate. In Fig. 2.6, the performance of the proposed algorithm is com-

pared with D-AUD and AMP in terms of recall for the SNR range 0−20 dB,

Nd = 7 and K = 4. It can be observed that the proposed approach out-

performs the other approaches, especially in the low SNR regime. To check

the robustness of the proposed algorithm, the performance for overloading

factors 125% and 250% is illustrated in Fig. 2.7 and 2.8, respectively. The

overloading factor is defined as N/(NdS). For different overloading factors,

a fixed length of the spreading sequence, S, and a number of users, N is

assumed, while varying the number of measurements, Nd. A significant per-

formance improvement can be observed for Nd = 8 in comparison to Nd = 4

for all the algorithms. In other words, increasing the number of measure-

ments Nd or reducing the overloading factor yields better performance. It

can be observed that the proposed algorithm outperforms the D-AUD and

AMP in both scenarios, confirming the reliability of AUEI. Finally, the nu-

merical comparison of computational complexity between AUEI (see Section

2.3.3) and D-AUD is presented, whose complexity for a given sparsity K is
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Figure 2.6: Recall vs. SNR, Nd = 7,K = 4.
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Figure 2.7: Recall vs. SNR, Nd = 4,K = 4.
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Figure 2.8: Recall vs. SNR, Nd = 8,K = 4.

stated in [18] as

C
′

D−AUD = 2Lα2 + (4NdS + 7L+ 2N + 4)α

+ (K + 3)N − K(K + 1)

2
− 1 .

For calculating the overall D-AUD complexity, the algorithm proposed in

[18] for sparsity estimation is also taken into account . In this algorithm, the

received vector is passed first through the D-AUD trained for sparsity level

K = 1. If the output satisfies the threshold-based condition, this is consid-

ered as the sparsity level. Otherwise, the received vector is passed through

the D-AUD network trained for K = 2, and so on. The procedure is repeated

until the threshold-based condition is met or the maximum sparsity level is

reached. Thus, for a given sparsity K, the received vector is passed through

K D-AUDs. For this reason, the complexity of the D-AUD algorithm grows

linearly with the sparsity level. Considering that, the overall computational
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Table 2.3: Computational Complexity in FLOPs, Nd = 7.

K = 1 K = 2 K = 4 K = 8

AUEI 2.02× 107 2.02× 107 2.02× 107 2.02× 107

D-AUD 1.25× 107 2.51× 107 5.01× 107 1.00× 108

complexity expression for D-AUD is

CD−AUD = KC
′

D−AUD . (2.17)

Table 2.3 shows the computational complexity of AUEI and D-AUD for

Nd = 7 and K = 1, 2, 4, and 8, calculated through (2.16) and (2.17). The

number of hidden layers for AUEI and D-AUD is L = 2 and L = 6, re-

spectively. As observed, the computational complexity of D-AUD increases

linearly with the sparsity level, while the complexity of AUEI remains prac-

tically constant. This is because the dependence on the sparsity level K

in (2.15) has a negligible effect on the overall computational complexity.

Specifically, for all cases with more than one active user, the AUEI shows

a significant gain in terms of complexity. So, despite having two separate

architectures instead of one as in D-AUD, the proposed approach yields a

lower complexity and better performance.

2.5 Conclusion

In this chapter, an active users detection method is proposed, realized by

one DNN for active users enumeration and one for active users identifica-

tion. The deep neural network architectures extract relevant features from

the multiple measurements for enumeration and identification. Besides the

fully-connected layers, both DNNs consist of convolutional layers to reduce

the computational complexity. To minimize the training time for the active

users identification networks, the multi-stage transfer learning technique is

adopted. The numerical results demonstrate that the proposed approach

is more effective than previously known methods in identifying the active
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users, especially for high sparsity levels and low SNR. The false alarm rates

are also analyzed, which are negligible for the scenarios of interest, and the

computational complexity, which results lower than other approaches.

Future work will include analysis of the scalability of the proposed algo-

rithm for a different number of users and further reduction of the computa-

tional cost.
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Chapter 3

Preamble Detection in

Asynchronous Random Access

3.1 Introduction

In recent years, the demand for wireless data transmission has grown tremen-

dously, leading to the rise of new applications involving communication among

machines [1, 2]. In a conventional cellular communication system, resources

are allocated to the users in a coordinated manner. However, resource al-

location would be highly inefficient in mMTC scenario due to control sig-

nalling overhead [3]. To address these challenges, GF random access-based

approaches have been proposed. In such schemes, devices transmit packets

without coordination with the BS over the shared time or frequency resources

[4]. Over the years, random access protocols have evolved from ALOHA [5] to

more sophisticated protocols involving repetitions of packets and successive

interference cancellation (SIC), with the aim to reduce signalling related to

grants management and packets retransmission [6, 7, 8].

The GF random access schemes could be either synchronous or asyn-

chronous [9]. In asynchronous systems, there is no common time reference

between the BS and the active devices, which are therefore allowed to access

the channel according to a “transmit at will” policy: since time is “fluid”

and not organized into slots and frames, packets can arrive at the BS at any
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time and data can in principle be transmitted as soon as they are generated

and available at a node [9, 10]. In contrast with synchronous systems, where

any two packets from different devices have either a complete overlap in time

or no overlap at all, in asynchronous ones partial overlapping is the typical

situation [11, 12]. While in synchronous GF schemes a minimum amount

of control signalling is necessary to synchronize the active devices to the BS

slot and frame time, in asynchronous ones absence of coordination is taken

to an extreme level [13, 14].

Asynchronous GF schemes are of interest from several viewpoints. In

asynchronous, the signalling overhead is reduced to the minimum, since even

a downlink beacon signal for synchronization of active devices to the frame or

slot becomes unnecessary [15, 16]. On the one hand, this reduces the burden

on the network control plane. On the other hand, after wake up, active de-

vices need not turn their radio on awaiting for the synchronization beacon,

with a positive effect on the battery lifetime [17]. As such, asynchronous

communication becomes particularly interesting for ultra-low-cost IoT de-

vices. Moreover, since an active device can in principle start its transmission

as soon as the data is available, latency in asynchronous access protocols

tends to be lower that in synchronous ones.

The asynchronous random access setting also comes with its drawbacks

and poses several challenges. Asynchronous random access systems simplify

the access protocol on the device side but increase considerably the computa-

tional burden on the BS side [15, 18]. The first problem is related to the fact

that there are no medium access control (MAC) frames that can be individ-

ually processed. The strategy that is usually adopted to overcome this issue

is to proceed in a sliding window fashion, where new received signal samples

are stored in memory overwriting the most outdated ones, as in [19, 20].

Another fundamental problem is connected to the random times of ar-

rival of the users’ packets, which makes the packet detection problem much

more challenging than in synchronous systems where all packets are aligned

with the global slots. The problem is further complicated by the fact that

packet detection, representing the first step of the whole processing, must be

performed prior to (or at least jointly with) channel estimation.
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In [21], a correlator-based approach is used to detect packets in a satellite-

based scenario, where devices start private and asynchronous virtual frames

(VFs) independently of each other and transmit multiple replicas of a packet

within them. A random access scheme based on correlation using DFT is pro-

posed in [22] to detect preambles in a satellite scenario. In [23], a DL-based

solution is proposed for the detection of preambles in satellite communica-

tion. Both approaches assumed single antenna receiver and AWGN channel.

A CNN architecture is presented in [24] to identify the active user preambles

in a slotted synchronous GF random access scenario with a single antenna

at the BS. In [25] a neural network and logistic regression was developed

to detect orthogonal preambles, and their multiplicity, for random access in

Long Term Evolution (LTE) systems. In [26], a closed-form expression for

the probability of detection of tagged preamble sequences at Next Generation

NodeB (gNB) is proposed.

In a mMTC scenario, consideration must be given to a distinct prop-

agation model, which is characterized by fading, shadowing, and possibly

multiple antennas at the receiver. The main contributions of this chapter are

summarised as follows:

• preamble detection in an asynchronous GF random access uplink sce-

nario exploiting multiple antennas at the BS is performed;

• a channel model with fading, path-loss, and shadowing, assuming no

power control is considered. Due to uncoordinated transmissions, pream-

ble detection is performed by the BS before channel estimation;

• a DL-based preamble detection method consisting of a CNN is proposed

that strikes a good trade-off between performance and complexity, com-

pared to a classical correlator-based approach.

The rest of the chapter is organized as follows. The system model is pre-

sented in Section 3.2. In Section 3.3, the CNN architecture and correlator-

based approach are explained. Section 3.4 contains the computational com-

plexity analysis. Numerical results along with simulation setup are given in
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Figure 3.1: Pictorial representation of the users initiating virtual frame and transmitting
replicas in an asynchronous scenario.

Section 3.5. Paylaod association using DNN is discussed in Section 3.6. The

Conclusions are drawn in Section 3.7.

Throughout this chapter, matrices, vectors, and scalars are represented

by boldface uppercase, boldface lowercase, and lowercase letters, respectively.

The real and imaginary parts of a complex number are indicated as ℜ(·)
and ℑ(·), respectively. The operations (·)T and (·)H denote the transpose

and conjugate transpose, respectively. Notation U(a, b) indicates a uniform

distribution between a and b. The normal and circularly-symmetric complex

normal distributions with mean 0 and variance σ2 are denoted by N (0, σ2)

and CN (0, σ2), respectively.

3.2 System Model

Consider an asynchronous GF random access uplink scenario, where users are

uniformly distributed within an annulus with inner and outer circles of radius

Dmin and Dmax, respectively, as shown in Fig. 3.2. The BS is positioned in

the center of the annulus. Each device has a single antenna whereas the

BS is equipped with M antennas. The number of users becoming active in
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Dmin

D
m
ax

Figure 3.2: The depiction of uplink communication scenario.

an uplink symbol time follows a Poisson distribution with mean λ. When

a user becomes active, it initiates a VF comprising NS slots, with each slot

duration equal to the packet length as shown in Fig. 3.1. The VF is local to

the device: the BS is unaware of the starting time of VFs but it is aware of

the number of slots in a VF. Each user transmits multiple packet replicas

to boost performance as in [6, 8]. To transmit Nrep replicas of the packet,

the user selects Nrep slots from the set {1, · · · , NS} without replacement and

with uniform probability. The packet transmission is considered symbol-

wise synchronous. A packet consists of a preamble of NP symbols, s =

[s1, · · · , sNP
]T ∈ CNP×1, which is the same for all users, and a user-specific

data payload of length ND.

A Rayleigh block fading channel model is assumed with no power control

and with a coherence time equal to the packet (and virtual slot) time. Ac-

cordingly, the channel gain between a device and one BS antenna is constant

during the transmission of a packet, but independent from replica to replica

from the same user. The channel gains between a single device and different

BS antennas are considered independent. The Nrep replicas from the same

user experience the same path-loss and large-scale fading, but independent

Rayleigh-distributed small-scale fading. The vector of received samples at

the M BS antennas at symbol time i, y(i) ∈ CM×1, may be expressed as

y(i) =
∑
j∈AP

hj pj(i) +
∑
l∈AD

hl ql(i) + n(i) (3.1)
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where

• AP and AD are the set of users transmitting a preamble and data

symbol at ith sample time, respectively;

• pj(i) is the symbol of preamble s transmitted by user j ∈ AP and

ql(i) represents the data symbol transmitted by user l ∈ AD at the ith

sample time;

• hk = [hk,1, · · · , hk,M ]T ∈ CM×1 is the vector of channel gains between

the kth user and the BS, where hk,m ∼ CN (0, σ2
hk
) for m = 1, ...,M .

The variance σ2
hk

is given by γ (Dmax/dk)
β, where γ is the log-normal

shadowing coefficient in linear scale, i.e., γdB ∼ N (0, σ2
dB), β is the

path-loss exponent, and dk is the distance between the kth device and

the BS. The distance dk is randomly distributed as»
D2

min + (D2
max −D2

min) · U(0, 1);

• n(i) ∈ CM×1 is the vector of independent and identically distributed

noise samples, each distributed as CN (0, σ2
n).

3.3 Preamble Detection

This section presents the proposed DL-based approach, which consists of a

CNN that performs preamble detection starting from raw received samples

at the BS. A correlator-based methodology is introduced as a benchmark,

showing how it can be derived from the generalized likelihood ratio test

(GLRT) design method.

3.3.1 CNN Architecture

Assume we want to check if NP consecutive samples at an initial offset i0

correspond to a preamble or not. For this purpose, the observation matrix

R = {ri,j} = [y(i0),y(i0 + 1), · · · ,y(i0 + NP − 1)] is considered. As the

samples are complex, the received samples are split into real and imaginary
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parts, and then the reference preamble sequence is added, obtaining the

matrix

Y =

[
ℜ(R) ℑ(R)

ℜ(sT ) ℑ(sT )

]
(3.2)

=



ℜ(r1,i0) · · · ℜ(r1,i0+NP−1) ℑ(r1,i0) · · · ℑ(r1,i0+NP−1)

ℜ(r2,i0) · · · ℜ(r2,i0+NP−1) ℑ(r2,i0) · · · ℑ(r2,i0+NP−1)
...

...
...

...

ℜ(rM,i0) · · · ℜ(rM,i0+NP−1) ℑ(rM,i0) · · · ℑ(rM,i0+NP−1)

ℜ(s1) · · · ℜ(sNP
) ℑ(s1) · · · ℑ(sNP

)

 .

(3.3)

Matrix Y ∈ R(M+1)×2NP is a feature map obtained from the raw received

samples at the BS and is the input to the DL model. Extensive investigation

revealed that concatenating the reference preamble with the received symbols

and feeding the resulting matrix into the DL model yields better performance.

Various architectures with different numbers, types, and sizes of layers

were explored, to find a good balance between performance and complexity.

Finally, considering the 2-dimensional nature of the input feature map, the

CNN architecture depicted in Fig. 3.3 is selected. At the BS, each antenna

receives the same transmitted symbols with different channel gains, as de-

picted through (3.2). The purpose of the convolutional filter is to extract the

common features shared among the multiple antennas, i.e. identifying the

symbols transmitted by the device. The filter also tries to learn the map-

ping between the received symbol and the reference preamble, which helps

classify the received symbols as a preamble or non-preamble. In particular,

two convolutional layers with 8 and 4 filters of the same size is employed,

respectively, without any padding. At the BS, each antenna receives the

same transmitted symbols with different channel gains. The purpose of the

convolutional filter is to extract the common features shared among the mul-

tiple antennas, i.e. identifying the symbols transmitted by the device. The

filter also tries to learn the mapping between the received symbol and the

reference preamble, which helps classify the received symbols as preamble or
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non-preamble.

The convolutional layers are followed by fully-connected (1.3) and dropout

layers. To mitigate overfitting and enhance the model’s generalization capac-

ity, the CNN incorporates a dropout layer, which randomly drops connections

between the fully-connected layers during the training phase. This process

helps to minimize the dependencies between neurons.

The preamble detection is essentially a binary classification problem, i.e.,

classifying the received symbols as preamble or non-preamble. Consequently,

the last fully-connected layer consists of only one neuron employing sigmoid

as an activation function. It is defined as

q̂ =
1

1 + e−z
, (3.4)

where q̂ estimates the likelihood of the input being a preamble. A threshold

of 0.5 is applied to this value to perform classification.

The neural network architecture is linked to a cost function, which equals

zero for ideal classification and increases when the inputs are misclassified.

From this standpoint, a binary cross-entropy loss is utilized, which is formu-

lated as

J (q, q̂) = −q log q̂ − (1− q) log(1− q̂) (3.5)

where q is the true label, equal to 1 if the input samples correspond to

a (possibly interfered) preamble and to 0 otherwise. The objective of the

training is to determine the suitable weights of the DL model that minimizes

the cost function. In this approach, Adam optimizer is utilized, which is

an extended version of the gradient descent algorithm [27], adopting mini-

batches to enhance training efficiency.

3.3.2 Correlator-based Approach

The proposed DL-based solution is compared with a classical approach based

on hypothesis testing. To simplify the analytical derivation and make the

problem tractable, consider a simpler scenario in which the BS antenna can
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receive either the symbols corresponding to a pilot sequence and noise, or

only noise. After observing NP subsequent complex samples, rm,i, where i

andm are the sample and BS antenna indexes, respectively, the pilot detector

must choose between two possible hypotheses

H0 : rm,i = nm,i, i = 1, . . . , NP, m = 1, . . . ,M (3.6)

H1 : rm,i = hk,msi + nm,i, i = 1, . . . , NP, m = 1, . . . ,M (3.7)

where k is the user transmitting the preamble. Hypothesis H0 represents the

case where there is no pilot, while H1 corresponds to the case in which the

pilot is present.

One widely adopted approach to the noncoherent hypothesis test problem

in the case of M = 1 is to use the noncoherent correlation as a metric. Here,

a better test is derived which is valid also for any finite M . Consider the

optimum likelihood ratio test (LRT) which in general, can be written as

Λ(R) =
fR|H1(R|H1)

fR|H0(R|H0)
(3.8)

where fR|Hk
(R|Hk) is the probability density function (PDF) of the matrix of

random vectors R in the hypothesis Hk and rm is the random vector describ-

ing the received samples at the mth antenna. The general expression (3.8)

is now tailored to the preamble detection problem. For the H0 hypothesis,

the conditional PDF is given as

fR|H0(R|H0) =
M∏

m=1

NP∏
i=1

1

2πσ2
n

e
−

|rm,i|
2

2σ2
n . (3.9)

On the other side, in the H1 hypothesis the observed samples are generated

by the deterministic and known pilot symbols, multiplied by the Rayleigh

fading coefficients. Hence, the conditional PDF for the H1 hypothesis is

given as

fR|H1,h(R|H1,h) =
M∏

m=1

NP∏
i=1

1

2πσ2
n

e
−

|rm,i−hk,msi|
2

2σ2
n . (3.10)
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Substituting the unknown channel coefficient hk,m in (3.10) with its maximum

likelihood (ML) estimation, we obtain

fR|H1(R|H1) =
M∏

m=1

NP∏
i=1

1

2πσ2
n

e
−

|rm,i−ĥML
k,msi|

2

2σ2
n (3.11)

where ĥML
k,m =

∑NP
i=1 rm,is

H
i

∥s∥2 . Now, substituting (3.9) and (3.11) in (3.8) we get

the GLRT

Λ(R) =

∏M
m=1

∏NP

i=1
1

2πσ2
n
e
−

|rm,i−ĥML
k,msi|

2

2σ2
n∏M

m=1

∏NP

i=1
1

2πσ2
n
e
−

|rm,i|2

2σ2
n

H1

≷
H0

η (3.12)

which, in logaritmic form becomes Λ(1)(R)≶H0
H1

η with metric

Λ(1)(R) =
M∑

m=1

NP∑
i=1

|rm,i − ĥML
k,msi|2 − |rm,i|2 (3.13)

where η is the test threshold and (3.13) is obtained by removing all the

constant terms. Incorporating the ML estimation of the channel coefficients

in (3.13) we obtain

Λ(1)(R) =
M∑

m=1

−2ℜ
{∑NP

j=1 rm,js
H
j

∥s∥2
NP∑
i=1

rHm,isi

}

+

∣∣∣∣∣
∑NP

j=1 rm,js
H
j

∥s∥2

∣∣∣∣∣
2∣∣∣∣∣

NP∑
i=1

si

∣∣∣∣∣
2

=
M∑

m=1

|∑NP

i=1 rm,is
H
i |2

∥s∥2 .

Since all the constant terms can be incorporated in the threshold, the term

∥s∥2 can be removed to obtain the final expression of the metric

Λ(R) =
M∑

m=1

∣∣∣∣∣
NP∑
i=1

rm,is
H
i

∣∣∣∣∣
2
H0

≶
H1

η . (3.14)
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3.4 Computational Complexity

The computational complexity is evaluated in terms of FLOPs. The real

addition, subtraction, and multiplication, are taken as a single FLOP while

division and exponential operations as 4 and 8 FLOPs, respectively. The

complex addition and subtraction operations are considered as two FLOPs

and complex multiplication as six FLOPs. [28, 29, 30]

3.4.1 CNN Complexity

The number of FLOPs of a convolutional layer is given by

Ccv = 2NcvFcvGcvDcv (3.15)

where Ncv, Fcv, Gcv, and Dcv represent the number of convolution filters, size

of the filter, number of channels, and output shape, respectively. The output

shape Dcv is expressed as (I−F +2 ·P )/S+1, where I, F , P , and S specify

the input size, filter size, padding, and stride. The ReLU is applied to the

output of the convolutional layers, resulting in

CReLU = NcvDcv . (3.16)

The number of FLOPs in a fully-connected layer (1.3) can be expressed as

CFC = 2 · in · out + out . (3.17)

The dropout layer involves elementwise multiplication operations; for a single

operation, the complexity is 1. The sigmoid function and thresholding in

the last layer yield 14 FLOPs. The total complexity of the CNN, with α

representing the number of neurons in the first fully-connected layer, is given
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by

CCNN =2Ncv1Fcv1 M Dcv1 + 2Ncv2Fcv2Ncv1Dcv2

+Ncv1Dcv1 +Ncv2Dcv2 + 2Ncv2Dcv2α

+
13α2

4
+ 5α + 14 . (3.18)

3.4.2 Correlator Complexity

The inner sum
∑NP

i=1 rm,is
H
i for the mth antenna requires NP and NP −

1 complex multiplication and addition operations, respectively. The | · |2
operation results in two real multiplication operations and one real addition

operation for each antenna. The total computational cost is then

Ccorr = 8M NP + 2M − 1 . (3.19)

3.5 Implementation and Results

3.5.1 Simulation Setup

The performance analysis, for both the correlator-based approach (3.14) and

the CNN, is conducted assuming M = 32 and M = 64 antennas at the BS,

with SNR per antenna ranging from −10 dB to 20 dB. The SNR is defined

as SNR = 1/σ2
n, and represents the median SNR per antenna element for a

user on the edge of the cell. Clearly, the average SNR inside the cell is higher

than that on the boundary. The minimum and maximum distances of a user

from the BS are Dmin = 5m and Dmax = 100m, respectively. The path-

loss exponent is set to β = 2 and the standard deviation of the log-normal

shadowing is taken as σdB = 3.

A preamble and payload of length NP = 63 and ND = 150 are considered,

respectively. The preamble sequence is generated by a linear feedback shift

register of length 6 with primitive polynomial p(x) = x6 + x + 1 over the

Galois field GF(2). The sequence is designed to have good (aperiodic) auto-

and cross-correlation properties and allow accurate channel estimation. The
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pilot sequence bits are then converted to NP = 63 binary phase shift keying

symbols with unitary energy using xi = ej(π/4+ϕiπ), where ϕi ∈ {0, 1} is the
ith bit of the pilot sequence and xi is the corresponding complex symbol.

The payload of each user is populated randomly with quadrature phase-shift

keying symbols having an equal probability of occurrence.

For generating a dataset, a buffer of M × 213,000 complex symbols is

considered, i.e., one sub-buffer for each antenna. The number of active users

in a symbol time in the buffer is randomly generated by Poisson distribution

with λ equal to [0.05, 0.25, 0.5, 0.75, 1, 1.2, 1.45]×10−2, such that the average

number of packet collisions per slot ranges from 1 to 7 1 When a user becomes

active, it initiates a virtual frame consisting of NS = 100 slots, where each

slot equals the packet size. The user sends Nrep = 2 replicas in slots chosen

randomly without replacement. The user packet may get partially or fully

interfered by packets from other users; at time i the received sample as in an

asynchronous scheme is mathematically expressed by (3.1).

The samples for training and test sets are extracted from the buffer after

the placement of packets, as described above. For the preamble case, NP

consecutive samples are obtained from the buffer that contains the entire

preamble sequence. For the non-preamble case, NP consecutive samples are

randomly selected from the buffer that do not satisfy the preamble case con-

dition. Ensuring a balanced dataset involves acquiring an equal number of

instances for both preamble and non-preamble scenarios, while also consid-

ering an equal number of examples for each λ value. For instance, 8 · 103
examples are generated per λ per class (preamble or non-preamble). For

each SNR value, a separate CNN is trained but with the same architecture

as depicted in Fig. 3.3. Each dataset comprises 1.12 · 105 samples, which are

split into 70% training set and 30% test set.

For each hyperparameter (learning rate, epochs, mini-batch size, dropout

rate, number of neurons, etc.) of the model, the performance is evaluated on

a range of values by fixing other hyperparameters and selecting the one that

results in the best performance [27]. The final result of this search yielded

learning rate, epochs, and mini-batch size 0.001, 20, and 512, respectively,

1The full derivation can be found in the appendix A.
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Table 3.1: Comparison between CNN and CNNx, η = 0.5

CNN CNNx

SNR (dB) R F R F

20 0.9984 0.0011 0.9553 0.0192

M = 32
10 0.9973 0.0012 0.9578 0.0126
0 0.9899 0.0012 0.9529 0.0175
−10 0.9639 0.0157 0.9292 0.1185

20 0.9976 0.0014 0.9546 0.0078

M = 64
10 0.9989 0.0018 0.9563 0.0081
0 0.9919 0.0008 0.9442 0.0145
−10 0.9794 0.0028 0.9298 0.0472

with the architecture depicted in Fig. 3.3. A drop-out rate of 0.2 and 0.3 for

M = 32 and M = 64 is employed, respectively.

3.5.2 Numerical Results

As for performance metrics, the detection rate (or recall) which is defined as

R =
TP

TP + FN

and the false alarm rate

F =
FP

FP + TN

is employed, where the true positives, true negatives, false positives, and false

negatives are denoted by TP, TN, FP, and FN, respectively. TP and TN

correspond to the instances when the preamble and non-preamble cases are

correctly identified, respectively. Likewise, FP and FN indicate the number of

instances when the non-preamble/preamble is misclassified as preamble/non-

preamble, respectively.

The receiver operating characteristics (ROC) curves are reported in Fig.

3.4a and Fig. 3.4b for M = 32 and M = 64, respectively. The curves

are obtained for the correlator-based approach by varying the threshold η,



64 3.5. Implementation and Results

0 1 2 3 4 5 6

·10−2

0.8

0.85

0.9

0.95

1

False Alarm Rate (F )

D
et

ec
tio

n
R

at
e

(R
)

SNR 20 dB (corr)
SNR 10 dB (corr)
SNR 0 dB (corr)

SNR −10 dB (corr)
SNR 20 dB (CNN)
SNR 10 dB (CNN)
SNR 0 dB (CNN)

SNR −10 dB (CNN)
SNR 20 dB, η = 0.5 (CNN)
SNR 10 dB, η = 0.5 (CNN)
SNR 0 dB, η = 0.5 (CNN)

SNR −10 dB, η = 0.5 (CNN)

(a) Base station with M = 32 antennas.

0 1 2 3 4 5 6

·10−2

0.8

0.85

0.9

0.95

1

False Alarm Rate (F )

D
et

ec
tio

n
R

at
e

(R
)

SNR 20 dB (corr)
SNR 10 dB (corr)
SNR 0 dB (corr)

SNR −10 dB (corr)
SNR 20 dB (CNN)
SNR 10 dB (CNN)
SNR 0 dB (CNN)

SNR −10 dB (CNN)
SNR 20 dB, η = 0.5 (CNN)
SNR 10 dB, η = 0.5 (CNN)
SNR 0 dB, η = 0.5 (CNN)

SNR −10 dB, η = 0.5 (CNN)

(b) Base station with M = 64 antennas.

Figure 3.4: Comparison between the CNN and the correlator.
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from 0 to ηmax with a step size of 10000, where ηmax, depending on the

number of antennas at the BS, is the maximum correlation value over all the

examples. In the same figures, the CNN ROC curves are obtained by varying

the threshold η, from 0 to 1, with a step size of 0.01. The points represent

the performance of the CNN classifier at η = 0.5.

The CNN-based classifier exhibits a substantial improvement over the

correlation-based detector. Indeed, it can be observed that the same detec-

tion rate provided by the CNN can be achieved with the correlator-based

approach but at a higher false alarm rate, for all SNRs. For example, with

SNR = 20 dB, M = 32, and assuming a target detection rate R = 0.998,

the correlator gives a false alarm rate F = 0.023, while the CNN achieves

F = 0.001. As the number of antennas increases from M = 32 to M = 64,

the improvement given by the CNN is even more pronounced. In Fig. 3.4a,

the correlation-based approach for SNR 10 dB outperforms the 20 dB one

because the hypothesis testing-based method does not consider interference.

To address the motivation behind using convolutional layers in the pro-

posed architecture, the performance of the CNN is compared with that of

a vanilla network consisting of fully-connected layers with ReLU activation

functions, specifically (FC, ReLU, FC, ReLU, FC, and sigmoid). The first,

second, and last fully-connected layer contains 130, 65, and 1 neurons, re-

spectively. The computational complexity of the vanilla network is equivalent

to the proposed CNN. The results of both the vanilla network and CNN for

M = 64 antennas are presented in Table 3.2. The table clearly demon-

strates that despite sharing the same computational complexity, the CNN

outperforms the vanilla network. This observation serves as a motivation for

adopting the CNN-based approach.

To assess the robustness of the proposed CNN architecture in scenarios

where the BS is also unaware of the median SNR at the edge of the cell, a

single CNN model is trained, referred to as CNNx, on examples obtained with

all the considered SNR values. The performance of the CNNx is compared

with CNN models trained specifically for each SNR value, simply regarded as

CNN. The results of this comparison are presented in Table 3.1 for M = 32

andM = 64. In CNNx, a dropout rate of 0.1 and 0.2 forM = 32 andM = 64
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Table 3.2: Vanilla Network versus CNN. M = 64

CNN Vanilla Network

SNR (dB) R F R F

20 0.9976 0.0014 0.9893 0.0276
10 0.9989 0.0018 0.9838 0.0235
0 0.9919 0.0008 0.9669 0.0320
−10 0.9794 0.0028 0.9324 0.0537

Table 3.3: Computational cost

M = 32 M = 64

Correlator 1.62× 104 3.24× 104

CNN 1.23× 106 2.14× 106

is utilized, respectively. As expected, the numerical results show that training

a single model on multiple SNRs leads to performance degradation. However,

the performance degradation is only about 3.5− 4.3% and 4.3− 5% for the

detection rate, in the case of M = 32 and M = 64, respectively.

The computational cost of the algorithms is reported in Table 3.3. It

can be observed that the correlator is computationally less expensive than

the CNN. However, the latter outperforms the former as discussed earlier.

Furthermore, as the number of antennas at the BS increases from M = 32

to M = 64, the computational complexity of the correlator doubles, while

for the CNN it increases by a factor 1.74. This is due to the fact that con-

volutional layers are employed which reduce the computational complexity,

as only the first layer has a linear relationship with the number of antennas

M , while the rest of the architecture is independent of M . Besides this,

the convolutional layer allows the extraction of the relevant features shared

among the multiple antennas.

The execution time of code can be influenced by various factors, includ-

ing the hardware platform and programming language used. For instance,

the same code written in C++ and Python may offer different performance

characteristics due to Python being an interpreted language while C++ is
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Table 3.4: Execution Time per sample in seconds

M = 32 M = 64

Correlator 2.45× 10−6 2.69× 10−6

CNN 1.39× 10−4 3.08× 10−4

compiled. Additionally, deep learning libraries like Keras, TensorFlow, and

PyTorch can exhibit varying performance in terms of training and execution

time for a given neural network. Furthermore, the choice between running

code on a CPU or GPU can significantly impact execution time.

To have a fair comparison of the execution time, the code for both algo-

rithms was written in Keras with Tensorflow as backend and executed on a

GPU server consisting of an Nvidia Quadro RTX 5000 card. Based on the

above-mentioned configurations, the execution time per sample in seconds

is obtained as depicted in Table 3.4. It is evident from Table 3.4 that the

CNN offers higher execution time than the correlator-based approach. For

the weighted metrics, consider the following formula

WM = (1− A)L (3.20)

where A is the accuracy defined as

A =
TP + TN

TP + TN+ FP + FN

and L is the normalized order of magnitude of the number of FLOPs. Cal-

culating the normalized order of magnitude of FLOPs involves determining

the order of magnitude of the computational complexity for both the CNN

and correlator-based approach (i.e., applying a base-10 logarithm), followed

by normalizing them through division by the maximum value between the

two. The order of magnitude of the number of FLOPs is taken into account

to ensure a fair comparison since computational complexities present an ex-

ponential growth. For example, for M = 32 antennas, the complexity of the

CNN approach is 1.62 × 104 (with a weight of 4.21), while the correlator-

based approach has a complexity of 1.23× 106 (with a weight of 6.09). The



68 3.6. Payload Association

Table 3.5: Performance evaluation using Weighted Metrics, M = 64

(a) False alarm rate = 0.001

SNR (dB) Correlator CNN CNNx

20 0.1837 0.0020 0.0610
−10 0.3383 0.0155 0.0911

(b) False alarm rate = 0.005

SNR (dB) Correlator CNN CNNx

20 0.0324 0.0031 0.0339
−10 0.1670 0.0127 0.0710

results for the weighted complexity for the false alarm rate of 0.001 and 0.005

are shown in Table 3.5a and 3.5b, respectively. The lower the value of the

weighted metrics the better the performance of the algorithm. Although

the CNN offers higher computational complexity than the correlator-based

approach, the CNN outperforms the latter due to higher performance.

3.6 Payload Association

In the preceding sections, preamble detection is addressed within an asyn-

chronous random access scenario. Building upon this groundwork, this sec-

tion takes the next step towards associating packet replicas using the DL-

approach. To enhance packet decoding and reduce the probability of packet

loss, merging replicas of the same packet presents a viable solution, how-

ever, identifying these replicas poses a significant challenge. We can employ

DL-based approach for identification of replicas. The key idea is to input

the two payloads into the deep learning algorithm and its task is to classify

the two payloads as replicas or not. After associating the replicas using DL

algorithm. Besides designing a DL architecture for payload association task,

considerate time has been spent on feature extraction.

• As a traditional DNN does not directly operate on complex numbers,

therefore, both payloads are split into their real and imaginary parts,
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which then serve as inputs to the DNN. The simplest approach doesn’t

supersede the performance of the traditional correlator-based approach.

• To achieve better results, a new feature is introduced, i.e., the correla-

tion between the payloads. Now, the input of the DNN is composed of

real and imaginary parts of the payloads, and the correlation between

the payloads. The DL approach shows a slight improvement gain in

comparison to the first approach, however, it doesn’t exceed the per-

formance of the correlator-based approach.

• In previous approaches, all the possible combinations of payloads are

considered for payload association. However, replicas transmitted by

the same user must be separated by an integer multiple of the packet

size and must lie within a VF. Given this fact, only those packet

pairs are considered which are positioned NS slots before and after the

transmitted packet. A DNN model is trained and evaluated on dataset,

revealing that the DL algorithm consistently falls short of surpassing

the performance achieved by the correlator-based approach.

• To assess the implementation of the algorithm, a simple scenario is con-

sidered where payloads encountered no interference with other packets.

Under these ideal conditions, the DNN demonstrated superior perfor-

mance compared to cases where packets are transmitted fully or par-

tially by other packets. Despite this improvement, it did not exceed

the performance achieved by the correlator-based approach.

• In all the previously discussed scenarios, the DNN consistently falls

short of outperforming the correlation-based approach. In an attempt

to explore alternative avenues, sequence modeling is considered. Long

short-term memory (LSTM) model is considered for this purpose, where

the real and imaginary parts of both payloads are input symbol by sym-

bol, treating the sequence of symbols as the temporal dimension. How-

ever, even with this sequence modeling approach, the LSTM fails to

surpass the performance achieved by the traditional correlation-based

method.
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In conclusion, the performance of DL algorithms is compromised due to

the interference caused by packets transmitted by other users. For the packet

association problem, the correlator-based approach should be preferred as it

is computationally less expensive than the DL models.

3.7 Conclusion

In this chapter, a CNN architecture is proposed to detect the preamble in an

asynchronous GF random access uplink scenario with no power control. The

proposed deep learning model employs convolutional layers, which not only

reduce the computational complexity but also extract the features shared be-

tween the antennas. The results, obtained for several values of the SNR and

number of antennas, show that the CNN achieves better performance when

compared to a classical solution based on the correlation, at the price of an

increase in complexity. Furthermore, a DL-based approach is investigated

for payload association. While the proposed preamble detection using DL

demonstrates extremely good results, the additional task of payload associ-

ation falls short of expectations.
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Chapter 4

Joint Power Control and Pilot

Assignment in Cell-Free

Massive MIMO using Deep

Learning

4.1 Introduction

As the demands for device connectivity and mobile data traffic escalate,

strategic BS densification within the network emerges as a pivotal solution

[1]. Network densification can be achieved in two ways: adding more BSs

for local spectrum reuse or implementing massive multiple-input multiple-

output (mMIMO) to reduce interference [2, 3]. The first architecture that

combines the advantages of both approaches was proposed in [4], known as

CF-mMIMO. The CF-mMIMO can achieve the objectives of 6G by improv-

ing the (usually poor) quality of service for the users at the edge of the

cell and reducing inter-cell interference [5]. In such a distributed mMIMO-

based network, a large number of service antennas, called APs, serve a group

of users distributed in a wide area. Unlike conventional cellular networks,

this approach discards the concept of cells and cell boundaries entirely. The

CF-mMIMO approach relies on seamless cooperation among numerous APs,
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all operating within the same time-frequency resource using time-division

duplexing (TDD). At the center of the network is the central processing

unit (CPU) through which the cooperation between the APs takes place.

The APs are connected to the CPU through a fronthaul connection.

With reference to mMTC services, a typical MMA problem arises in the

uplink, in which a myriad of devices physically located in the same area con-

tend to transmit their packets, consisting of a pilot and data payload, over the

radio access network. Due to limited coherence time intervals and a very large

number of devices, assigning orthogonal pilots to every user becomes imprac-

tical [3]. Consequently, we are compelled to reuse pilots, inadvertently giving

rise to the pilot contamination phenomenon, which deteriorates the quality of

channel estimation [6]. Additionally, the challenge of inter-user interference

emerges, demanding innovative solutions, e.g., using advanced power control

mechanisms. However, the mMIMO system benefits from channel hardening,

i.e., the effect of small-scale fading becomes negligible at the receiver due to

the presence of multiple antennas. This allows optimization of the power

coefficients based on the large-scale fading coefficients instead of small-scale

fading which requires frequent updates [7].

Strategic power control and careful pilot assignment are pivotal in miti-

gating inter-user interference and enhancing network performance. The most

diffused power control strategies focus on maximizing the minimum user rate

to ensure uniform service quality regardless of the spatial user distribution

[4, 8, 9]. The max-min problem for power/pilot assignment can be solved

through optimization [10, 11, 12]. However, the high computational burden

inherent in optimization algorithms poses substantial challenges in terms of

meeting stringent time constraints, making classical optimization techniques

impractical. Leveraging the universal function approximation capability of

artificial neural networks (ANNs), DL-based methodologies emerge as an in-

novative solution yielding high performance while simultaneously reducing

the computational complexity, compared to traditional optimization algo-

rithms [13, 14]. The only drawback of DNNs is that they need extensive

training to achieve operational efficiency; however, the training is usually

performed offline [15].
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4.1.1 Related Works

Power Control

The advantages offered by DL algorithms have catalyzed a significant body

of work in various domains [16, 17, 18, 19? ], and power control in the

CF-mMIMO scenario is no exception. The approaches for power control

through DL in the literature can be divided into two: supervised and un-

supervised. In supervised learning, a crucial requirement is the availability

of output labels (specifically, the power coefficients of each user) for both

training and testing the network. The output labels are generated using

optimization algorithms, requiring significant execution time. A supervised

LSTM network and a DNN for power control is proposed in [5] and [20],

respectively, feeding the position of the users as input to the learning model.

In [13], a DNN that takes the large-scale fading coefficients as input and pro-

duces the optimized power coefficients and the total power budget as output

is proposed.

Conversely, in unsupervised learning, no prior knowledge of output labels

is required. This reduces the time to generate the datasets but necessitates

the development of a problem-tailored loss function. In [21, 22], a specific

loss function that maximizes the minimum user rate is proposed. In [23],

the model complexity is reduced by feeding aggregated large-scale fading

coefficients to the DNN, rather than individual ones. Notably, the DNN with

the proposed loss function achieves better performance than the optimization

algorithm in [4]. In [24], a soft max-min problem is proposed. Most of

the above-mentioned strategies presume that mutually orthogonal pilots are

assigned to the users. Yet, in massive access scenarios, this approach becomes

impractical due to the limited coherence intervals.

Pilot Assignment

A substantial body of research has explored pilot assignment strategies,

with random pilot assignment emerging as the most widely recognized ap-

proach [25]. A repulsive clustering-based method for the pilot assignment in

CF-mMIMO is proposed in [26]. Graph coloring-based pilot assignment is
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presented in [27]. The study in [6] is focused on forming groups of the users

and APs to reduce pilot contamination. A supervised learning-based ap-

proach that maps the users’ location to a pilot sequence is presented in [28].

A multi-agent reinforcement learning-based approach for pilot assignment is

proposed in [3].

Power Control and Pilot Assignment

Only few works in the literature address both power control and pilot assign-

ment simultaneously. In [4], a greedy iterative algorithm is proposed that

assigns a different pilot to the user having the minimum user rate while solv-

ing the power control problem via bisection. Mai et al. designed pilots and

formulated optimization problems for joint pilot power and data power con-

trol [29]. In [12], a pilot assignment strategy is proposed focusing on AUD,

and then they developed a power control scheme for coexisted human-type

communication (HTC) and machine-type communication (MTC) traffic. In

[30], a deep reinforcement learning (DRL)-based approach for joint power

and pilot assignment is presented. The authors perform clustering of the

users and then assign pilots and allocate power using DRL, to increase AUD

performance.

4.1.2 Main Contributions

The literature predominantly emphasizes either power control or pilot assign-

ment tasks, with limited attention given to both optimizations. Even in cases

where both optimizations are addressed, most studies rely on time-inefficient

optimization algorithms. Although there are works exploring DRL for joint

power control and pilot assignmnet, they tend to concentrate on AUD rather

than enhancing the SE, leaving room for more comprehensive and efficient

methodologies in this domain. Thus, the main contributions of the chapter

are summarised.

• A DNN for joint pilot and data power control and pilot assignment

(JPDCPA) is designed that maximizes the minimum user rate in a
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CF-mMIMO network. To the best of my knowledge, the problem of

jointly controlling pilot and data transmit powers and assigning pilot

to each user in the network user has not been tackled yet.

• A massive access scenario is considered consisting of a large number

of users to which a much smaller number of orthogonal pilots must be

assigned. The DNN-based approach is designed to be scalable and to

deal with large cell-free networks.

• The proposed model is validated via extensive simulation, providing

a comparison with state-of-the-art methods. Moreover, an in-depth

analysis of the average transmit power per device is performed in the

CF-mMIMO network after optimization.

• The versatility and adaptability of the proposed approach is demon-

strated by assessing its performance in a UMa and an indoor industrial

scenarios [31].

The rest of the chapter is organized as follows. In Section 4.2, the system

model is presented and in Section 4.3, signal-to-interference-plus-noise ratio

(SINR) analysis is presented. The problem for maximizing the minimum

SINR is formulated in Section 4.4. The DL-based approach for joint pilot

and data power control and pilot assignment in CF-mMIMO is described in

Section 4.5. The computational complexity analysis of the proposed approach

is analyzed in Section 4.6. Simulation setup along with the numerical results

is provided in Section 4.7. Conclusions are drawn in Section 4.8.

Matrices, vectors, and scalars are represented by boldface uppercase,

boldface lowercase, and lowercase letters, respectively. The fields of real

and complex numbers are denoted by R and C, respectively. The operations
(·)T , (·)∗, and (·)H denote the transpose, conjugate, and conjugate transpose,

respectively. The expectation and euclidean norm operators are defined as

E[·] and ∥ · ∥2, respectively. The normal and circularly-symmetric complex

normal distributions with mean 0 and variance σ2 are denoted by N (0, σ2)

and CN (0, σ2), respectively.
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CPU
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Figure 4.1: Cell-Free massive MIMO scenario.

4.2 System Model

A CF-mMIMO system is considered with M single-antenna APs arranged

on a grid and K users randomly deployed in an area measuring D × D

m2, as illustrated in Fig. 4.1. The APs are connected to a CPU through

fronthaul links. The number of mutually orthogonal pilot sequences P is far

less than the number of usersK, i.e., P ≪ K. The set of available orthogonal

pilot sequences is denoted by P = {p1,p2, . . . ,pP}. The large-scale fading

coefficients between every user and AP are assumed to be known at the CPU

whenever necessary, as in [13, 21, 23]. The APs serve all the users in the same

time-frequency resources and each channel coherence interval is divided into
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downlink and uplink phases, such that the system operates in TDD. During

the downlink phase, the CPU communicates the optimized power coefficients

and pilot assignments to the users of the network through the APs.

4.2.1 Uplink Transmission

The uplink transmission consists of two phases: pilot transmission and data

transmission.

Pilot Transmission

In this phase, all K users synchronously transmit the pilot they have been

assigned to via optimization. The vector of received symbols at AP m,

ym ∈ Cτ×1, is

ym =
√
τρp

K∑
k=1

√
bkgmkϕk +wm (4.1)

where ρp is the normalized pilot SNR, ϕk ∈ Cτ×1 are the pilot symbols trans-

mitted by user k with ∥ϕk∥2 = 1, τ is the pilot sequence length, bk ∈ [0, 1] is

the pilot power control coefficient, gmk is the channel coefficient between the

kth user and the mth AP, wm ∈ Cτ×1 is additive noise and its elements are

i.i.d. CN (0, 1) random variables (r.v.s). The normalized pilot transmit SNR

is defined as

ρp =
ρ̄p
σ2
n

(4.2)

where σ2
n = BkBT0NF, ρ̄p is the pilot transmit power, B is the bandwidth,

kB is the Boltzmann constant, T0 is the equivalent noise temperature, and

NF denotes the noise figure of the receiver. The channel coefficient between

user k and AP m is modeled as

gmk =
√

βmkhmk (4.3)
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where βmk is the large-scale fading incorporating both path-loss and log-

normal shadowing, and hmk ∼ CN (0, 1) is the small-scale fading. The large-

scale fading coefficient is

βmk = PLmk10
σshsmk/10 (4.4)

where PLmk is the path-loss from the kth user to the mth AP, σsh is the

shadowing intensity, and smk ∼ N (0, 1). The mth AP estimates the channel

associated with the kth user by projecting ym along ϕk, as

ỹmk = ϕH
k ym

=
√
τρp

(√
bkgmk+

K∑
k′ ̸=k

√
bk′gmk′ϕ

H
k ϕk′

)
+ϕH

k wp,m (4.5)

such that the minimum mean square error (MMSE) channel estimate is

ĝmk =
E[ỹ∗mk gmk]

E[ |ỹmk|2]
ỹmk (4.6)

= cmkỹmk

where cmk is defined as

cmk =

√
τρpbkβmk

τρp
∑K

k′=1 bk′βmk′ |ϕH
k ϕk′ |2 + 1

. (4.7)

Note that the quality of the channel estimate depends on the pilots assigned

to all the users of the network.

Uplink Data Transmission

The uplink phase is then concluded with the simultaneous transmission of

the data payload of all the users. The generic received signal sample at the
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mth AP can be written as

zm =
√
ρ

K∑
k=1

√
qkgmkxk + νm (4.8)

where ρ is the normalized data transmit SNR, qk ∈ [0, 1] is the power control

coefficient of user k, xk is the data payload symbol transmitted by user k

with E[ |xk|2] = 1, νm ∼ CN (0, 1) is additive noise. The normalized data

transmit SNR is defined as

ρ =
ρ̄

σ2
n

(4.9)

where ρ̄ is the maximum data transmit power.

For the detection of the symbols transmitted by the kth user each APs

processes the received signal by multiplying it with the complex conjugate

of the locally derived channel estimate [4]. The resultant quantity is then

forwarded to the CPU through a fronthaul link to perform joint detection.

The aggregated received signal at the CPU is

rk =
M∑

m=1

ĝ∗mkzm

=
√
ρ

K∑
k′=1

M∑
m=1

√
qk′ ĝ

∗
mkgmk′xk′ +

M∑
m=1

ĝ∗mkνm . (4.10)

4.3 SINR Analysis

In this section, a closed-form expression is obtained for the uplink achievable

rate using the formulation introduced in [4, 11]. A key distinction between

the proposed method and the approach outlined in [4, 11] pertains to pilot

power allocation. The two approaches assume equal pilot power allocation for

each user, while in this approach pilot power control is also performed. The

derivation of the achievable rate expression assumes that each user possesses

knowledge of channel statistics but not specific channel realizations. The
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received signal rk can be expressed as

rk = DSkxk + BUkxk +
K∑

k′ ̸=k

IUIkk′xk + TNk (4.11)

where

DSk ≜
√
ρE

{
M∑

m=1

√
qkgmkĝ

∗
mk

}
, (4.12)

BUk ≜
√
ρ

(
M∑

m=1

√
qkgmkĝ

∗
mk − E

{
M∑

m=1

√
qkgmkĝ

∗
mk

})
(4.13)

IUIkk′ ≜
√
ρ

M∑
m=1

√
qk′gmk′ ĝ

∗
mk (4.14)

TNk ≜
M∑

m=1

ĝ∗mkνm. (4.15)

The terms DSk, BUk, IUIkk′ , and TNk denote the desired signal for the kth

user, the uncertainty in beamforming gain for the kth user, the inter-user

interference introduced by the k′th user, and the total noise, respectively.

The first term of (4.11) demonstrates no correlation with the second, third,

and fourth terms, i.e., the desired signal and effective noise terms are uncor-

related. By considering uncorrelated Gaussian noise as a worst-case scenario,

the achievable SINR of the received signal of the kth user can be expressed

as

SINRk =
|DS|2k

E{|BUk|2}+
∑K

k′ ̸=k E{|IUIkk′ |2}+ E{|TNk|2}
. (4.16)

After simplifying the expression in (4.12), (4.13), (4.14), (4.15) and substi-

tuting in (4.16), the final expression of achievable uplink rate of the kth

users is obtained in (4.19), shown on the top of the next page. The detailed

calculations are outlined in the appendix B.
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SINRk =

qk(
∑M

m=1 γmk)
2∑K

k′ ̸=k qk′(
∑M

m=1 γmk

√
bk′βmk′√
bkβmk

)2|ϕH
k ϕk′ |2 +∑K

k′=1 qk′
∑M

m=1 γmkβmk′ + 1
ρ

∑M
m=1 γmk

.

(4.19)

4.4 Problem Formulation

In [4], the authors have demonstrated that uniform and good-quality service

can be ensured to all the users of a CF-mMIMO system via max-min power

control. Let’s define the kth user uplink throughput rate as

Rk = log2(1 + SINRk) (4.17)

where the SINR of user k is given by (4.19) and γmk =
√

τρpbkβmkcmk [4].

The max-min power control aims to maximize the minimum user uplink

throughput rate so that all the network users can experience good service

quality. In this work, the number of orthogonal pilots is assumed to be

considerably smaller than the total number of users, so orthogonal pilot reuse

becomes necessary. Adding such a constraint, the max-min problem can be

formulated as

max
bk,qk,ϕk

min
k

Rk

s.t. 0 ≤ bk ≤ 1, k = 1, 2, . . . , K, (4.18)

0 ≤ qk ≤ 1, k = 1, 2, . . . , K .

4.5 Deep Learning-based Approach

In this section, a DNN is introduced that is designed to solve the problem

in (4.18), allocating pilot and data power coefficients bk and qk, respectively,
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and simultaneously assigning pilot sequences ϕk. The proposed algorithm

maximizes the minimum user rate based on the large-scale fading experi-

enced by the users. Based on assumptions taken in other approaches in the

literature [13, 21, 23], this approach also assumes that the large-scale fading

coefficients between every user and AP are known at the CPU. Hereafter,

the data pre-processing strategy, the architecture of the proposed DL model,

and the loss function used for the unsupervised training are described.

4.5.1 Pre-processing

To make unsupervised training effective and decrease the input layer size,

the data is pre-processed by aggregating the large-scale fading coefficients

and applying proper normalization. The data pre-processing procedure is

detailed in the following.

1. Large-scale fading coefficients aggregation: The large-scale fad-

ing coefficients are aggregated related to user k as

β
(j)
k =

M∑
i=1

β
(j)
ik (4.20)

where the superscript (j) refers to the jth sample of the dataset. This

operation reduces the input layer size of the DL model, making the

architecture scalable and suitable for large networks [23].

2. Logarithmic scale conversion and scaling: Then z-score normal-

ization is performed of the aggregated fading coefficients in logarithmic

scale, ξ
(j)
k = log10(β

(j)
k ), such that the normalized data are zero mean

and have standard deviation one, i.e.,

η
(j)
k =

ξ
(j)
k − µ̄

σ̄
(4.21)

where µ̄ and σ̄ are the sample mean and sample standard deviation of

ξ
(j)
k , respectively, computed over all the network users and the train-

ing samples. Note that the test dataset is normalized using µ̄ and σ̄
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Figure 4.2: Model layout of JPDCPA for power control and pilot assignment.

calculated over the training dataset.

3. Normalization: L2-normalization is applied to each sample of the

dataset, such that the kth normalized feature of the jth sample is

χ
(j)
k =

η
(j)
k»∑K

i=1(η
(j)
i )2

. (4.22)

4.5.2 Architecture

In this subsection, the proposed DNN architecture is presented for joint pilot

and data power control, and pilot assignment, which is referred as JPDCPA.

Various architectures were explored by varying the numbers, types, and sizes

of layers, aiming to identify an architecture that strikes a good balance be-
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tween complexity and performance. The input of the DNN is the vector

of aggregated and pre-processed large-scale fading coefficients obtained from

(4.22), while the outputs are the pilot and data power control coefficients,

and the pilot indexes for each network user. The architecture comprises three

branches, each of which performs one task as shown in Fig. 4.2. The pilot

assignment branch is organized into K sub-branches, each responsible for the

allocation of a pilot to a specific user. The DL model consists of fully con-

nected layers with multiple neurons, defined in (1.3). The number of neurons

employed in each fully connected layer is specified in Fig. 4.2. For instance,

the number of neurons in the fully connected layer of the pilot power control

branch is equal to K. Different non-linear activation functions have been

used for the network layers depending on their purpose. The activation func-

tions are applied element-wise to the layer input vectors, whose ith element

is generically denoted by ai. The sigmoid function is used in the pilot and

data power control branches such that the optimized pilot (or data) power

coefficient for user i is

b̂i(or q̂i) = σ(ai) =
1

1 + e−ai
. (4.23)

The eLU function is employed for the hidden layer of the pilot assignment

branch, defined as

eLU(ai) =

Γ · (eai − 1), if ai < 0,

ai, otherwise
(4.24)

where Γ determines the function saturation point for the negative input val-

ues. The softmax function is used in all the output layers of the pilot as-

signment branch. In particular, the kth sub-branch activation is calculated

as

vki = softmax(aki) =
eaki∑P
i=1 e

aki
(4.25)
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where vki represents the ith element of vector vk ∈ RP×1. The softmax values

are then mapped to the pilots as

w = argmax
i∈{1,2,...,P}

vki (4.26a)

ϕ̂k = pw (4.26b)

where pw is the wth pilot sequence.

4.5.3 Loss Function

Since optimal power coefficients and pilot assignment schemes are unknown,

unsupervised training is performed for the DNN employing the loss function

L(b̂, q̂,Θ) =
λ1

K

K∑
k=1

σ

Å
0.3

Rk

ã
− λ2Rmin +

λ3

K

K∑
k=1

q̂k

+
λ4

K

K∑
k=1

b̂k +
2λ5

K2 −K

K∑
i=1

i−1∑
j=1

Θij

eΩij
(4.27)

where λ1, λ2, λ3, λ4, and λ5 are the weights associated with the loss terms.

Furthermore, the vectors b̂ and q̂ represent the pilot and data power coef-

ficients assigned to the users. The first two terms of the loss function lay

the foundation of this approach, solving the max-min problem as outlined

in [23]. However, unlike [23], the joint pilot and data power control and

pilot assignment optimization performance is further enhanced by incorpo-

rating three additional terms into the loss function. The average of the

assigned data power coefficients, 1
K

∑K
k=1 q̂k, penalizes the allocation of high

data power coefficients to the users during the training process, reducing the

overall network transmit power and potentially increasing the nodes battery

life. Similarly, the average of the assigned pilot power coefficients, 1
K

∑K
k=1 b̂k

penalizes the network to reduce the pilot transmit power. The last term of

(4.27) promotes the reuse of pilots among users that are far apart in the

network area, limiting inter-user interference. The penalty becomes signif-

icant when nearby users utilize the same pilot, while it is minimized when
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users, whether in close proximity or at a significant distance, are allocated

distinct pilots. The matrix Θ = {Θij} is defined as Θ = V V T , where

V = [v1,v2, . . . ,vK ]
T ∈ RK×P . The normalized distance between the ith

and the jth users is denoted by Ωij and is obtained by dividing the actual

distance by D
√
2. For computing the average, the last term is divided by the

number of entries below the main diagonal. Note that the distances between

the nodes and the APs are exclusively used for neural network training. Af-

ter the training phase, only the small-scale fading coefficients are necessary

for performing power control and pilot assignment.

4.6 Computational Complexity

This section performs the complexity analysis of the proposed approach

JPDCPA, alongside joint power control and pilot assignment (JPCPA) and

deep learning power control (DLPC). In [23], authors introduced a DNN for

the assignment of data power coefficients in the CF-mMIMO, which we called

DLPC. The JPCPA follows the same architecture as in Fig. 4.2 excluding

the pilot power control branch. The next section delves into more details

about the DLPC and JPCPA algorithms and evaluates the performance of

these algorithms.

The computational complexity is evaluated in terms of FLOPs. The

real addition, subtraction, and multiplication, are taken as a single FLOP

while division and exponential operations as 4 and 8 FLOPs, respectively.

The number of FLOPs in a fully-connected layer, without considering the

activation function, can be denoted as

CFC = 2 · in · out . (4.28)
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4.6.1 JPDCPA

Pilot Power Control

The computational complexity of the fully-connected layer in terms of the

FLOPs can be given as

CPP
FC = 2K2 .

The sigmoid function in (4.23) results in 13 FLOP. However, considering

the need to compute the sigmoid function K times, the total FLOPs becomes

13K. The total computational complexity of the pilot power control branch

is given as

CPP
tot = 2K2 + 13K .

Data Power Control

The computational complexity of the fully-connected layer in terms of the

FLOPs can be written as

CDP
FC = 2K2 .

The sigmoid function in (4.23) requires 13 FLOPs. However, due to the

necessity of evaluating this function K times, the total FLOPs amount to

13K. The overall computational complexity of the data power control branch

is expressed as

CDP
tot = 2K2 + 13K .

Pilot Assignment

The computational complexity of the fully-connected layer in terms of the

FLOPs can be expressed as

CPA
FC1

= 20K .
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The first fully-connected layer of the pilot assignment branch utilizes the

eLU activation function, specified in (4.24). For ai < 0, the computational

cost is 10 FLOPs, whereas for ai ≥ 0, it involves 1 FLOP. Considering the

worst-case scenario, 10 FLOPs are considered for a single eLU operation.

With the eLU operation iterated 10 times due to the layer’s size, the overall

complexity of the activation layer is expressed as follows

CPA
eLU = 10 · 10 = 100 .

The pilot assignment branch is divided into K sub-branches. The cu-

mulative computational complexity of all fully-connected layers is expressed

as

CPA
FC2

= 20PK .

The softmax layer consists of P exponential operation, P−1 summations,

and P divisions. Following the softmax operation, we need to determine the

maximum value in vk, which involves P−1 FLOPs. These two operations are

iterated K times, corresponding to the number of sub-branches, contributing

to the overall computational complexity

CPA
softmax = [(8P + P − 1 + 4P ) + (P − 1)]K

= [14P − 2]K

= 14PK − 2K .

The total computational complexity of the pilot assignment branch is

given as

CPA
tot = CPA

FC1
+ CPA

eLU + CPA
FC2

+ CPA
softmax

= 20K + 100 + 20PK + 14PK − 2K

= 34PK + 18K + 100 .
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Total Computational Complexity

The total computational complexity of the JPDCPA is given as

Ctot = CPP
tot + CPD

tot + CPA
tot

= 2K2 + 13K + 2K2 + 13K + 34PK + 18K + 100

= 4K2 + 44K + 34PK + 100 .

4.6.2 JPCPA

The JPCPA follows the same architecture as the JPDCPA, with the omission

of the pilot power control branch. Thus, the computational complexity is

given as

Ctot = CPD
tot + CPA

tot

= 2K2 + 13K + 34PK + 18K + 100

= 2K2 + 31K + 34PK + 100 .

4.6.3 DLPC

In [23], DLPC is presented, which consists of one input layer, two hidden

layers, and one output layer. The ReLU activation function is employed for

the input and hidden layers, and sigmoid for the output layer. The ReLU

activation contributes 1 FLOP. The computational complexity of the input

layer is detailed below

CFCin
= 256K

CReLUin
= 128 .

The computational complexity in terms of FLOPs for the first hidden

layer is expressed as

CFCH1
= 2 · 128 · 256 = 65536

CReLUH1
= 256 .
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For the second hidden, the computational complexity in terms of FLOPs

can be expressed as

CFCH2
= 2 · 128 · 256 = 65536

CReLUH2
= 128 .

The output layer comprises a fully-connected layer utilizing sigmoid ac-

tivation, with the computational complexity specified as

CFCout = 2 · 128 ·K = 256K

Csigmoid = 13K .

The total computational complexity of DLPC is given as

Ctot = CFCin
+ CFCH1

+ CReLUH1
+ CFCH2

+ CReLUH2
+ CFCout + Csigmoid

= 256K + 128 + 65536 + 256 + 65536 + 128 + 256K + 13K

= 525K + 131584 .

4.7 Numerical Results

This section describes the simulation setup and numerical results for the

DL-based approach.

4.7.1 Simulation Setup

Simulations are conducted for two distinct scenarios: a UMa scenario and an

industrial one. Both scenarios have identical simulation area sizes and nodes

and AP distributions. The network area is a square of side D = 1000m.

For each sample of the dataset, the positions of the users are generated

randomly and a different realization of the large-scale fading coefficients is

considered. For both scenarios, two simulation settings are considered with

different numbers of APs, users, and orthogonal pilot sequences, namely:

1. M = 64, K = 250, P = 24, and 2. M = 121, K = 500, P = 48. The



4.7. Numerical Results 95

channel models adopted in the two scenarios are detailed below.

UMa scenario

Hata-COST231 propagation model is adopted as in [4], with path-loss

PLmk[dB] =
−L− 35 log10 d

UM
mk , if d

UM
mk > d1

−L− 15 log10 d1 − 20 log10 d
UM
mk , if d0 < dUM

mk ≤ d1

−L− 15 log10 d1 − 20 log10 d0, if d
UM
mk < d0

(4.29)

where

L = 46.3 + 33.9 log10 f
UM − 13.82 log10 hAP

− (1.1 log10 f
UM − 0.7)hu + (1.56 log10 f

UM − 0.8)

and where fUM is the carrier frequency in MHz, dUM
mk is the distance be-

tween the kth device and mth AP in kilometers, d0 and d1 are the threshold

distances associated with the path-loss model in kilometers, hAP is the AP

antenna height in meters, and hu is the device antenna height in meters.

Industrial Scenario

An indoor industrial scenario is considered with the following path-loss model

[31]

PLmk[dB] = −32.40− 23 log10 d
IN
mk − 20 log10 f

IN . (4.30)

where f IN is the carrier frequency in GHz and dINmk is the distance between the

mth AP and kth user in meters. The complete list of simulation parameters

is reported in Table 4.1.

A set consisting of 5× 104 and 103 different samples are used for training

and testing the DNN model, respectively. The network is initialized with He

initialization [32]. The network is trained using mini-batches of 100 samples
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Table 4.1: Simulation parameters

Parameters Value

Carrier frequency (fUM, f IN) 1.9 GHz
Shadowing coefficient σUM

sh , σIN
sh 8, 5.9

Height of AP antenna (hAP ) 15 m
Height of user antenna (hu) 1.65 m
Path-loss model d0, d1 10 m, 50 m
Transmit power (ρ̄p, ρ̄) 100 mW
Bandwidth (B) 20 MHz
Noise figure (NF) 9 dB
Noise temperature (T0) 290 K
Length of a pilot sequence (τ) 24, 48
Packet length (τc) 400

for 30 epochs adopting the ADAM optimizer [33]. The initial learning rate δ

is set to 0.01, which is updated after each epoch using δi = δi−1e
−0.1, where

i represents the ith epoch. The weights associated with the loss function are

λ1 = λ2 = λ3 = λ4 = λ5 = 0.2. The eLU saturation parameter Γ is set to

0.2.

4.7.2 Performance Evaluation

The performance metrics considered in this section are per-user network up-

link throughput rate and minimum user rate, defined as [4]

Rnet
k =

τd
τc
BRk (4.31)

and

Rmin
k =

τd
τc

min
k

Rk (4.32)

respectively, where τd = τc − τ is the data payload length. Three algorithms

are compared to the proposed approach: random access (RA), JPCPA, and

DLPC. In the RA algorithm, equal power is allocated to all users, ensuring

that the total transmit power matches with the proposed DL approach and
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Figure 4.3: Cumulative distribution of per-user net throughput for M = 64, K = 250,
P = 24 in an UMa scenario.

assigns pilots randomly. For instance, if JPDCPA distributes 10mW among

10 users, RA algorithm assigns 1mW to each user. In JPCPA, the focus is

on optimizing data power allocation and pilot assignment. For JPCPA, the

architecture depicted in Fig. 4.2 is employed with the omission of the pilot

power allocation branch [? ]. The network is trained for 30 epochs utilizing

the loss function in (4.27) with λ1 = λ2 = λ4 = λ5 = 0.25 and λ3 = 0. In

DLPC, data power coefficients are obtained through the DNN proposed in

[23] and the pilot sequences are randomly assigned to the users.

The empirical cumulative distribution functions (CDFs) for the per-user

uplink throughput rate M = 64 and M = 121 is depicted in Fig. 4.3 and

Fig. 4.4, respectively. It is evident that JPDCPA significantly outperforms
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Figure 4.4: Cumulative distribution of per-user net throughput for M = 121, K = 500,
P = 48 in an UMa scenario.

the RA and DLPC approaches. Specifically, DLPC lacks scalability, resulting

in performance equivalent to RA. In the simulation setting with M = 64 as

depicted in Fig. 4.3, the proposed approach has a significantly higher 95%-

likely per-user net uplink throughput rate of 1.91 Mbits/s. In contrast, RA

and DLPC attain only 0.07 Mbits/s and 0.13 Mbits/s, respectively. Fur-

thermore, JPDCPA aligns with the trajectory of JPCPA, exhibiting a slight

improvement in the lower region of the curve in both scenarios. For the

simulation setting with M = 64 depicted in Fig. 4.3, JPDCPA observe an

increase of 20% in the 95%-likely per-user net throughput with respect to

JPCPA. Similarly, 8% increment in 95%-likely per-user net throughput with

respect to JPCPA can be observed in Fig. 4.4. A performance increment
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Figure 4.5: Cumulative distribution of minimum user rate in an UMa scenario.

for JPDCPA can also be observed in terms of 95%-likely and median from

the scenario with M = 64 to M = 121, also highlighting the impact of the

increased number of APs in the UMa scenario. Precisely, 95%-likely and

median increases by 18% and 3.7%, respectively.

The minimum user rate depicted in Fig. 4.5 holds greater significance

than the per-user throughput rate shown in Fig. 4.3 and Fig. 4.4 in terms

of user fairness, i.e., quality service to all users. The plot in Fig. 4.5 clearly

indicates a substantial increase in the minimum user rate in JPDCPA com-

pared to other approaches. The benchmark approach JPCPA achieves a

lower median value of 0.019 bits/s/Hz for the minimum user rate on the

test set compared to 0.055 bits/s/Hz through JPDCPA with M = 64. The

median of the empirical CDF of minimum user rate exhibited a substantial



100 4.7. Numerical Results

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Per-User Uplink Net Throughput (Mbits/s)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Empirical CDF

JPDCPA
JPCPA
RA
DLPC
95%-Likely

Figure 4.6: Cumulative distribution of per-user net throughput for M = 64, K = 250,
P = 24 in an industrial scenario.

increase of approximately 56% from the simulation scenario with M = 64 to

M = 121 with JPCPA. In contrast, with JPDCPA, the curves overlap, with

the performance of M = 121 showing a marginal improvement over M = 64.

To demonstrate the adaptability of theJPDCPA, the proposed DNN is

tested in the industrial scenario with M = 64 and M = 121. The per-

user uplink throughput rates are depicted in Fig. 4.6 and 4.7, respectively.

Similar to the UMa scenario, DLPC exhibits comparable performance to RA.

Notably, JPDCPA exhibits 10 times better performance than DLPC and RA

in terms of 95%-likely. Moreover, the median of the empirical CDF of the

per-user uplink throughput rate in JPDCPA doubles that of the DLPC in
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Figure 4.7: Cumulative distribution of per-user net throughput for M = 121, K = 500,
P = 48 in an industrial scenario.

both simulation settings. The JPDCPA demonstrates a slight improvement

over JPCPA in terms of both 95%-likely and median of the empirical CDF.

For instance, withM = 64, JPCPA achieves 1.614 Mbits/s whereas JPDCPA

obtains 1.920 Mbits/s 95%-likely per-user uplink throughput rate.

The minimum user rate in the industrial scenario is illustrated in Fig. 4.8.

It is evident from the figure that the JPDCPA outperforms the baseline

approaches considerably. Specifically, in a simulation setting with M = 64

and M = 121, JPDCPA exhibits an increase of 157% and 89% in the of 95%-

likely throughput rate from the JPCPA, respectively. The performance of

JPDCPA with M = 121 is slightly lower than that with the M = 64, showing

an opposite behavior compared to the UMa scenario. This discrepancy arises
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Figure 4.8: Cumulative distribution of minimum user rate in an industrial scenario.

due to the difference in the path-loss models and large-scale fading intensities

between the two scenarios. In UMa scenario, the channel is more selective

in space, which decreases interference and slightly boosts performance in

M = 121 compared to M = 64.

4.7.3 Computational Complexity

The computational complexity of the JPDCPA, JPCPA, and DLPC is pre-

sented in Table 4.2. As the number of users increases from K = 250 to

K = 500, there is a significant increase in computational cost for all the al-

gorithms. It is evident from the table that the DLPC offers the lowest com-

putational complexity. Nevertheless, it has been previously demonstrated
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Table 4.2: Computational cost

DLPC [23] JPCPA JPDCPA

M = 64, K = 250, P = 24 2.63× 105 3.37× 105 4.65× 105

M = 121, K = 500, P = 48 3.94× 105 1.33× 106 1.84× 106

that it results in poor performance in comparison to the other algorithms

under consideration. The introduction of the pilot power control branch in

JPDCPA contributes to a higher computational cost compared to JPCPA.

4.7.4 Per-User Power Usage

To demonstrate the advantage of the proposed method in terms of energy

efficiency, the average per-user pilot and data transmit powers are computed

as

P p
C =

ρ̄p
KS

S∑
i=1

K∑
k=1

b̂k,i (4.33)

and

PC =
ρ̄

KS

S∑
i=1

K∑
k=1

q̂k,i (4.34)

respectively. Here, S represents the number of test samples. The result of

this analysis is shown in Table 4.3. In both UMa and industrial scenarios,

DLPC and JPCPA transmit pilots with maximum power. In comparison, the

proposed loss function lowers the average pilot and data transmit power per

user. Notably, DLPC shows a higher average power for transmitting data per

user compared to JPCPA and JPDCPA. The inclusion of a term penalizing

high power assignment in JPCPA prompts the network to allocate lower

power to users. Although the average transmit power per user of JPDCPA

is slightly higher than JPCPA, the overall transmit power, i.e., accounting

for average pilot transmit power per user, is significantly lower than that of

JPCPA.
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Table 4.3: Transmit Power per User in dBm

Pilot Transmit Power (P p
C)

DLPC JPCPA JPDCPA

M = 64, K = 250, P = 24 20.00 20.00 2.5208
Urban macro

M = 121, K = 500, P = 48 20.00 20.00 0.1460

M = 64, K = 250, P = 24 20.00 20.00 −6.7448
Industrial

M = 121, K = 500, P = 48 20.00 20.00 −8.5263
Data Transmit Power (PC)

DLPC JPCPA JPDCPA

M = 64, K = 250, P = 24 16.98 3.5388 3.8439
Urban macro

M = 121, K = 500, P = 48 16.99 1.5824 1.6411

M = 64, K = 250, P = 24 16.93 −6.2342 −6.4897
Industrial

M = 121, K = 500, P = 48 16.96 −8.2740 −8.0632

4.8 Conclusion

In this chapter, a scalable DNN-based solution is proposed called JPDCPA

for joint pilot and data power allocation and pilot assignment in a CF-mMIMO

network. A massive access scenario is considered where the number of users

exceeds the available orthogonal pilots. The adaptability of JPDCPA is

demonstrated by assessing its performance in a UMa and indoor industrial

scenarios. Numerical results show that the JPDCPA shows an increase of

20% and 8% in the 95%-likely per-user uplink throughput rate with respect

to the state-of-the-art consideringM = 64 andM = 121 APs, respectively, in

the UMa scenario. Furthermore, the unsupervised training of the JPDCPA

using the proposed loss function not only outperforms alternative methods in

enhancing users’ spectral efficiency but also leads to a significant reduction in

average transmit power per user compared to the considered state-of-the-art

solution.
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Chapter 5

Conclusions

The exponential growth of mIoT devices has led to the emergence of the term

mMTC. These devices wake up intermittently to transmit short data packets

and are usually powered by batteries. In this thesis, numerous challenges

associated with integrating these devices into cellular networks through DL

algorithms were addressed. It is established that relying solely on grant-

based methods is inefficient due to control signaling overhead, resulting in

prolonged delays. To address this, GF schemes are proposed in the literature.

In GF schemes, the users transmit without prior resource allocation from the

BS. This simplifies the device side by transferring the computational burden

to the BS. Some of the major contributions of this thesis are presented below.

Chapter 2 delved into the implementation of a GF NOMA scheme to

provide services to a large number of devices and to reduce the communica-

tion overhead in mMTC scenarios. In GF random access, BS is not aware

of the devices that are trying to communicate. Consequently, AUD must be

performed at the BS. In that respect, this chapter proposed the design of

two DNN architectures for the AUD task, namely AUE and AUI. The for-

mer identifies the number of active devices, while the latter indicates which

devices are active. The chapter analyzed the performance of the proposed

algorithm, revealing that the proposed approach outperforms state-of-the-art

methods and offers lower computational complexity.

Chapter 3 proposed a DL-based technique for preamble detection in an

109
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asynchronous GF random access scenario. In the considered scenario, the ac-

tive user initiates a VF consisting of many slots, where each slot is equal to

the size of the packet. The user transmits two replicas in the randomly chosen

slots. As a single packet contends with interference from numerous packets

transmitted by other users, packet detection poses a formidable challenge

in an asynchronous scenario. The study demonstrated that the proposed

DL-based method provides a high detection rate for a negligible false-alarm

rate and surpassed the performance of the conventional correlator-based ap-

proach. Furthermore, Chapter 3 delved into DL methodologies for payload

association. As each user transmits multiple copies, the replicas can be com-

bined to enhance the decoding process. The objective of the investigated DL

methodologies was to determine the positions of the two replicas within the

frame. Despite numerous attempts, achieving successful payload association

has proven to be elusive.

The CF-mMIMO networks can improve the quality of service for the

users at the edge of the cell and reduce inter-cell interference. Building on

this premise, Chapter 4 has focused on strategies for enhancing the SE of the

mIoT devices in a CF-mMIMO network, aiming to maximize the minimum

user rate. Critical to this objective is the allocation of suitable power for

transmitting the pilot and payload, and the assignment of pilots to each user

in the network. A DNN algorithm called JPDCPA was proposed to achieve

this objective. The algorithm was trained using an unsupervised learning

approach and benchmarked against existing approaches in the literature. To

the best of my knowledge, this is the first approach in the literature that

deals with joint power and pilot allocation. The computational complexity

analysis of the proposed approach is performed. The results demonstrated

that the proposed algorithm outperformed the existing algorithms in terms

of per-user uplink throughput rate and minimum user rate. Furthermore, it

has been also shown that the proposed approach lowers the average pilot and

data transmit power per user, in comparison to the other approaches.

In future generations of cellular networks, AI is poised to play a trans-

formative role, revolutionizing various aspects of communication and con-

nectivity. As detailed in this thesis, AI surpasses traditional algorithms in
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performance, offering significant improvements in the reliability, throughput,

and scalability of networks. Similarly, in the future, AI-based grant-free ac-

cess protocols will catalyze innovation in emerging technologies, such as IoT,

autonomous vehicles, and smart cities, thus laying the groundwork for a more

interconnected and intelligent future.

Future Research Directions: Cell-Free networks offers higher SE for

all the users in comparison to the Cell-based networks. This performance

leap necessitates extending the activity detection algorithm to the Cell-Free

networks. Furthermore, optimizing the architectures and feature selection

for AUE and AUI can yield better performance and lower computational

complexity.

A potential future extension of the preamble detection work could explore

channel estimation through DL. While traditional methods, such as MMSE,

can be effective, DL-based approaches may perform better in the considered

scenario. Additionally, the proposed payload association approach can be

improved by integrating transformer blocks into the architecture.

For last work on pilot allocation and pilot assignment, the work could be

extended to scenarios involving APs equipped with multiple antennas. Like

the other approaches in the literature, this approach also assumes that the

large-scale fading coefficient between every AP and the device is known at

the CPU, however, this is often not the case. A future research direction may

involve estimating the values of large-scale fading coefficients, and based on

these estimates, power and pilots can be assigned.
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Appendix A

Derivation of the Distribution

of Collisions in a Random

Access for Preamble Detection

Let us start by noting that the number of arrivals at the ith symbol time

is N = N1 + N2 + · · · + NS where Na is the number of arrivals at the ith

symbol time considering only the users that wake up at symbol i − aM ,

and M is the number of symbols in a slot. The number of users waking up

during a symbol time, w, is distributed as a Poisson r.v. with density λ. The

probability mass function of N1, recalling that a virtual frame is composed

by NS slots, is given as

P (N1 = n) =
∞∑

w=n

P (N1 = n|w)P (w)

=
∞∑

w=n

Ç
w

n

åÅ
2

NS

ãn Å
1− 2

NS

ãw−n λw

w!
e−λ

= e−λ

∞∑
w=n

w!

(w − n)!n!

Å
2

NS

ãn Å
1− 2

NS

ãw−n λw

w!

= e−λ 1

n!

Å
2

NS

ãn ∞∑
w=n

λw

(w − n)!

Å
1− 2

NS

ãw−n

. (A.1)
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Let z = w − n, then we have

P (N1 = n) = e−λ 1

n!

Å
2

NS

ãn ∞∑
z=0

λ(z+n)

z!

Å
1− 2

NS

ãz
= e−λ 1

n!

Å
2λ

NS

ãn ∞∑
z=0

λz

z!

Å
1− 2

NS

ãz
= e−λ 1

n!

Å
2λ

NS

ãn
e
λ
(
1− 2

NS

)

=
1

n!

Å
2λ

NS

ãn
e
− 2λ

NS ∼ Pois
( 2λ
NS

)
. (A.2)

Let us recall that the probability generating function of the Poisson distri-

bution Pois(µ) is

GN1(s) =
∞∑
k=0

sk
µk

k!
e−µ

= e−µ

∞∑
k=0

(sµ)k

k!

= eµ(s−1) (A.3)

that for µ = 2λ
NS

becomes GN1(s) = e
2λ
NS

(s−1)
. Note that GN1(s) = GN2(s) =

· · · = GNS
(s). Then, the probability generating function of the number of

arrivals in a symbol time is calculated as

GN(s) = (GN1(s))
NS

= e
2λNS
NS

(s−1)

= e2λ(s−1) (A.4)

that is the probability generating function of Pois(2λ). Thus, the arrival rate

in a symbol time follows a Poisson distribution with density 2λ. Thus, the

average number of packet arrivals during a slot time is 2λ(NP +ND), where

NP and ND are the number of preamble and data symbols, respectively. This

can be interpreted also as the average number of collisions during the packet

transmission time. Since the aim is to test the performance of the proposed
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Table A.1: Average number of collisions in a slot time varying λ.

λ Average n° of collisions

0.0005 1
0.005 3
0.01 5
0.0145 7

schemes with different traffic loads, the dataset is generated considering dif-

ferent values of λ, i.e., scenarios with different average numbers of collisions.

Table A.1 shows the average number of collisions (after ceiling operation) for

some of the λ values used in the preamble detection work.As can be seen

from the table, the average number of collisions in a slot time ranges from a

low network load condition to a much higher one. The figures presented in

Table A.1 are discussed in sub-section 3.5.1.
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Appendix B

Derivation of closed-form

expression for the achievable

uplink rate

To derive the closed-form expression for the achievable rate given in (4.16),

we need to compute DSk, E{|BUk|2}, E{|IUIkk′|2}, and E{|TNk|2}

Computation of DSk

Let εmk ≜ gmk−ĝmk be the channel estimation error. Owing to the properties

of MMSE estimation, εmk and ĝmk are independent. Thus, we have

DSk =
√
ρE

{
M∑

m=1

√
qk(ĝmk + εmk)ĝ

∗
mk

}

=
√
ρE

{
M∑

m=1

√
qk(|ĝmk|2 + εmkĝ

∗
mk)

}

Since E|ĝmk|2 = γmk, E{εmk} = 0, and E{ĝ∗mk} = 0, it follows that

DSk =
√
ρqk

M∑
m=1

γmk. (B.1)
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Computation of E|BUk|2

The expression can be derived as follows

E{|BUk|2} = ρ
M∑

m=1

qkE
¶
|gmkĝ

∗
mk − E {gmkĝ

∗
mk}|2

©
= ρ

M∑
m=1

qk
Ä
E
¶
|gmkĝ

∗
mk|2
©
− |E {gmkĝ

∗
mk} |2

ä
where the property E{|X − E{X}|2} = E{|X|2} − |E{X}|2 has been used.

Substituting gmk = εmk + ĝmk, we get

E{|BUk|2} = ρ
M∑

m=1

qk

Å
E
¶
|(εmk + ĝmk)ĝ

∗
mk|2
©
− |E {(εmk + ĝmk)ĝ

∗
mk} |2

ã
Using E{εmk} = 0, E{|ĝmk|2} = γmk, we obtain

E{|BUk|2} = ρ
M∑

m=1

qk
Ä
E
¶
|εmkĝ

∗
mk|2
©
+ E

{
|ĝmk|4

}
− γ2

mk

ä
As E{|εmk|2} = βmk − γmk and E{|ĝmk|4} = 2γ2

mk, we get

E{|BUk|2} = ρ

M∑
m=1

qk
(
γmk(βmk − γmk) + 2γ2

mk − γ2
mk

)
= ρ

M∑
m=1

qkγmkβmk.

(B.2)

Computation of E|IUIkk′ |2

The term is given as

E{|IUIkk′|2} =ρE


∣∣∣∣∣

M∑
m=1

ĝ∗mkgmk′
√
qk′

∣∣∣∣∣
2

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Substituting ĝ∗mk = cmkỹ
∗
mk, where ỹmk is defined in (4.5).

E{|IUIkk′ |2} =ρE

{∣∣∣∣∣
M∑

m=1

cmkgmk′
√
qk′

×
(
√
τρp

K∑
i=1

√
bigmiϕ

H
k ϕi + ϕH

k wp,m

)∗∣∣∣∣∣
2}

= ρqk′E


∣∣∣∣∣

M∑
m=1

cmkgmk′(ϕ
H
k w̃p,m)

∗

∣∣∣∣∣
2
︸ ︷︷ ︸

A

+ τρpρE


∣∣∣∣∣

M∑
m=1

√
qk′cmkgmk′

(
K∑
i=1

√
bigmiϕ

H
k ϕi

)∗∣∣∣∣∣
2
︸ ︷︷ ︸

B

,

Since w̃p,m = ϕH
k wp,m ∼ CN (0, 1) is independent of the term gmk, the term

A is given as

A = ρqk′
M∑

m=1

c2mkβmk′ .

Recalling that E{|X + Y |2} = E{|X|2} + E{|Y |2} where X and Y are two

independent random variables and E{X} = 0, B can be expressed as

B = τρpρE


∣∣∣∣∣

M∑
m=1

√
qk′cmkgmk′

(»
b′kgmk′ϕ

H
k ϕk′

)∗∣∣∣∣∣
2
︸ ︷︷ ︸

B1

+ τρpρE


∣∣∣∣∣∣

M∑
m=1

√
qk′cmkgmk′

(
K∑

i ̸=k′

√
bigmiϕ

H
k ϕi

)∗∣∣∣∣∣∣
︸ ︷︷ ︸

B2

(B.3)
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Manipulating B1 we obtain

B1 = τρpρE


∣∣∣∣∣

M∑
m=1

√
qk′cmkgmk′

Ä√
bk′gmk′ϕ

H
k ϕk′

ä∗∣∣∣∣∣2
= τρpρqk′bk′ |ϕH

k ϕk′|2E


∣∣∣∣∣

M∑
m=1

cmk|gmk′ |2
∣∣∣∣∣
2


= τρpρqk′bk′ |ϕH
k ϕk′|2E

{
M∑

m=1

cmk|gmk′ |2
M∑
n=1

cnk|gnk′ |2
}

= τρpρqk′bk′ |ϕH
k ϕk′|2E

{
M∑

m=1

c2mk|gmk′ |4
}

+ τρpρqk′bk′|ϕH
k ϕk′ |2

M∑
m=1

M∑
n̸=m

cmkcnkβmk′βnk′

As E{|gmk′|4} = 2β2
mk′ , we get

B1 = τρpρqk′bk′ |ϕH
k ϕk′|2

M∑
m=1

c2mk2β
2
mk′

+ τρpρqk′bk′|ϕH
k ϕk′ |2

M∑
m=1

M∑
n̸=m

cmkcnkβmk′βnk′

= τρpρqk′bk′ |ϕH
k ϕk′|2

M∑
m=1

c2mkβ
2
mk′

+ τρpρqk′bk′|ϕH
k ϕk′ |2

M∑
m=1

c2mkβ
2
mk′

+ τρpρqk′bk′|ϕH
k ϕk′ |2

M∑
m=1

M∑
n̸=m

cmkcnkβmk′βnk′

= τρpρqk′bk′ |ϕH
k ϕk′|2

M∑
m=1

c2mkβ
2
mk′ + τρpρqk′bk′ |ϕH

k ϕk′|2
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×
M∑

m=1

cmkβmk′

(
M∑

n̸=m

cnkβnk′ + cmkβmk′

)

B1 = τρpρqk′bk′ |ϕH
k ϕk′ |2

M∑
m=1

c2mkβ
2
mk′ + τρpρqk′bk′ |ϕH

k ϕk′ |2

×
M∑

m=1

cmkβmk′

(
M∑
n=1

cnkβnk′

)

= τρpρqk′bk′|ϕH
k ϕk′ |2

M∑
m=1

c2mkβ
2
mk′

+ τρpρqk′bk′|ϕH
k ϕk′|2

M∑
m=1

c2mkβ
2
mk′

Multiplying and dividing the second term with
∑M

m=1 bkβ
2
mk

B1 = τρpρqk′bk′ |ϕH
k ϕk′|2

M∑
m=1

c2mkβ
2
mk′

+ ρqk′|ϕH
k ϕk′ |2

(
M∑

m=1

√
bk′βmk′√
bkβmk

γmk

)2

Manipulating B2, we obtain

B2 = τρpρE


∣∣∣∣∣∣

M∑
m=1

√
qk′cmkgmk′

(
K∑

i ̸=k′

√
bigmiϕ

H
k ϕi

)∗∣∣∣∣∣∣
2

= τρpρE

{
M∑

m=1

K∑
i ̸=k′

qk′bic
2
mk|gmk′ |2|gmi|2|ϕH

k ϕi|2
}
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As E{|gmk′|2} = βmk′

B2 = τρpρ
M∑

m=1

K∑
i ̸=k′

qk′bic
2
mkβmk′βmi|ϕH

k ϕi|2

= τρpρ

M∑
m=1

K∑
i=1

qk′bic
2
mkβmk′βmi|ϕH

k ϕi|2

− τρpρ

M∑
m=1

qk′bk′c
2
mkβ

2
mk′|ϕH

k ϕk′|2

Adding and subtracting the term ρqk′
∑M

m=1 c
2
mkβmk′

B2 = τρpρ
M∑

m=1

K∑
i=1

qk′bic
2
mkβmk′βmi|ϕH

k ϕi|2

− τρpρ
M∑

m=1

qk′bk′c
2
mkβ

2
mk′ |ϕH

k ϕk′|2

+ ρqk′
M∑

m=1

c2mkβmk′ − ρqk′
M∑

m=1

c2mkβmk′

= ρqk′
M∑

m=1

c2mkβmk′

Ç√
τρpbkβmk

cmk

å
− τρpρ

M∑
m=1

qk′bk′c
2
mkβ

2
mk′ |ϕH

k ϕk′|2

− ρqk′
M∑

m=1

c2mkβmk′

=
√
τρpbkρqk′

M∑
m=1

cmkβmkβmk′

− τρpρ

M∑
m=1

qk′bk′c
2
mkβ

2
mk′|ϕH
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− ρqk′
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m=1

c2mkβmk′
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Using γmk =
√

τρpbkcmkβmk

B2 = ρqk′
M∑

m=1

γmkβmk′

− τρpρ
M∑

m=1

qk′bk′c
2
mkβ

2
mk′ |ϕH

k ϕk′|2

− ρqk′
M∑

m=1

c2mkβmk′

Summing A, B1, and B2, we obtain

E{|IUIkk′ |2} = A+B1 +B2

= ρqk′
M∑

m=1

c2mkβmk′

+ τρpρbk′qk′ |ϕH
k ϕk′|2

M∑
m=1

c2mkβ
2
mk′

+ ρqk′|ϕH
k ϕk′|2

(
M∑

m=1

γmk

√
bk′βmk′√
bkβmk

)2

+ ρqk′
M∑

m=1

γmkβmk′

− τρpρ

M∑
m=1

qk′bk′c
2
mkβ

2
mk′|ϕH

k ϕk′ |2

− ρqk′
M∑

m=1

c2mkβmk′

After cancellation of terms, we get

E{|IUIkk′|2} = ρqk′|ϕH
k ϕk′ |2

(
M∑

m=1

γmk

√
bk′βmk′√
bkβmk

)2

+ ρqk′
M∑

m=1

γmkβmk′ (B.4)



124

Computation of E{|TNk|2}

E{|TNk|2} = E


∣∣∣∣∣

M∑
m=1

ĝ∗mkνm

∣∣∣∣∣
2


=
M∑

m=1

γmk (B.5)

Substituting (B.1), (B.2), (B.4), (B.5) in (4.16) to obtain (4.19).
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