Kinetics of photogenerated carriers in nanostructured semiconductor heterojunctions for solar water splitting

Vecchi, Pierpaolo (2024) Kinetics of photogenerated carriers in nanostructured semiconductor heterojunctions for solar water splitting, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 36 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 1 Novembre 2024 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB) | Contatta l'autore

Abstract

This thesis aims to investigate the fundamental processes governing the performance of different types of photoelectrodes used in photoelectrochemical (PEC) applications, such as unbiased water splitting for hydrogen production. Unraveling the transport and recombination phenomena in nanostructured and surface-modified heterojunctions at a semiconductor/electrolyte interface is not trivial. To approach this task, the work presented here first focus on a hydrogen-terminated p-silicon photocathode in acetonitrile, considered as a standard reference for PEC studies. Steady-state and time-resolved excitation at long wavelength provided clear evidence of the formation of an inversion layer and revealed that the most optimal photovoltage and the longest electron-hole pair lifetime occurs when the reduction potential for the species in solution lies within the unfilled conduction band states. Understanding more complex systems is not as straight-forward and a complete characterization that combine time- and frequency-resolved techniques is needed. Intensity modulated photocurrent spectroscopy and transient absorption spectroscopy are used here on WO3/BiVO4 heterojunctions. By selectively probing the two layers of the heterojunction, the occurrence of interfacial recombination was identified. Then, the addition of Co-Fe based overlayers resulted in passivation of surface states and charge storage at the overlayer active sites, providing higher charge separation efficiency and suppression of recombination in time scales that go from picoseconds to seconds. Finally, the charge carrier kinetics of several different Cu(In,Ga)Se2 (CIGS)-based architectures used for water reduction was investigated. The efficiency of a CIGS photocathode is severely limited by charge transfer at the electrode/electrolyte interface compared to the same absorber layer used as a photovoltaic cell. A NiMo binary alloy deposited on the photocathode surface showed a remarkable enhancement in the transfer rate of electrons in solution. An external CIGS photovoltaic module assisting a NiMo dark cathode displayed optimal absorption and charge separation properties and a highly performing interface with the solution.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Vecchi, Pierpaolo
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
solar water splitting, hydrogen production, photoelectrochemistry, semiconductor, nanostructured heterojunctions, WO3/BiVO4, silicon, CIGS, transient absorption spectroscopy, intensity modulated photocurrent spectroscopy
URN:NBN
Data di discussione
21 Marzo 2024
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^