Congested optimal transport in the Heisenberg group

Circelli, Michele (2024) Congested optimal transport in the Heisenberg group, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Matematica, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/11123.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (1MB)

Abstract

In this thesis we adapted the problem of continuous congested optimal transport to the Heisenberg group, equipped with a sub-Riemannian metric: we restricted the set of admissible paths to the horizontal curves. We obtained the existence of equilibrium configurations, known as Wardrop Equilibria, through the minimization of a convex functional, over a suitable set of measures on the horizontal curves. Moreover, such equilibria induce transport plans that solve a Monge-Kantorovich problem associated with a cost, depending on the congestion itself, which we rigorously defined. We also proved the equivalence between this problem and a minimization problem defined over the set of p-summable horizontal vector fields with prescribed divergence. We showed that this new problem admits a dual formulation as a classical minimization problem of Calculus of Variations. In addition, even the Monge-Kantorovich problem associated with the sub-Riemannian distance turns out to be equivalent to a minimization problem over measures on horizontal curves. Passing through the notion of horizontal transport density, we proved that the Monge-Kantorovich problem can also be formulated as a minimization problem with a divergence-type constraint. Its dual formulation is the well-known Kantorovich duality theorem. In the end, we treated the continuous congested optimal transport problem with orthotropic cost function: we proved the Lipschitz regularity for solutions to a pseudo q-Laplacian-type equation arising from it.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Circelli, Michele
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Heisenber group, Congested optimal transport, transport density, q-Laplace equation
URN:NBN
DOI
10.48676/unibo/amsdottorato/11123
Data di discussione
3 Luglio 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^