Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (4MB)
|
Abstract
Coastal ecosystems represent an inestimable source of biodiversity, being among the most productive areas on the planet. Despite the great ecological and economic value of those environments, many threats endanger the species living in this ecosystem, like the rapid warming and the sea acidification, among many other. Benthic calcifying organisms (e.g. mollusks, corals and echinoderms) in particular, are among the most exposed to those hazards. These organisms use calcium carbonate as a structural and protective material through the biomineralization process, biologically controlled by the organism, but nevertheless, strongly influenced by the environmental surroundings. Evaluating how a changing environment can influence the process of biomineralization is critical to understand how those species of great ecological and economic importance will face the ongoing climate change.
This thesis investigates the mechanism of biomineralization in different mollusks’ species of the Adriatic Sea, providing detailed descriptions of shells skeletal, biometric and growth parameters. Applying a multidisciplinary and multi-scale research approach, the influence of external environmental factors on the process of shell formation has been investigated. To achieve this purpose analysis were conducted both on current populations and on fossil remain, which allows to investigate ecological responses to past climate transitions. Mollusks’ shells in fact are one of the best tools to understand climate change in the past, present and future, since they record the environmental conditions prevailed during their life, reflected on the geochemical properties, microstructure and growth of the shell. This approach allowed to overcome the time scale limit imposed by field and laboratory survey, and better understand species long term adaptive response to changing environment, a crucial issue to define proper conservation and management strategies.
Furthermore, the investigation of fossil record of mollusks assemblages offered the opportunity to evaluate the long-term biotic response to anthropogenic stressors in the north Adriatic Sea.
Abstract
Coastal ecosystems represent an inestimable source of biodiversity, being among the most productive areas on the planet. Despite the great ecological and economic value of those environments, many threats endanger the species living in this ecosystem, like the rapid warming and the sea acidification, among many other. Benthic calcifying organisms (e.g. mollusks, corals and echinoderms) in particular, are among the most exposed to those hazards. These organisms use calcium carbonate as a structural and protective material through the biomineralization process, biologically controlled by the organism, but nevertheless, strongly influenced by the environmental surroundings. Evaluating how a changing environment can influence the process of biomineralization is critical to understand how those species of great ecological and economic importance will face the ongoing climate change.
This thesis investigates the mechanism of biomineralization in different mollusks’ species of the Adriatic Sea, providing detailed descriptions of shells skeletal, biometric and growth parameters. Applying a multidisciplinary and multi-scale research approach, the influence of external environmental factors on the process of shell formation has been investigated. To achieve this purpose analysis were conducted both on current populations and on fossil remain, which allows to investigate ecological responses to past climate transitions. Mollusks’ shells in fact are one of the best tools to understand climate change in the past, present and future, since they record the environmental conditions prevailed during their life, reflected on the geochemical properties, microstructure and growth of the shell. This approach allowed to overcome the time scale limit imposed by field and laboratory survey, and better understand species long term adaptive response to changing environment, a crucial issue to define proper conservation and management strategies.
Furthermore, the investigation of fossil record of mollusks assemblages offered the opportunity to evaluate the long-term biotic response to anthropogenic stressors in the north Adriatic Sea.
Tipologia del documento
Tesi di dottorato
Autore
Cheli, Alessandro
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Biomineralization, Climate Change, Mollusks, Fossil record, Holocene
URN:NBN
DOI
10.48676/unibo/amsdottorato/11067
Data di discussione
16 Giugno 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Cheli, Alessandro
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Biomineralization, Climate Change, Mollusks, Fossil record, Holocene
URN:NBN
DOI
10.48676/unibo/amsdottorato/11067
Data di discussione
16 Giugno 2023
URI
Statistica sui download
Gestione del documento: