Mensali, Elisabetta
(2023)
Joint value at risk: a new conditional risk measure, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze statistiche, 35 Ciclo.
Documenti full-text disponibili:
|
Documento PDF (English)
- Accesso riservato fino a 16 Giugno 2025
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (1MB)
| Contatta l'autore
|
Abstract
In this PhD thesis a new firm level conditional risk measure is developed. It is named Joint Value at Risk (JVaR) and is defined as a quantile of a conditional distribution of interest, where the conditioning event is a latent upper tail event. It addresses the problem of how risk changes under extreme volatility scenarios.
The properties of JVaR are studied based on a stochastic volatility representation of the underlying process.
We prove that JVaR is leverage consistent, i.e. it is an increasing function of the dependence parameter in the stochastic representation.
A feasible class of nonparametric M-estimators is introduced
by exploiting the elicitability of quantiles and the stochastic ordering theory.
Consistency and asymptotic normality of the two stage M-estimator are derived, and a simulation study is reported to illustrate its finite-sample properties.
Parametric estimation methods are also discussed.
The relation with the VaR is exploited to introduce a volatility contribution measure, and a tail risk measure is also proposed.
The analysis of the dynamic JVaR is presented based on asymmetric stochastic volatility models.
Empirical results with S&P500 data show that accounting for extreme volatility levels is relevant to better characterize the evolution of risk.
The work is complemented by a review of the literature, where we provide an overview on quantile risk measures, elicitable functionals and several stochastic orderings.
Abstract
In this PhD thesis a new firm level conditional risk measure is developed. It is named Joint Value at Risk (JVaR) and is defined as a quantile of a conditional distribution of interest, where the conditioning event is a latent upper tail event. It addresses the problem of how risk changes under extreme volatility scenarios.
The properties of JVaR are studied based on a stochastic volatility representation of the underlying process.
We prove that JVaR is leverage consistent, i.e. it is an increasing function of the dependence parameter in the stochastic representation.
A feasible class of nonparametric M-estimators is introduced
by exploiting the elicitability of quantiles and the stochastic ordering theory.
Consistency and asymptotic normality of the two stage M-estimator are derived, and a simulation study is reported to illustrate its finite-sample properties.
Parametric estimation methods are also discussed.
The relation with the VaR is exploited to introduce a volatility contribution measure, and a tail risk measure is also proposed.
The analysis of the dynamic JVaR is presented based on asymmetric stochastic volatility models.
Empirical results with S&P500 data show that accounting for extreme volatility levels is relevant to better characterize the evolution of risk.
The work is complemented by a review of the literature, where we provide an overview on quantile risk measures, elicitable functionals and several stochastic orderings.
Tipologia del documento
Tesi di dottorato
Autore
Mensali, Elisabetta
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Risk measures, Stochastic Volatility, Elicitability, M-estimators, Stochastic ordering
URN:NBN
Data di discussione
15 Giugno 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Mensali, Elisabetta
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Risk measures, Stochastic Volatility, Elicitability, M-estimators, Stochastic ordering
URN:NBN
Data di discussione
15 Giugno 2023
URI
Gestione del documento: