Study and characterization of polymorphs of BTBT derivatives and their application in organic electronics

Pandey, Priya (2023) Study and characterization of polymorphs of BTBT derivatives and their application in organic electronics, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10928.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (16MB)


The perquisites of organic semiconductors (OSCs) in the field of organic electronics have attracted much attention due to the advantages like cost-effectiveness, solution processibility, etc. A key property in OSCs is charge carrier mobility, which depends on molecular packing, as even the slightest changes in the packing of OSC can significantly impact the mobility. Organic molecules are constructed by weak interactions, which makes the OSCs prone to adopt multiple packing arrangements, thus giving rise to polymorphism. Therefore, polymorph screening in bulk and thin films is crucial for material development. This thesis aims to present a systematic study of polymorphism of [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives functionalized with different side chains. The role of peripheral side chains has been studied since they can promote different packing arrangements. The bulk polymorph screening of OSCs was approached with conventional solution mediated recrystallization experiments like evaporation, slurry maturation, anti-solvent precipitation, etc. Each of the polymorphs were inspected for their relative stability and the kinetics of transformation was evaluated. Polymorphism in thin films was also investigated for selected OSCs. Non-equilibrium methods like, thermal gradient and solution shearing were employed to examine the nucleation, crystal growth and morphology in controlled crystallization conditions. After careful analysis of crystal phases in bulk and thin films, OFETs have been fabricated by optimizing the manufacturing conditions and the hole mobility values were extracted. The charge transport property of the OSCs tested for OFETs was supported by the ionization potential and transfer integrals calculation. An attempt to correlate the solid-state structure to electronic properties was carried out. For some of the molecules, mechanical properties have been also investigated, as the response to mechanical stress is highly susceptible to packing arrangements and the intermolecular interaction energy contributions. Additionally, collaborative research was carried out by solving and analysing the crystal structures of six oligorylene molecules.

Tipologia del documento
Tesi di dottorato
Pandey, Priya
Dottorato di ricerca
Settore disciplinare
Settore concorsuale
Parole chiave
Polymorphism, crystallography, organic semiconductors, structure-property relationships, organic field effect transistors
Data di discussione
15 Giugno 2023

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi