Iaiani, Matteo
(2023)
Synergies among safety and security in the prevention of major accidents related to dangerous substances, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Ingegneria civile, chimica, ambientale e dei materiali, 35 Ciclo.
Documenti full-text disponibili:
|
Documento PDF (English)
- Accesso riservato fino a 1 Febbraio 2026
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (8MB)
| Contatta l'autore
|
Abstract
Historical evidence shows that chemical, process, and Oil&Gas facilities where dangerous substances are stored or handled are target of deliberate malicious attacks (security attacks) aiming at interfering with normal operations. Physical attacks and cyber-attacks may generate events with consequences on people, property, and the surrounding environment that are comparable to those of major accidents caused by safety-related causes. The security aspects of these facilities are commonly addressed using Security Vulnerability/Risk Assessment (SVA/SRA) methodologies. Most of these methodologies are semi-quantitative and non-systematic approaches that strongly rely on expert judgment, leading to security assessments that are not reproducible. Moreover, they do not consider the synergies with the safety domain.
The present 3-year research is aimed at filling the gap outlined by providing knowledge on security attacks, as well as rigorous and systematic methods supporting existing SVA/SRA studies suitable for the chemical, process, and Oil&Gas industry. The different nature of cyber and physical attacks resulted in the development of different methods for the two domains. The first part of the research was devoted to the development and statistical analysis of security databases that allowed to develop new knowledge and lessons learnt on security threats. Based on the obtained background, a Bow-Tie based procedure and two reverse-HazOp based methodologies were developed as hazard identification approaches for physical and cyber threats respectively. To support the quantitative estimation of the security risk, a quantitative procedure based on the Bayesian Network was developed allowing to calculate the probability of success of physical security attacks.
All the developed methods have been applied to case studies addressing chemical, process and Oil&Gas facilities (offshore and onshore) proving the quality of the results that can be achieved in improving site security. Furthermore, the outcomes achieved allow to step forward in developing synergies and promoting integration among safety and security management.
Abstract
Historical evidence shows that chemical, process, and Oil&Gas facilities where dangerous substances are stored or handled are target of deliberate malicious attacks (security attacks) aiming at interfering with normal operations. Physical attacks and cyber-attacks may generate events with consequences on people, property, and the surrounding environment that are comparable to those of major accidents caused by safety-related causes. The security aspects of these facilities are commonly addressed using Security Vulnerability/Risk Assessment (SVA/SRA) methodologies. Most of these methodologies are semi-quantitative and non-systematic approaches that strongly rely on expert judgment, leading to security assessments that are not reproducible. Moreover, they do not consider the synergies with the safety domain.
The present 3-year research is aimed at filling the gap outlined by providing knowledge on security attacks, as well as rigorous and systematic methods supporting existing SVA/SRA studies suitable for the chemical, process, and Oil&Gas industry. The different nature of cyber and physical attacks resulted in the development of different methods for the two domains. The first part of the research was devoted to the development and statistical analysis of security databases that allowed to develop new knowledge and lessons learnt on security threats. Based on the obtained background, a Bow-Tie based procedure and two reverse-HazOp based methodologies were developed as hazard identification approaches for physical and cyber threats respectively. To support the quantitative estimation of the security risk, a quantitative procedure based on the Bayesian Network was developed allowing to calculate the probability of success of physical security attacks.
All the developed methods have been applied to case studies addressing chemical, process and Oil&Gas facilities (offshore and onshore) proving the quality of the results that can be achieved in improving site security. Furthermore, the outcomes achieved allow to step forward in developing synergies and promoting integration among safety and security management.
Tipologia del documento
Tesi di dottorato
Autore
Iaiani, Matteo
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Security, Cybersecurity, Physical Security, Chemical and Process Industry, Oil&Gas Industry, Security Vulnerability Assessment, Security Risk Assessment, Hazard Identification, Quantitative Assessment
URN:NBN
Data di discussione
17 Marzo 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Iaiani, Matteo
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Security, Cybersecurity, Physical Security, Chemical and Process Industry, Oil&Gas Industry, Security Vulnerability Assessment, Security Risk Assessment, Hazard Identification, Quantitative Assessment
URN:NBN
Data di discussione
17 Marzo 2023
URI
Gestione del documento: