Application of Deep Learning techniques in the search for BSM Higgs bosons in the $\mu\mu$ final state in CMS

Diotalevi, Tommaso (2022) Application of Deep Learning techniques in the search for BSM Higgs bosons in the $\mu\mu$ final state in CMS, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 34 Ciclo. DOI 10.48676/unibo/amsdottorato/10356.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (32MB)


The Standard Model (SM) of particle physics predicts the existence of a Higgs field responsible for the generation of particles' mass. However, some aspects of this theory remain unsolved, supposing the presence of new physics Beyond the Standard Model (BSM) with the production of new particles at a higher energy scale compared to the current experimental limits. The search for additional Higgs bosons is, in fact, predicted by theoretical extensions of the SM including the Minimal Supersymmetry Standard Model (MSSM). In the MSSM, the Higgs sector consists of two Higgs doublets, resulting in five physical Higgs particles: two charged bosons $H^{\pm}$, two neutral scalars $h$ and $H$, and one pseudoscalar $A$. The work presented in this thesis is dedicated to the search of neutral non-Standard Model Higgs bosons decaying to two muons in the model independent MSSM scenario. Proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV are used, corresponding to an integrated luminosity of $35.9\ \text{fb}^{-1}$. Such search is sensitive to neutral Higgs bosons produced either via gluon fusion process or in association with a $\text{b}\bar{\text{b}}$ quark pair. The extensive usage of Machine and Deep Learning techniques is a fundamental element in the discrimination between signal and background simulated events. A new network structure called parameterised Neural Network (pNN) has been implemented, replacing a whole set of single neural networks trained at a specific mass hypothesis value with a single neural network able to generalise well and interpolate in the entire mass range considered. The results of the pNN signal/background discrimination are used to set a model independent 95\% confidence level expected upper limit on the production cross section times branching ratio, for a generic $\phi$ boson decaying into a muon pair in the 130 to 1000 GeV range.

Tipologia del documento
Tesi di dottorato
Diotalevi, Tommaso
Dottorato di ricerca
Settore disciplinare
Settore concorsuale
Parole chiave
Higgs boson,Beyond Standard Model,MSSM,Supersymmetry,CMS,LHC,CERN,Machine Learning,Deep Learning,parameterised Neural Network,dimuon final state
Data di discussione
15 Giugno 2022

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi