Dzhugan, Aleksandr
(2021)
Advanced properties of some nonlocal operators., [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Matematica, 34 Ciclo. DOI 10.48676/unibo/amsdottorato/10002.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (1MB)
|
Abstract
In this thesis, we deal with problems, related to nonlocal operators. In particular, we introduce a suitable notion of integral operators acting on functions with minimal requirements at infinity. We also present results of stability under the appropriate notion of convergence and
compatibility results between polynomials of different orders. The theory is developed not only in the pointwise sense, but also in viscosity setting. Moreover, we discover the main properties of extremal type operators,
with some applications. Then using the notion of viscosity solutions and Ishii-Lions technique, we give a different proof of the regularity of the solutions to equations involving fully nonlinear nonlocal operators. In the last part of the thesis we deal with domain variation solutions
and with notions of a viscosity solution to two phase free boundary problem. We are looking at minima of energy functionals, the latter involving p(x)-Laplace operator or a non-negative matrix. Apart from the Riemannian case, we also consider the related Bernoulli functional in
noncommutative framework. Finally, we formulate the suitable definition of a viscosity solution in Carnot groups.
Abstract
In this thesis, we deal with problems, related to nonlocal operators. In particular, we introduce a suitable notion of integral operators acting on functions with minimal requirements at infinity. We also present results of stability under the appropriate notion of convergence and
compatibility results between polynomials of different orders. The theory is developed not only in the pointwise sense, but also in viscosity setting. Moreover, we discover the main properties of extremal type operators,
with some applications. Then using the notion of viscosity solutions and Ishii-Lions technique, we give a different proof of the regularity of the solutions to equations involving fully nonlinear nonlocal operators. In the last part of the thesis we deal with domain variation solutions
and with notions of a viscosity solution to two phase free boundary problem. We are looking at minima of energy functionals, the latter involving p(x)-Laplace operator or a non-negative matrix. Apart from the Riemannian case, we also consider the related Bernoulli functional in
noncommutative framework. Finally, we formulate the suitable definition of a viscosity solution in Carnot groups.
Tipologia del documento
Tesi di dottorato
Autore
Dzhugan, Aleksandr
Supervisore
Dottorato di ricerca
Ciclo
34
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Integral operators, fractional equations, regularity of solutions, Carnot groups.
URN:NBN
DOI
10.48676/unibo/amsdottorato/10002
Data di discussione
2 Dicembre 2021
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Dzhugan, Aleksandr
Supervisore
Dottorato di ricerca
Ciclo
34
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Integral operators, fractional equations, regularity of solutions, Carnot groups.
URN:NBN
DOI
10.48676/unibo/amsdottorato/10002
Data di discussione
2 Dicembre 2021
URI
Statistica sui download
Gestione del documento: