
 

Alma Mater Studiorum – Università di Bologna 
 
 

DOTTORATO DI RICERCA IN 
 

Oncologia, Ematologia e Patologia 
 

Ciclo XXXIII 
 

Settore Concorsuale: 06/D3 - MALATTIE DEL SANGUE, ONCOLOGIA E 
REUMATOLOGIA 
 
Settore Scientifico Disciplinare: MED/06 - ONCOLOGIA MEDICA 

 
 

Caloric Restriction Mimetics, Autophagy, and Anticancer 
Immunosurveillance. 

“The bacterial metabolite prodigiosin inhibits autophagy and 
suppresses antitumor immunity. Results from a fluorescent 

biosensor-based screening of bacterial metabolites”  
 
 
Presentata da: Dott. Giorgio Frega 
 
 
 
Coordinatore Dottorato     Supervisore 
 
 
Prof. Manuela Ferracin              Prof. Giovanni Brandi 

  
  

                                                                   
                                                                                 

 
 
 
 

Esame finale anno 2021 
 



 

Abstract 

 

Nutrition plays a crucial role in the development and progression of different types of cancer. 

Dietary components, as well as gut microbiota-derived factors, can exert metabolic and 

immunomodulatory functions on the host, both locally and systemically. Recent studies 

highlighted the role of specific gut microbes as predictors of response to immunotherapy. 

Autophagy has a key function in the elicitation of an immune in response to anticancer therapy. 

Here, we conducted an automatized fluorescent biosensor-based screening to identify 

autophagy modulators from a chemical library of host- and bacteria-derived metabolites and 

found prodigiosin, a red pigment produced by Serratia marcescens, as a potent inducer of LC3 

dots in GFP-LC3 biosensor cells. Further autophagic flux analysis in RFP-GFP-LC3 tandem 

reporter cells and a GFP-Q74 Huntington’s disease model revealed that prodigiosin acts as an 

inhibitor of autophagic flux. Consistent with the described immunosuppressive role of 

prodigiosin, our in vivo experiment in BALB/c mice transplanted with syngeneic colon cancers 

suggest that prodigiosin impairs the activity of anti-PD1 immunotherapy. 
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1. Background  

 

1.1. Introduction 

 

Nutrition plays a crucial role in the development and progression of different types of cancer. 

1 2 Some diet nutrients, as well as gut microbiota-derived compounds, can exert metabolic and 

immunomodulatory function on the host, both locally on the gut epithelium and systemically.   

Moreover, fasting and caloric restriction reduce side effects and improve the outcome of 

conventional anticancer treatment in preclinical studies. 3 Caloric restriction mimetics (CRM) 

are non-toxic compounds capable of inducing autophagy by decreasing global protein 

acetylation. These molecules mimic the cellular biochemical changes induced by caloric 

deprivation. 4 Experimental studies have highlighted the ability of CRM to stimulate or restore 

anticancer surveillance, crucial for the durable success of antineoplastic therapy. 5 6  

In parallel, some chemotherapy drugs, such as anthracycline or oxaliplatin, possess "bystander" 

effects, namely, they are able, beyond their main mechanism of action, to induce immunogenic 

cell death (ICD) and consequently stimulate an immune response towards residual tumor cells. 

This kind of cell death is characterized by pre-mortem cellular stress that leads to the 

immunostimulatory emission of danger-associated molecular patterns (DAMP). 7 8 Given these 

premises, the main goal of the project was to detect potential new CRMs, ICD inducers, or 

autophagy disruptors from a library of bacteria and host derived metabolites with the purpose 

to identify potential modulator or inductor of response to immunotherapies or other 

immunogenic anticancer treatments. 
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1.2. Autophagy modulators and lysosomotropic agents 

 

Autophagy (from the Greek αὐτόφαγος meaning “eating of self”) is a stress-induced 

intracellular machinery through which the cell adjusts its energy requirement and remove 

damaged molecules and organelles or potential intracellular threats. 9 More simplistically, it 

could be also described as a diversified trafficking intracellular system capable of sequestrate 

unrequested molecules into double-membrane surrounded vesicles and vehiculate them to the 

lysosomes for degradation. 10 Since its discovery 11 and its genetic and molecular 

characterization in yeasts 12, this process gains attention due to the potential impact on the 

etiopathogenesis of diseases and drug discovery. Autophagy has been recognized as a leading 

driver or cofactor in several pathological conditions including metabolic or neurodegenerative 

disorders, infectious diseases and cancer. 13 To date three distinctive forms of autophagy have 

been recognized in mammalian cells, according to the lysosome/vacuole membrane onset and 

cargo takeover: chaperone-mediated autophagy, microautophagy, and macroautophagy. 14 15 

These three processes morphologically differ on the modality of cargo sequestration. 16  Here 

we focus mainly on macroautophagy, herein cited as autophagy, which is the most widely 

known and examined pathway. This cellular mechanism consists in the formation of double-

layer membrane vacuoles (autophagosomes) which restrict cytosolic portions, or damaged 

structures, and later vehiculate the cargo to the lysosomes, thus allowing the degradation of the 

cargo mediated by the lysosome hydrolases. 17 

The whole process figuratively consists of five consecutive steps orchestrated by specialized 

autophagy-related protein (ATG): initiation; phagophore constitution by double-membrane 

nucleation; autophagosome generation by phagophore expansion and cargo acquisition; 

autolysosome genesis by fusion with the lysosome; degradation of cargo. 18  Autophagy can be 

either defined as selective or non-selective depending on whether it concerns a clear-cut 
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organelle/microorganisms (e.g. mitophagy or xenophagy, respectively) or not. 19Autophagy-

deficient eukaryotic cells and autophagy-incompetent mice are more sensitive to metabolic 

stressors and more easily develop chemically or genetically induced neoplasms respectively.20 

21 This whole evolutionary-preserved catabolic machinery lies on the concerted activity of 

specialized proteins named ATG (autophagy-related) and it is finely modulated by several 

signaling pathways. 22 In balanced cellular conditions autophagy is enabled at a basal level thus 

preserving the cellular homeostasis. 23 The occurrence of stressors upregulates its activation 

status. The principal inductors of autophagy are nutrient deprivation and cellular metabolic 

perturbations. Nevertheless, some both synthetic and natural pharmacological compounds can 

mimic the biochemical and molecular intra-cellular modification induced by nutrient 

deprivation, thus inducing the autophagic route. This evolutionary preserved machinery is 

finally regulated by a highly interconnected signal transduction cascade. 17 In both mammalian 

and yeast cells, many metabolic sensors (AMPK, mTORC1, eIF2α	  kinases, sirtuins, 

actetyltransferases, transcription factors, and cell surface receptors) and at least two signaling 

pathways sense nutrient availability: PI3K Class III/Akt/mTOR/p70S6K and the 

Ras/Raf/MEK/ERK1/2. 24252617 They mainly act by sensing the accessibility to amino acids, 

glucose, and ATP cellular reservoir. Nevertheless, the accumulation of metabolic subproducts, 

such as ammonia, can stimulate autophagy. 27  

Mechanistic target of rapamycin (mTOR) is the key regulator of autophagy and by and large 

of the homeostasis between catabolic and anabolic processes. 28 mTOR aggregates in two 

complex mTORC1 and mTORC2, but solely mTORC1 is sensitive to cellular nutrient and 

energetic amount. 29 Mechanistic target of rapamycin complex 1 (mTORC1) acts by inhibiting 

autophagy and it can be in turn inhibited by AMP-activated protein kinase (AMPK), which is 

responsive to cAMP increase as a direct result of a higher ATP expenditure. 30 mTORC1 and 

AMPK therefore constitute a regulatory entangled interface which modulates autophagy 
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activation. 29 Several growth factor singling pathways and anabolic inputs inhibit autophagy 

via mTORC1 activation. 31 In nutrient-rich conditions mTORC1 can directly phosphorylate the 

ULK complex (ULK1/2, Atg 13, FIP200) thus inhibiting its kinase activity and blocking 

autophagy. 14 Furthermore, mTORC1 regulates the activation of concurrent signaling pathways 

which in turn modulate autophagy. 24 Amino acid starvation leads to mTORC1 activation and 

autophagosome appearance. 32 Glucose or oxygen deprivation can lead to intracellular 

AMP/ATP ratio increase and AMP-dependent AMPK activation by phosphorylation at Thr-

172, ultimately stimulating autophagy. 33 The AMPK phosphorylation is mainly regulated by 

upstream kinases such as the liver kinase B1 (LKB1) serine/threonine kinase complex (a 

germline mutation of the tumor-suppressor STK11/LKB1 gene occurs in the Peutz-Jeghers 

familial cancer syndrome34) and Ca2+/calmodulin-activated protein kinases. 35 33 36 Metabolic 

disruptor or reactive oxygen species (ROS) can also induce AMPK activation. ROS can both 

act by impairing the ATP generation by the mitochondrial respiratory chain and activating the 

cytoplasmatic pool of ATM (Ataxia-Telangiectasia Mutated).  ATM, a PI3K-like kinase, 

probably causes AMPK activation in an LKB1-depended fashion. 33 Nevertheless, AMPK 

stimulation of autophagy is not restricted to mTORC1 inhibition.  AMPK can activate ULK1 

via phosphorylation. This event is normally prevented under nutrient sufficiency conditions by 

mTORC1, as well as subunits of the BECN1/VPS34 complex. 37 38 Worthy of note is to 

mention that the modifications of intracellular pH, namely mild acidification, can trigger the 

autophagic response. 39 40 Such event typically occurs during starvation and hypoxia. 41 42 Other 

stress stimuli (e.g. protein aggregates, damaged DNA or organelles) can activate autophagy, 

thus giving evidence to its cytoprotective and homeostatic role. 20 

Besides being regulated by metabolic and cellular stress related signals, autophagy is 

additionally controlled by cytokine and other innate immune mediators. 43 Several pathogen-
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associated molecular patterns (PAMPs) can de facto stimulate autophagy via TLR7-MyD88 

pathway. 44 A separate mention goes on intracellular pathogens (discussed below). 

ULK1 (or Atg1) complex, once activated, recruits the PI3K complex thereby contributing to 

the autophagy initiations. 10 Figure Intro (Pag. 22) Phosphatidylinositol 3-phosphate (PIns-

3P) generated by the PI3K complex interact with a pool of protein which possess PIns-3P-

binding motif. These events mediate the autophagosome nucleation. 32 

In yeasts the generation of the autophagosome takes place in specific sites named phagophore 

assembling sites (PAS). The actual source of the isolation membranes is still unclear. 32 In 

mammals, it has been proposed that such an event could occur at designated autophagosome 

formation sites of the ribosome-free region of the ER or Golgi apparatus. 45 46 However other 

intracellular organelles (i.e. mitochondria, endosomes and, plasma membrane) seem to be 

somehow involved and a “de novo” formation of a vacuolar membrane has also been described. 

14 47 At these specific formation sites, the ATG proteins intercede thus enabling the formation 

of the phagophore which later will rip into an autophagosome. 22  IκB kinase (IKK) complex 

which acts by phosphorylating the regulatory subunit of phosphoinositide-3-kinase (PI3K) is 

essential to orchestrate the cellular response to starvation. 48  

After the nucleation, the ATG16L1 complex (composed of ATG5, ATG12, ATG16L1) induces 

the lipidation of LC3, thus allowing its adhesion to the autophagosome membrane. 32 LC3 

lipidation as well as ATG12 conjugation are essential for autophagosome and pre-

autophagosome constitution, respectively.  49 LC3/GABARAP family proteins (LC3, 

GABARAP, GATE-16) are thought to cooperate to the phagophore expansion and constitution 

of an independent membrane-bounded structure.  
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1.2.1 Monitoring autophagy in vitro 

 

Different markers have been proposed to monitor the phenomena “autophagy”. The entire 

process can be outlined in subsequent phases and is mediated by more than 30 autophagy-

related proteins (encoded by ATG genes). Some of those proteins such as Beclin-1, Lamp-1 

and 2 (lysosome-associated membrane proteins), LC3A/B (microtubule-associated proteins 

1A/1B light chains 3A/B) are recognized as appropriate markers for assessing established 

stages of autophagy. The first steps consist of the phagosome initiation, then follow nucleation 

and expansion. Later, the autophagosome fuse with the lysosomes giving rise to the 

autolysosomes. Several methods rely on the evaluation of light chains 3 (LC3). The detection 

of LC3 cytosolic puncta by fluorescence-based microscopy reveals the induction of autophagy. 

50 In light of this an automatized screening platform has been organized for high-throughput 

high-content quantification of pharmacologically induced autophagy in cancer cells. 51 The 

centerpiece of this platform lies in the use of engineered biosensor cells that detect and quantify 

the pharmacological potential of each molecular candidate. Undoubtedly, (GFP)-tagged 

MAP1LC3B/LC3 (microtubule-associated proteins 1 light chain 3 beta) cell lines are by far 

the most used. The lipidation of GFP-LC3, which occurs as part of the autophagosome 

nucleation, allows the detection of morphological modification in the fluorescence pattern 

within the cells. Furthermore, the same model can point out the occurrence of phenotypic signs 

of toxicities, if any. 51 One major limitation resides in the fact that autophagy flux blockers, 

such as lysosomotropic agents, can mimic the fluorescence LC3 pattern induced by genuine 

autophagy stimulators. LC3-II accumulation can be attributable either to the induction of 

autophagy or to a hindrance to the autophagic flux. 52 To further limit the detection of potential 

false-positive subsequent steps are needed. Tandem GFP-RFP LC3 reporter cells are widely 

used to investigate the conversion of the autophagosome into autolysosomes in light of the 
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susceptibility of GFP fluorescence to the decrease in pH. Another option consists in the use of 

cell stably expressing GFP-labelled mutated huntingtin protein. This cell engineering allows 

monitoring the degradation of the autophagic cargo. Furthermore, Western Blotting 

quantification of LC3-I and LC3-II and p62 forms is applied to estimate the LC3 turnover and 

monitor the flux. The cargo receptor protein p62 mentioned above is widely used as an indicator 

of autophagic flux.  Differently from almost all the ATG proteins, the knockout (KO) of p62 

(p62-/-) does not lead to the occurrence of growth retardation and precocious lethality but rather 

mature-onset of obesity in mice. 53 54 Autophagy inhibition led to an increase of p62/SQSTM1 

as the protein is itself degraded by autophagy. 55 Conversely, under conditions of autophagy 

activation a decrease of p62 levels is generally encountered.  

The autophagic process and the lysosomal biogenesis is coordinated by the transcription factor 

EB (TFEB), a master regulator of such cellular catabolic processes. 56 Stable as well as transient 

induced over expression of TFEB induces autophagy in vitro. 56 This transcription factor 

modulates the lysosomal biogenesis by stimulating the of the Coordinated Lysosomal 

Expression and Regulation “CLEAR” network which codify for lysosomal constitutive protein 

and hydrolases as well as components of the vacuolar H+-ATPase. 57 58 TFEB is normally 

present in the cytoplasm in is inactive, phosphorylated forms. 59 TFEB subcellular localization 

is steadily modulated by mTOR-dependent phosphorylation and thus by the nutrient 

availability. 60 In its dephosphorylated status, TFEB relocate to the nucleus where it induces 

the expression of genes involved in lysosomal and autophagy. 61 Through TFEB-GFP 

engineered cell line it is possible to monitor the activation, witnessed by the nuclear 

translocation, of this transcript factor. 62  

Of course, all these in vitro techniques are valuable to detect promising molecules nevertheless 

in vivo testing is mandatory to confirm their activity. The in vivo phase can envisage the use 
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of GFP-LC3 transgenic mouse models as well as the recourse to increasingly specific design 

according to the presumed activity and potential application of the investigated compound. 
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1.2.2. Caloric restriction mimetics (CRMs) 

 

Caloric restriction mimetics (CRMs) are nontoxic metabolites or synthetic chemical 

compounds able to replicate the effect of nutrient deprivation within the cell, thereby eliciting 

autophagy. They mainly act by inducing deacetylases (e.g. resveratrol), inhibiting acetyl 

transferases (e.g. spermidine and curcumin), or depleting acetyl coenzyme A (e.g. 

hydroxycitrate), thus resulting in the deacetylation of cellular proteins. 4 The consequence of 

the protein deacetylation is the up-regulation of the cellular autophagic flux. 51  

The ability of CRMs to induce the metabolic modification induced by starvation makes them 

interesting as anticancer and immune eliciting agents. The beneficial effect of fasting in 

neoplastic disease has been progressively recognized.  The rationale of this approach relies on 

limiting the anabolic demand of the malignant cell, on the induced modification of the cancer 

microenvironment as well as on delaying the onset of chemoresistance and curtailing the 

occurrence of treatment-related side effects.  63 A 48h starvation strategy combined with 

chemotherapy is able to retard the tumor growth in mice.  64 

The use of fasting mimicking diets is one of the potential approaches to overcome the practical 

limitations of a total fasting approach (not feasible in humans as in experimental mouse 

models). Another solution is the identification of non-toxic compounds capable of inducing the 

metabolic effects caused by fasting on cells. The potential benefit of these compounds is not 

restricted to malignant disease but also degenerative age-associated conditions and ischemic 

tissue damages. 65 

The activity of these compounds, which mimic the effects of starvation on cells as well as 

potentially the systemic response to fasting, strongly relies on autophagy induction.  
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The up-regulation of autophagy in dying cancer cells allow the release of eat-me signals in the 

extracellular space, as adenosine triphosphate (ATP), in turn able to attract and promote the 

activity of antigen-presenting cells (APCs). 66 Furthermore, autophagy modulates the exposure 

of CD39, a protein on cellular surface which convert ATP into AMP. This ecto-enzymes is 

strongly induced by several stressors (such as hypoxia and tissue damage and is over expressed 

by various tumor types. 67 

Spermidine, a recognized CRM, is a natural polyamine, such as spermine and putrescine,  

present in all living organisms. 68 69 Furthermore, this compound is also largely produced by 

gut microorganisms. The microbiota composition plays a crucial role in regulating the 

concentration of these metabolites in the colonic lumen and consequently in the bloodstream. 

70 Spermidine and hydroxycitrate, an extract from the fruit Garcinia Cambogia, have shown to 

improve the efficacy of anticancer immunotherapies. 

The administration of hydroxycitrate, spermidine, and alpha-lipoic acid reduces the lung 

implantation of B16 melanoma cells in C57BL/6 mice. 71 Hydroxycitrate acts as inhibitor of 

the ATP citrate lyase. In autophagy proficient mouse models this acidic compound is able to 

induce a depletion of Treg, thus eliciting antitumor immunosurveillance and exerting 

anticancer effects. 
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1.2.3. Lysosomotropic agents  

 

Lysosomes are acid vesicles (with an interior pH of 4.5-5.0) that figuratively could be described 

as the stomach and the intestine of the cell. These organelles house more than 50 distinctive 

hydrolases able to “digest” all the constituents of the cell. To permit the activity of these 

hydrolases, lysosomes have to generate and preserve an acidic micro-environment. This 

condition is achieved through the intercession of the vacuolar-ATPase proton pumps. 72 The 

V-ATPase pump generates a chemical (pH) and electrical positive potential between the 

lysosome membrane by actively carrying H+ ions within the lysosomal compartment against 

their electrochemical gradient. In the same way as the lysosomes, the interior of most cellular 

organelles exhibits a lower pH than the surrounding cytosol. 73 On the lipidic bilayer the 

electrogenic potential is both dissipated through cation and ClC-7 anion channels which 

mediates the efflux of K+ cation in the cytosol and the influx of chloride anion (Cl-) within the 

lysosome, respectively. 72 This event is crucial to avoid that the electrical potential hinders the 

activity of the pump itself before reaching a target pH. 73 Although not yet fully understood the 

activity of V-ATPase is regulated by intrinsic and extrinsic factors. Bafilomycin A1, an 

inhibitor of V-type H+-ATPase, can impair the lysosomal acidification, thus blocking the 

autophagic flux, and induce a caspase-3 and -9 dependent apoptosis. 74  Furthermore, chloride 

anion (Cl-) is another key regulator of the lysosomal function. Culturing gastric cancer cells 

under Cl- restricted conditions leads to impairment of autophagy (LC3II and p62 accumulation) 

as a consequence of reduced Cl concentration in the cytosol and  the lysosome and concomitant 

increase of intralysosomal pH. 74 Undoubtedly, lysosomes’ cardinal role is to guarantee the 

degradation of misfolded or damaged intracellular constituents as well as the elimination of 

potential treating microorganisms and the regeneration of building blocks for the anabolic 

processes. These organelles further participate in signaling pathways, in the preservation of 
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cellular homeostasis, and the execution of cell death programs.75 The term lysosomotropic, 

according to the definition of C. De Duve, refers to compounds “that are taken up selectively 

into lysosomes, irrespective of their chemical nature or mechanism of uptake”. 76 Many 

pharmacological compounds naturally possess this feature, and if not, it can be obtained by 

coupling them with an appropriate carrier. 76 Such of these compounds are usually weak bases. 

In their active unprotonated status, they can enter within the acidic organelles and accumulate 

as protonated form. They finally lead to an increase in the intra-vesicular pH and a disruption 

of the autophagic functioning. 77 78 Other molecules are also capable to permeabilize the 

phospholipid bilayer that constitutes the lysosomal membrane resulting in an alteration of 

cytosolic pH and release of hydrolytic enzymes. The lysosomal membrane permeabilization 

(LMP) induces the trigger of apoptotic pathway whereas an extensive lysosomal rupture, 

similarly to what happens in case of intestinal perforation in humans, leading to massive 

cellular stress and cell death by necrosis. 79 80 75 It is worthy of note to specify that some 

compounds, e.g. ML.9, can induce the autophagosome formation, in this specific scenario by 

downregulating the Akt/mTOR pathway, while hindering the lysosome degradation by 

increasing the intravacuolar pH. 81 Furthermore, ML-9 was showed to enhance the activity of 

the chemotherapy agent docetaxel by inducing accumulation of autophagic vacuoles and cell 

death in prostatic cancer. 81  

Other agents, such in the case of prodigiosin, can dissipate the lysosomes H+ potential by 

behaving as H+/Cl- symporter. 72 Anion transporters can disrupt autophagy and cause a decrease 

of intracellular pH which in turn can trigger the activation of apoptotic events. 82 83   

Malignant cells elevate autophagy to face the anabolic requests and survive in a hypoxic 

microenvironment. 84 

While lysosomotropic agents are reported to exert anticancer activity in vitro or in 

immunocompromised in vivo models (such as patient-derived xenograft), we speculate that 
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their activity could be counteracting as immunotherapy adjuvant. This assumption relies on the 

fact that the impairment to the autophagic machinery can on the one hand minimize the 

occurrence and the peculiarities of the immunogenic cell death in the cancer cell, on the other 

hand, some compounds could exert the same activities at a similar concentration on specific 

immune cells thus failing in stimulating the mounting of a strong immune response.  
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1.3. Immunogenic cell death 

 

Immunogenic cell death is a peculiar type of cellular demise able to induce inflammatory effect 

and immune modulation in the tissue microenvironment. It is characterized by modification in 

protein on the surface membrane of the dying cell and releasing of immune-stimulating factors 

(DAMPs) in the cell microenvironment. 85 Chemotherapeutic agents such as oxaliplatin and 

anthracyclines can induce ER premortem stress and consequently stimulate the anticancer 

immunoresponse. 86 

 

1.3.1. Main features of ICD 

 

This singular form of cell death is distinguished by a series of pre-apoptotic events: the 

exposure of endoplasmic reticulum (ER) proteins at the cell membrane (mainly calreticulin), 

the release of the nonhistone chromatin protein high-mobility group box 1, (HMGB1) and the 

discharge of ATP in the extracellular space. 85 These happenings suggest the occurrence of 

‘pre-mortem’ cellular distress such as the alteration of ER functioning and induction of 

autophagy. The late phase of this dying process recapitulates the distinctive events which occur 

during the apoptosis (e.g. the exposure of phosphatidylserine (PS) on the cell surface). 87 The 

dying cells expose calreticulin (CRT) on their surface and release ATP and HMGB1 in the 

extracellular matrix. The first of these processes is independent of nuclear activities while 

seems strictly related to reactive oxygen species (ROS) and nitric oxide formation. 85 The ATP 

release, conversely from HMGB1, require an on caspase-dependent activation (accountable for 

specific cleavage of the plasma membrane channel pannexin 1 (PANX1)88) and autophagy 

proper functioning.89 90 Extracellular ATP exerts autocrine and paracrine function. This 
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molecule can interact with purinergic receptors (P2X and P2Y) and is a strong activator signal 

for phagocytes chemotaxis. 89 Furthermore, the systemic administration of these compounds 

reasonably exposes to their effects not only the malignant cells but also the immune cells. 

 

1.3.2. Damage-associated molecular pattern (DAMP) 

 

Damage-associated molecular patterns are both intracellular and extracellular molecules 

released as a consequence of peculiar types of stressors. This group of molecules constitutes 

the “alter ego” of “pathogen-associated molecular patterns” PAMPs and differentiate from the 

latter for their non-infectious origin. Those biomolecules can trigger or sustain an inflammatory 

response in tissues by interacting with a wide class of innate immune receptors collectively 

named pattern recognition receptors (PPRs).91 The pattern recognition hypothesis was 

originally proposed by Charles Janeway who based on the “self/non-self” Burnet’s theory 92 

postulated the existence of recognition receptors on the innate immune cells able to detect 

microbial-derived molecular patterns lately named as PAMPs.93 94 The identification of the 

Toll-Like Receptor (TLR) on the antigen-presenting cells (APC) practically reinforced the 

assumption. The recognition of endogenous host-derived molecules as a potential modulator 

of inflammatory response dates back to the nineties. 95 TLR when triggered by the presence of 

DAMPs or PAMPs act by releasing pro-inflammatory mediators and expressing costimulatory 

molecules which can activate/modulate the adaptive immune response. 96 At present DAMPs 

have been recognized as a major player in initiating and perpetuating the inflammatory 

processes underlying a wide group of diseases such as autoimmune and neurodegenerative 

diseases, metabolic disorders, and lastly cancer. 94 They can be classified according to their 

origin and mode-of-emission. 97 The cellular DAMPs can originate from different 

compartments and organelles (i.e. cytosol, nucleus, mitochondria, endoplasmic reticulum, 
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plasma membrane, and intracellular granules). Furthermore, these molecules can be 

categorized into those exposed on the cellular surface or actively and passively secreted. 

Investigation on new PAMPs, as well as DAMPs released from the host tissues as a 

consequence of bacterial colonization, may offer the opportunity to identify new strategies to 

modulate the immune response in the context of malignant diseases.   

In a similar way, intratumoral bacteria, as well as mucosal-associated microbiota, can both 

impact the metabolic reprogramming of malignant cells and the modulation of the immune 

contexture through the activities of secondary metabolites, toxins, and further mediators. 
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1.4. The human microbiome 

 

In the last decades the historical idea of humans as being simply constituted by eukaryotic cells 

and structured in tissue, organs and, systems has been overtaken by the concept of the ‘Human 

Holobiont’ which flourished notably after the seminal Metchnikoff’s works and had a 

renaissance recently. 98 All in all the human microbiota has been estimated to contain over one 

thousand bacterial species (more than one hundred and sixty in each person) and millions of 

genes. 99 100 Gut microbes are directly involved in energy metabolisms and play a cardinal role 

in modulating the cell-to-cell interaction and host immunity homeostasis.101  

Focusing on oncology, preclinical and clinical findings suggest the crucial role of the gut 

microbiome in shaping anticancer immunity and the response to cancer chemotherapies and 

immunotherapies. 102 103 104 Three recent studies confirmed these data in humans, reporting the 

unexpected role of specific members of the gut microbiota as a predictor of response to 

immunotherapy in a distinctive series of epithelial tumors (NSCLC, renal cell carcinoma, and 

urothelial carcinoma) and melanoma patients. 105 106 107 Moreover, the phenotype of responders 

or non-responders can be transferred by performing fecal microbiota transplantation, such as 

utilizing germ-free or antibiotic-pretreated mice as recipients for feces of responder or non-

responder patients. 108 Similarly, oral supplementation with specific bacteria seems a feasible 

option to restore the phenotype of responders in avatar mice carrying the microbiome of non-

responder patients. 109 In the new era of immunotherapy-based cancer treatments, these pieces 

of evidence are undoubtedly of crucial relevance. The predictive role of the microbiome in 

terms of response and the potential of its manipulation to foster the efficacy of the treatments 

has a large potential for clinical application.  
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1.4.1. Bacterial metabolites or derived secondary metabolites as metabolic and immune 

modulators 

 

Bacteria-derived compounds, both from pathogens and not, can exert a wide range of effect on 

the host. 101 Furthermore, the power of those molecules can be extremely amplified if directly 

released within the tissue. Along these lines, the focus on potential intertumoral bacteria-

derived compounds deserve attention. In the gut lumen, the metabolites can directly derive 

from the diet or conversely be released both from the host cell and the gut microbes. Nutrient 

competition is probably the first discriminant to limit the potential colonization of pathogens.110 

Here I briefly discuss some significant evidence on the most-investigated bacterial metabolites 

and toxins.  

In light of its role in bacterial proliferation, virulence and metabolism iron constitutes one great 

example.111 112 This micronutrient impacts cytokine secretion and transcription of key 

mediators of immune response.111 This mineral is an essential nutrient for both bacteria and 

humans. 113 In mammals, it exerts the most prominent function as a component of oxygen-

carrying proteins myoglobin, and hemoglobin. In addition, iron is required for the function of 

the mitochondrial respiratory chain and DNA synthesis enzymes. Lastly, this metal mediates 

the generation of oxygen radicals in neutrophils and macrophages, and is required for the clonal 

expansion of T cells. 111  Several mechanisms of withholding have evolved to restrict the iron 

availability to intracellular and extracellular microorganisms. 

Others bacterial metabolites or bacterial-processed host compounds can exert specific 

metabolic and immune activities on the host.  

Lipopolysaccharide, a constitutive glycolipid of the Gram-negative bacterial membrane, is able 

to induce inflammatory response through the interaction with different receptors on immune 

cells. LPS activity is mainly mediated by the activation of the TLR-4 cascade and the 
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consequent release of proinflammatory cytokines in the microenvironment. Other proteins, 

namely LPSBP (LPS binding protein) and CD14, facilitate the extraction of LPS monomers 

and the interaction with the TLR4 on the cellular surface. 114 Several studies suggest the pro-

tumorigenic activities of LPS in different types of cancers. 115 116 α-galactosylceramide, and its 

analogs, elicit the activity of invariant natural killer T (iNKT) cells, a distinctive subset of T 

lymphocytes that express an invariant TCRα chain. 117 118  

Bile acids have shown various activities. Among them, deoxycholate (DC) can activate 

autophagy in non-cancer colonic cells by increasing the expression of the autophagic protein, 

beclin-1 in a ROS-dependent manner. 119 DC can also indirectly impact on colonic 

carcinogenesis by activating the COX-2 signaling pathway in the cancer associated fibroblasts. 

120 Lithocholic acid exerts anticancer activities by inducing apoptosis in prostate cancer cell 

line. In such a context, this secondary bile acid has been shown to induce endoplasmic 

reticulum stress as well as autophagy (conversion of LC3BI-LC3BII and ATG5 induction) and 

mitochondrial dysfunction. 121 Ursodeoxycholic acid induces the expression of LC3B in a 

hepatocellular cell line in vitro and in vivo in nude mice. 122 Taurocholic acid, as well as cholic 

and chenodeoxycholic acid, induces LC3B and p62 in primary hepatocytes but this effect 

seems to be attributable to an impairment of the autophagic flux. 123 Glycochenodeoxycholate 

induces autophagy by activating the AMPK/mTOR pathway in hepatocellular carcinoma cells 

and interestingly this effect is reversed by chloroquine (an inhibitor of the autophagic flux). 124 

125 Short Chain Fatty Acids are the  sub-product of bacterial fermentation of non-digestible 

carbohydrates. These compounds can reach high concentration in the blood of the host. 126 

Many of their activities are mediated by the interaction with G-protein-coupled receptors 

(GPRs).  127 Among them butyrate is probably the most characterized. In the colon butyrate is 

able to modulate the inflammatory response by acting both on epithelial cells and immune cells. 
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128 SCFA regulates the function of effector lymphocytes (CD8) as well as the frequency of T-

regs and T cell cytokine release during infections. 129 130 

Indole metabolites, derived from the metabolism of tryptophan, are further relevant mediators 

able to impact on host-immune functions. 131 As an example, indole-3-propionic acid (IPA), 

one of these bacterial produced compounds, exerts anti-inflammatory activities in an in-vivo 

steatohepatitis model by reducing the level of pro inflammatory cytokines via the NF-κB 

signalling. 132 

Finally, a separate mention should be made on bacterial toxins. Pyocyanin, a well-known 

Pseudomonas aeruginosa virulence agent, induces an anti-inflammatory response in LPS-

activated macrophages. 133As proposed by the authors, this may subtend an immune-evasion 

strategy.  Similarly, violacein, a quorum-sensing and water-insoluble compound released from 

Chromobacterium violaceum and other gram-negative bacteria, reduces pro-inflammatory 

cytokine production and induces Tregs in an LPS-induced inflammation model in mice. 134 
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1.4.2. Bacterial interactions with the autophagic machinery 

 

Besides its role as degradation machinery of the cell, autophagy exerts a pivotal role among 

the defenses of the eukaryotic cell against bacteria. This particular type of selective autophagy 

has been named xenophagy by Levine and can advisedly be classified as part of the innate 

immune response. 135 Xenophagy is both essential for the clearance of the intracellular treats 

and the initiation of a pathogen-specific immune response. 136  In this specific autophagic 

process, the cargo identification necessitates a specific interaction between flag molecules (i.e. 

ubiquitin) and specific receptors. Those receptors incorporate the ubiquitin-binding domain 

(UBD) and LC3-interacting region (LIR) motif. The interaction of the LIR region with LC3 

guarantees the recruitment of the phagosome membrane nearby the ubiquitinated pathogens. 

137 The best known and firstly described among those receptors is p62/SQSTM1 (hereafter 

p62). 138 p62 is more widely involved in cargo identification over different forms of autophagy, 

not-only in xenophagy. 55 The function of this adaptor protein has been in-depth detailed in the 

context of protein aggregation diseases. 139 Nonetheless, its role in the recognition of 

intracellular pathogens makes it also a crucial player in innate immunity. 138  To date, many 

other receptors involved in this process have been described: optineurin (OPTN), a neighbor 

of BRCA1 gene 1 (NBR1), and nuclear domain 10 protein 52 (NDP52). 137 In certain 

circumstances the ubiquitination, and then the autophagic process, can be triggered “ab initio” 

by specific inductors such as the S-guanylation of the cysteine of the Group-A streptococcus 

membrane proteins or the galectin-8 depended flagging of endosomal vesicles damaged by 

pathogens (e.g Salmonella, Lysteria or Shigella). 140 141 Furthermore intracellular sensors, 

namely Nod1 and Nod2, are shown to recruit the ATG16L1 at the bacterial entry sites in a NF-

κB/RIP2 independent manner. 142 As an evolutionary consequence, some bacteria developed 

singular strategies to escape the autophagic response. 143 This can be reached through surface 
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modification or production and release of metabolites and mediators. They can act by 

interfering with the signaling pathways that modulate autophagy or directly disrupting the 

autophagic machinery. Certain bacteria species can even modulate autophagy to gain their 

benefit. Some species prevent the fusion of the autophagosome with lysosome thus avoiding 

their degradation and obtaining an intracellular niche to settle down. It is crucial to notice how 

intracellular bacteria evolved singular strategies to modulate autophagy rather than completely 

hinder it. This evidence once again attests to the fundamental importance of autophagy for the 

eukaryotic cell, which constitutes “the casket” for intracellular-bacteria replication. Some 

unique strategies evolved from pathogenic bacteria are discussed below.  

Anaplasma phagocytophilum, an intracellular gram-negative bacterium responsible for human 

granulocytic anaplasmosis, can induce autophagy nucleation and the expression of related 

markers within the host cell (such as LC3-I/II and Beclin 1) while inhibiting the fusion with 

lysosomes. Doing it this way, this microorganism can stably segregate within the 

autophagosome. 144  Similarly, M. tuberculosis, H. pylori, L. pneumophila and M. avium 

prevent through different mechanisms the fusion of autophagosomes with lysosomes. 145 Some 

of them can act by preventing the lysosome acidification while others by disrupting lysosomal 

membrane integrity, as for the virulence factor gamma-glutamyltranspeptidase by H. pylori. 145 

M. tuberculosis ESAT-6 effector protein blocks the process at the stage of phagosome-

lysosome fusion. 146 147  L. pneumophila hijacks the autophagic chain finally leading to the 

genesis of endoplasmic reticulum shaped structures. This gram-negative bacterium induces the 

constitution of singular organelles consisting of smooth vesicles (derived from the ER) that, 

rather than fuse with lysosomes, are later coated with ribosomes. 148 149 Intriguingly, this 

bacterium employs the same trick to hide out in protozoans, which are the primary hosts, 

implying its capability to act on an evolutionarily conserved process. 150 Genetic analysis on L. 

pneumophila mutant strains leads to the identification of dot genes which are required to evade 



 29 

the fusion with lysosomes. 151 Those genes encode for a Dot/icm transporter which shares 

similarities with the bacterial type IV secretion system family, owned by certain other 

microorganisms. 152 Those genes are required for bacterial virulence. 150 The Dot/transporter 

should be involved in the secretion of putative and still unidentified effector molecules that are 

injected into the host cell. 148 Other human pathogens, such as L. monocytogenes and C. 

trachomatis can induce mitophagy consequently increasing the nutrient availability and 

curtailing the production of reactive oxygen species by the invaded cell. 153  Infection by 

Chlamydia, obligate intracellular bacteria, replicate within intracellular vacuoles which do not 

fuse with lysosomes. Chlamydia trachomatis infection induces the formation of LC3 cytosolic 

puncta as well as their colocalization with LAMP1 (a lysosomal marker) however the p62 

cellular amount remains stable or increased. 154 155  Furthermore, Chlamydia trachomatis 

decreases the activity of lysosomal enzyme in macrophages. Intriguingly, the vATPase 

inhibition (by treatment with Bafilomycin A) exerts an opposite effect by stimulating the 

bacterial growth in wild type cell while inhibiting it in ATG5-/- autophagy deficient cells. 155 

These results suggest a dual activity of Chlamydia trachomatis on the autophagic machinery 

and confirm the relevance of the blockage of the autophagic flux in pathogenic model of this 

bacterium. 

L. monocytogenes, a facultative intracellular gram-positive bacterium, can similarly inhibit the 

late autophagic events, thus preventing the degradation of the Listeria-containing phagosomes 

(SLAPs) in the macrophages where it replicates. 156 This event is mediated by the Listeriolysin 

O, a pore-forming toxin that impedes the evolving of vacuoles into autophagosomes and 

maintains the intravacuolar pH as neutral. 157   

Given its ability to generate intracellular niches where replicate, S. typhimurium represents 

another well-described model of intracellular infection by pathogens. In order to survive within 

the phagosomal compartment this bacterium can adapt its metabolism to the extravesicular 
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conditions. 158 Similarly to L. monocytogenes, the effect of this gram-negative bacterium on 

autophagy is ambivalent. S. typhimurium can both induce the autophagic machinery via the 

T3SS1-depended release of amino acids form the host cell (and consequent mTORC1 

inhibition) and escape the autophagic degradation through its SseL deubiquitinase. 159 

Furthermore S. enterica impairs the activity of the lysosome that fuse with Salmonella vacuoles 

by reducing the trafficking of hydrolytic enzymes. 160 Shigella flexneri achieves the same goal 

by inducing autophagy by VirG, that binds the ATG5, while escaping it via IcsB secretion that 

interfere with the autophagic machinery. 161  

 

The Gram-negative bacterium Coxiella burnetii, the pathogenic agent of the Q fever, has 

adapted to replicate in the harsh acidic environment of the phagolysosome. 162 This feature 

makes it unique among intracellular bacteria. C. burnetii rather than escape the bactericidal 

environment of phagolysosomes has evolved a pH-depended regulation of its metabolism as a 

singular parasitic strategy. 163 Autophagy induction by starvation and overexpression of 

autophagic proteins fosters the replication of this obligate intracellular gamma-

proteobacterium by promoting the development of replicative compartments. 164 

S. marcescens, another gram-negative, release the ShlA pore-forming exoprotein which can act 

as a potent cytotoxin. Furthermore, this protein can stimulate the autophagic response in 

nonphagocytic cells before the bacterial internalization happens. 165  Bifidobacteria reduce the 

autophagy activation of intestinal epithelial cells induced by lipopolysaccharide from gram-

negative bacteria.166 167   

Other bacteria can act on TFEB which is involved in the host response to the infectious threat.  

In Caenorhabditis elegans, the homolog of TFEB is strongly activated upon Staphylococcus 
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aureus infection. 168 Similarly, Salmonella typhimurium induces TFEB activation in mouse 

macrophages through the activation of the phospholipase C/protein kinase D pathway. 169  

 

Figure Intro 1 

 

 

Figure Intro. Bacterial interactions with the autophagic machinery. ULK initiation complex: ULK1 

and ULK2, ATG13, FIP200, ATG101. PI3K nucleation complex: Beclin 1, VPS34, p150, ATG14L. 
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1.4.3. Intra-tumoral bacteria 

 

A growing interest is flourishing in the last years on the identification of intra-tumoral bacteria.  

Several research papers are shedding light on the potential implication of intra-tumoral bacteria 

on the response to anticancer treatments. 170 Geller et all. recently reported that intratumor 

microbes can impact the efficacy of anticancer therapies. The authors showed that intratumor 

Gammaproteobacteria which possesses the bacterial enzyme cytidine deaminase can convert 

gemcitabine into its inactive metabolite. Furthermore, they reported that more than 70% of 

pancreatic ductal cancer they screened were positive for bacteria (mainly 

Gammaproteobacteria). 170 

More recently a deeper characterization of the tumor proper microbiome in comparison with 

the adjacent non-tumoral tissue has been carried out as regards seven types of common cancers 

(breast, lung, ovary, pancreas, melanoma, bone, and brain). 171 The authors reported both 

malignant and tumor-infiltrating immune cells can host bacteria. 171 Furthermore, the 

composition of the tumor microbiome, as well as its plausible metabolic function, 

quantitatively and qualitatively vary across different tumor types and even subtypes (as for 

breast tumors). 171 The origin of this microbial tissue ecosystem is still unclear although the 

leaky tumoral vasculature and the tumor inflammatory microenvironment could play a crucial 

role. 171 172 

This evidence does not allow to assert a metabolic dependency or a “symbiotic relationship” 

between bacteria and tumoral cells yet, but it opens to further investigations. Furthermore, the 

bacterial composition may impact the response to anti-cancer treatments, particularly 

immunotherapies, as well as provide an opportunity to identify peculiar tumor metabolic 

dependencies. It is also worthy of note that being a low biomass microbiome still makes it 

challenging to dissect at the species level. 173 
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In addition to the potential use in the diagnostic field, the more innovative perspective lies in 

the preclinical development of engineered tumor-targeting bacteria. 174 175 Some bacteria 

species can constitutively exert antitumor activities (e.g. Salmonella Typhimurium). 176 A 

detailed portray of tumor colonizing microbiota can also lead to the selection of ideal strains to 

deliver active compounds and pro-drug converting enzymes or able to foster immune-related 

reactions against cancer cells. In this context, the selective tumor trophism of systemic 

administered bacteria constitutes one crucial aspect. 177 178 To date many details of preferential 

tumor colonization by specific bacteria remains unclear. Bacterial metabolic properties could 

play a pivotal role. As an example, the disruption of the aromatic amino acid biosynthetic 

pathway, widely used to obtain e virulence attenuated bacterial strains, led to relevant changes 

in bacterial colonization of tumors in mice. 179 Another possible strategy relies on the use of 

activable synthetic metabolites (e.g. by light irradiation) to maximize the on-target efficiency. 

180 Furthermore, the intratumor bacteria are probably closely interrelated with gut microbiota 

composition. 181 This evidence could strengthen the significance and hide a potential role of 

gut dysbiosis in several steps of cancer development and treatment.   

Recently, some pieces of evidence on the potentiality of those approaches are increasingly 

coming out. A research team reported the feasibility and the efficiency of radioactive Listeria-

32P strain in vitro and KPC mice. 182 Another team reported encouraging both in terms of 

efficacy and toxicity data by combining live-attenuated Listeria monocytogenes with GM-

CSF–secreting allogeneic pancreatic tumor cells in highly pretreated patients. 183 
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1.4.4 Prodigiosin and S. marcescens 

 

Prodigiosines are secondary metabolites produced by many strains of both Gram-negative and 

Gram-positive bacteria (i.e. S. marcescens, V. psychoerythrus, S. rubrireticuli, and other 

eubacteria). 184 These red-pigmented compounds are constituted by a linear methoxytripyrrole 

skeleton. Those molecules are deemed capable of exerting various biological activities among 

which antifungal, antibacterial, antiprotozoal, antimalarial, immunosuppressive, and 

anticancer activities. 185 Due to its chemical structure, prodigiosin can act as a chloride anion 

binder. Each prodigiosin molecule in its protonated form can carry a chloride ion (Cl-) through 

three hydrogen bonds tush behaving as a H+/Cl- symporter. 72 Furthermore the amphiphilic 

nature makes it excellent as a transporter across the lipidic membranes. 72 Its biological function 

remains unclear but some hypotheses have been postulated. 184 It is known for its antimalarial, 

antineoplastic, and antibiotic activity. 186 Prodigiosin and its synthetic analogs Obatoclax have 

been shown an interesting large-spectrum cytotoxic activity in vitro on cancer cells and 

Obatoclax is currently investigated in more than one clinical trial on hematologic diseases.   

The proapoptotic activity of these molecules appears ascribable to induced modification of the 

cytosolic pH (cyt-H) and lysosomal pH (lys-pH).  

Serratia marcescens, a gram-negative bacillus, is an important cause of nosocomial infection. 

187 This saprophytic enterobacterium is quite common in the environment and has been found 

in food, particularly starchy substances. 187 It has been considered non-pathogenic for a long 

time until the report of nosocomial infection in humans and animals began to appear in the 

latter half of the 20th century. 188 189 190 191 S. marcescens has been reported as a microbial agent 

implicated in respiratory and urinary tract infection, as well as septicemia and wound infection. 

192 193 194 195 Furthermore, some reports described infection sustained from prodigiosin 
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producing strains. 196 Another common feature, is that the infection mainly, but not exclusively, 

affects patients with chronic disorders; a condition that earned him the title of opportunistic 

bacterium. A case series showed how Serratia marcescens was detectable in up to 30% of 

specimens obtained through bronchoscope procedures. 197 

Prodigiosin has been accredited with distinctive properties on cells. This toxin can induce 

lysosome de-acidification and consequently cytosolic acidification and apoptosis.72 It acts as a 

chloride anion binder able to convey the Cl- anion across the lysosome bilayer membrane thus 

decoupling the intra-vacuolar H+ ion potential generated by the vacuolar-ATPase proton 

pumps. 72 Based on this assumption we support the hypothesis that these bacterial metabolites 

could facilitate the bacterial settlement within the cell. As an example, recently a new light on 

the veritable function of the Shiga toxin from enterohemorrhagic Escherichia coli (EHEC) has 

been proposed. In the present case, the researchers showed how Shiga toxin was required for 

suppression of inflammasome responses to cytosolic LPS thus impairing the intracellular 

immune response against the bacterium. 198 Along similar lines, probably prodigiosin is a 

molecule released by some bacterial strains to enhance the potential of this bacterium to invade 

the cells and live intracellularly. The activity in alkalinizing the lysosome and the probable 

induction of lysosome genesis should confirm such a theory. Doing that the bacterium can 

create intracellular niches to survive. 199 One plausible explanation of this phenomenon could 

be linked to the antigenicity of the bacterium. Along similar lines, an interesting paper reported 

the tumor-immunotherapeutic efficacy of the S. marcescens extracts. 200 This assumption is 

further supported by the evidence of some activity of the Coley’s toxin, which consists of 

streptococcal and Serratia marcescens extracts, against Bone and Soft-Tissue Sarcomas. 201 

On tumoral cells, it can induce apoptosis in hematopoietic cell lines with no marked toxicity in 

non-tumoral cells. 202 The apoptotic death of B-cell chronic lymphocytic leukemia (B-CLL) 
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cells occurs by reaching an IC50 of 116±25 nM. 203 Prodigiosin showed similar activity on 

colon cancer cell lines. The IC50 was 275 nM in SW-620 cells. 204 

Noteworthy, cycloprodigiosin hydrochloride, uncedylprodigiosin (UP), and prodigiosin exert 

their effects also on immune cells. UP blocks the proliferation of T and B lymphocytes as well 

as the T cell activation at lower concentrations (IC50 7-20 nM) than those required to inhibit 

the proliferation of leukemic cells.205 Conversely from Cyclosporin A, UP activity relies on the 

hindrance to phosphorylation of the retinoblastoma protein (RB) and the inhibition of cell-

cycle genes (cyclin E, cyclin A, cdk2, and cdk4). Those events result in a block of T cell in the 

mid to late G1 phase. Furthermore, other authors showed that prodigiosin can interfere with 

the IL-2/IL-2R signaling pathway by inhibiting IL-2Ralpha expression. In doing so prodigiosin 

impedes the T lymphocytes differentiation both into effector T helper and effector cytotoxic T 

cell. 206 This compound showed promising activity as an immunosuppressive agent. 207 
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2. The bacterial metabolite prodigiosin inhibits autophagy and suppresses 

antitumor immunity. Results from a fluorescent biosensor-based screening 

of bacterial and host-derived metabolites. 

 

 

2.1. Introduction and aim of the project 

 

During the last few years, the gut microbiota has gained increasing attention as a consequence 

of its emerging role as modulators of the immune system. 208 209 Fascinating studies are 

shedding light on the impact of the gut microbiome in shaping the response to anticancer 

immune treatments. 106 Along similar lines, a growing interest is flourishing in deepen the 

knowledge on the settlement and function of intracellular tumor-specific bacteria.171 

In such a context, our project aimed to screen a library of microbial metabolites by in vitro 

automatized biology approaches to select potential candidates able of acting as autophagy 

modulators and/or ICD inducers, to eventually evaluate their efficacy in combination with 

immunotherapy in vivo.  

More in detail, we performed a further automatized fluorescence-based screening of a list of 

bacterial and host-derived metabolites to identify compounds able to interfere with the 

autophagic machinery. The compounds of the library are summarized in the Appendix Table1 
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Appendix table 1 

Name Effect Reference 

Acetate Induces apoptosis in colon rectal cancer cells Oliveira et al., 2015 210 

Butyrate Prevents autophagy in colonocytes Donohoe et al., 2011211 

Propionate Triggers autophagy in colon cancer cells Tang et al., 2011212 

Trimethylamine Scarce available data Falony et al., 2015213 

Trimethylamine N-oxide 
(TMAO) 

Inhibits ATG16L1, LC3-II and p62 expression Yue et al., 2017214 

Dimethylamine Lysosomotropic compound Kuzu et al., 2017215 

Monomethylamine Blocks lysosome acidification Sobota et al., 2009216 

Indole Up-regulates autophagy in Flp-In 293/SH-SY5Y 
cells 

Lin et al., 2014217 

Indoxyl sulfate Activates the autophagic machinery. Inhibits the 
autophagic flux 

Sun et al., 2017218 
Rodrigues et al., 2020 219 

L-Leucine Inhibits autophagy. Stimulates mTOR signaling Meijer et al., 2015220 

Isoleucine Isoleucine deprivation activates autophagy Sheen et al., 2011221 

Valine Limited effect Alvers et al., 2009222 

P-cresol Activates the autophagic machinery Sun et al., 2017218 

Phenylacetic acid No activity Peraro et al., 2017223 

Phenylacetyl glutamine 
(PAG) 

anti-inflammatory activity via inhibition of T cell 
activation and Toll-like receptor 4 signaling 

Hazekawa et al., 2018 
224 Nicklin et al., 2009225 

Indoleacetic acid Inhibits the autophagic flux Rodrigues et al., 2020219 

Tryptamine Induces cell death with ultrastructural features of 
autophagy 

Herrera et al., 2006226 

α-galactosylceramide Invariant natural killer T (iNKT) cells activation Keller et al., 2017117 

Linaclotide Selective guanylate cyclase C agonist. Analgesic 
activity on irritable bowel syndrome (IBS) 

Castro et al., 2013227 

Deoxycholic acid Activates autophagy in non-cancer colonic cells. 
Increased ROS-dependent expression of beclin-1 

 Payne et al., 2009119 

Lithocholic acid Induces autophagy, ER stress and mitochondrial 
dysfunction in prostate cancer cell line 

 Gafar et al., 2016121 

Ursodeoxycholic acid Induce LC3B in hepatocellular carcinoma cell 
line and in nude mice 

 Wang et al., 2017122 

Nor-ursodeoxycholic acid Moderate increase in hepatic autophagy and 
antiapoptotic effects 

Tang et al., 2016228 

Taurocholic acid Increases LC3II and p62 in hepatocyte by 
impairing autophagosomal-lysosomal fusion 

Manley et al., 2015123  
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Glycochenodeoxycholate Induces autophagy by the AMPK/mTOR 
pathway in HCC cells 

 Gao et al., 2019124 

Benzoic acid Inhibits autophagy by intracellular acidification 
and disrupting the membrane trafficking 

Hazan et al., 2004229 

Hippuric acid Scarce available data   

Succinate Scarce available data   

Urolithin A Elevates the autophagic flux in macrophages Boakye et al., 2018230 

Kynurenic acid Induces the production of IL-6 Van der Leek et al., 
2017231 

Kynurenin 
Inhibits autophagy in bone marrow 
mesenchymal stem cells (LC3B-II and 
autophagolysosomal reduction/p62 increase) 

 Kondrikov et al., 
2020232 

Anthranilic acid  Scarce available data   

Quinolinic acid Induces the expression of damage-regulated 
autophagy modulator, beclin 1, and LC3-II 

 Wang et al., 2009233  

Serotonin Induces autophagy in an AKT/mTOR 
independent fashion in liver cancer cell line 

 Niture et al., 2018234 

Melatonin Enhances autophagy response via SIRT1 
deacetylation 

 Nopparat et al., 2017235 

Indolepiruvic acid (IPA) Scarce available data   

Nicotinic acid 
Nicotinic Acid Adenine Dinucleotide Phosphate 
(NAADP) increases levels of LC3II, beclin-1 
and acidic vesicular organelles in astrocytes 

 Pereira et al., 2011236 

2-picolinic acid (PA) Scarce available data   

N-methyl-d-aspartate 
(NMDA) 

Induces autophagosomes accumulation and 
autophagic death in rat organotypic hippocampal 
slices 

 Borsello et al., 2003237 

3-hydroxykynurenine (3-
HK) 

Scarce available data   

3-hydroxyanthranilic acid 
(3-HAA) 

Scarce available data   

GYY4137 Hydrogen sulfide (H2S) induces autophagy via 
AMPK pathway in colon cancer cell lines 

 Wu et al., 2012238 

Taurine 
Induces autophagy in adipocytes via TFEB 
nuclear translocation. Induces autophagy in 
Leyding cells.  

Kaneko et al., 2018239 
Yahyavy et al., 2020240 

Valeric acid 
Modulation of the autophagic machinery by 
activation of mTOR pathway in Parkinson’s 
disease rat model. 

 Jayaraj et al., 2020241 

1-methylnicotinamide 
The related enzyme, Nicotinamide N-methyl 
transferase (NNMT), negatively regulates 
autophagy 

 Shin et al., 2018242 
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Dopamine Induces autophagy (LC3-II activation) and exerts 
toxic effect on neuroblastoma cells 

 Giménez-Xavier et al., 
2009243 

Gamma-aminobutyric 
acid (GABA) 

GABAergic signaling promotes antibacterial 
autophagy 

Kim et al., 2018244 

3-hydroxybutyrate (beta-
hydroxybutyrate) 

Stimulates the autophagic flux in cortical 
neurons cultured under glucose deprivation 

Camberos-Luna et al., 
2016 245 

Indolepropionic acid 
(IPA) 

IPA suppresses NF-κB signaling and decreases 
the release of proinflammatory cytokines in a rat 
model of high-fat diet 

 Zhao et al., 2019246 

Violacein Impairs the autophagic process in RAS- and 
RAF-mutated melanoma cells 

 Gonçalves et al., 
2016247 

1-phenyl-1,2-
propanedione 

Scarce available data   

Acide 3-(4-
hydroxyphényl) 
propionique 

Scarce available data   

3,4-dihydroxymandelic 
acid (DHMA) 

Scarce available data   

GG-lysine L-Lysine stimulates Akt/mTOR and inhibits 
Autophagic Proteolysis  

 Sato et al., 2015 248 

Ferulic acid Activates basal autophagy by inhibiting mTOR 
(TORC1) in mouse primary hepatocytes 

 Bian et al. 2013249 

Vitamin B1 (thiamine) 
Thiamine deficit induces up-regulation of 
autophagic markers (LC3-II, Beclin1, Atg5) and 
autophagosome accumulation 

 Meng et al., 2013250  

Vitamin B2 (riboflavin) Scarce available data   

Vitamin B3 
(nicotinamide) 

SIRT1-dependent induction of autophagy and 
modulation of mTOR pathways 

 Maiese, 2020251 

Vitamin B5 (pantothenic 
acid) 

Vit B5 is an obligatory precursor of acetyl-CoA. 
Depletion of acetyl-CoA induces autophagy 

 Mariño et al. 2014252 

Vitamin B6 (pyridoxine) Pyridoxine improves the immunogenicity of 
cisplatin-induced ICD (mechanism still unclear)  

 Aranda et al., 2014253 

Vitamin B6 (pyridoxal) Pyridoxine improves the immunogenicity of 
cisplatin-induced ICD (mechanism still unclear)  

 Aranda et al., 2014253 

Vitamin B6 
(pyridoxamine) 

Pyridoxine improves the immunogenicity of 
cisplatin-induced ICD (mechanism still unclear)  

 Aranda et al., 2014253 

Vitamin B7 (biotin) Inhibits autophagy and elicits endoplasmic 
reticulum stress in adipocytes 

 Selvam et al., 2019254 

Vitamin B9 (folic acid) 
FA deficiency induces autophagy enhancement 
(autophagosome accumulation and LC3 and 
Beclin1 overexpression) in neuronal cells 

 Zhao et al., 2016255 
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Vitamin B12 (cobalamin) Vit B12 and FA prevent autophagic inhibition 
induced by hyperhomocysteinemia 

 Tripathi et al., 2016256 

Sarcosine Activates autophagy and enhances the 
autophagic flux in cultured cells 

 Walters et al. 2018257 

Equol 
Seems to reverse the effects of zearalenone 
(among which there is an autophagy induction) 
on ovarian preantral follicles  

 Silva et al., 2019258 

Prodigiosin Inhibits autophagy and induces apoptosis of 
K562 leukemia cell line 

 Ji et al., 2019259 

Phenazine-1-carboxylic 
acid 

Impairs vesicular trafficking and autophagy in 
Saccharomyces cerevisiae 

 Zhu et al., 2017260 

Pyocyanin Induces autophagy by EIF2AK4/GCN2 pathway 
in Beas-2B cells 

 Yang et al., 2016261 

1-hydroxyphenazine 
Inhibition of autophagy protects astrocytoma 
cells against 1-hydroxyphenazine induced 
toxicity 

 McFarland et al., 
2011262 

2-aminoacetophenone 
(2AA) 

Induces oxidative stress and apoptosis in murine 
skeletal muscle 

 Bandyopadhaya et al., 
2016263 

1,4-dihydroxy-2-
naphthoic acid (DHNA) 

Scarce available data   

O-desmethylangolensin 
(ODMA) 

Scarce available data   

Cyclic-di-AMP sodium 
salt 

The cytosolic DNA sensor, cyclic GMP-AMP 
synthase, promotes the autophagic targeting of 
M. tuberculosis 

 Waston et al., 2015264 

5-hydroxy-L-tryptophan Serotonin has been hypothesized to inhibits 
autophagy thus enhancing gut inflammation 

 Haq et al., 2019265 

5-hydroxyindole acetic 
acid (5HIAA) 

Induces apoptotic cell death of prostate and 
bladder cancer 

 Jeong et al., 2011266 

Indole-3-butyric acid It is converted to indole 3-acetic acid in a 
peroxisomal β-oxidation process 

Damodaran et al., 
2019267 

Queuine Scarce available data   

L-(+)-Ergothioneine Antioxidant cryoprotection  Paul and Snyder, 
2010268 

Pyrroloquinoline quinone Protects cell from autophagy-dependent 
doxorubicin-induced apoptosis 

 Jiang et al., 2019269 

GG-leucine 
Amino acids are feedback inhibitors of 
autophagy. Leucine acts in a GLUD1-dependent 
fashion 

 Lorin et al., 2013270 

GG-tryptophan Induces mTOR activation  Osawa et al., 2011271 

GG-tyrosine Inhibits autophagy   Meijer et al.,2015220 
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Sodium hydrosulfide Suppress overactivated autophagy in an 
ischemia/reperfusion model in rats 

 Jiang et al., 2017272 

Rapamycin Inhibits mTOR. Induces autophagy  Sarkar et al. 2008273 

Torin-1 Inhibits mTOR. Induces autophagy  Zhou et al., 2013274 

Thapsigargin Induces ER stress  Li et al., 2000275 

Tunicamycin Induces ER stress  Zhang et al., 2014276 

Brefeldin A Reversibly disrupts the Golgi apparatus  Sciaky et al., 1997277 

Crizotinib R Induces autophagy and immunogenic cell death You et al., 2015278 
Liu et al., 2019279 

Spermidine Induces autophagy  Eisenberg et al., 2009280 

 

Appendix Table 1. All bacterial metabolites screened with one ref. for each of them (name, effect, 

reference). The compounds used as positive controls are reported in bold. 
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2.2 Methods 

 

2.2.1 Screening program 

 

We determined the maximum solubility known for each compound (or 200 mM if the 

maximum solubility exceeded this value) and prepared the stock solution by diluting them in 

DMSO (mostly) or water. We firstly organized a mother 96-wells master plate with our 

compounds and controls. Subsequently we treated GFP-LC3 U2OS cells in 384 well plates at 

different dilutions (1/300*; 1/1000; 1/3000; 1/10000; 1:30000; 1:100000; 1:300000; 

1:1000000*; * the first and last dilution only when indicate according to the compound 

concentration in the master plate). Suppl. Fig. 1.   

Supplementary Figure 1 

 

1:300

1:3000

1:30000

1:300000

1:1000

1:10000

1:100000

1:1000000

Mother master plate (max solubility or if >200 mM -> 200mM) 

96 well master plate
(84 compounds + Ctrs) 

1 2 3 4 5 6 7 8 9 10 11 12

A n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

B n13 n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24

C n25 n26 n27 n28 n29 n30 n31 n32 n33 n34 n35 n36

D n37 n38 n39 n40 n41 n42 n43 n44 n45 n46 n47 n48

E n49 n50 n51 n52 n53 n54 n55 n56 n57 n58 n59 n60

F n61 n62 n63 n64 n65 n66 n67 n68 n69 n70 n71 n72

G n73 n74 n75 n76 n77 n78 n79 n80 n81 n82 n83 n84

H n85 n86 Rapamycin Torin1 Thapsigargin Tunicamycin Brefeldin A Crizotinib R Ctr MEDIUM Ctr H2O Ctr DMSO Ctr

384 well treatment plate
(84 compounds + Ctrs) 

Different timepoints 
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Supplementary Figure 1. Scheme of the design of the screening. Cell death essay (Hoechst/PI) and 

LC3 dots essay by treating U2OS wt and U2OS L3-GFP cells, respectively with a wide range of 

dilutions of the mother stock (1/300*, 1/1000, 1/3000, 1/10000, 1/30000, 1/100000, 1/300000, 

1/1000000*). *only when indicate according to the compound concentration in the master plate 

 

 

2.2.1 Cell lines and culture conditions 

 

U2OS wild-type cells and their derivatives (U2OS LC3-GFP; U2OS LAMP-GFP; U2OS 

GALT-GFP, U2OS SMAC-GFP; U2OS Calr-GFP H2B-RFP; U2OS TFEB-GFP) were 

cultured in DMEM supplemented with supplemented with 10% heat-inactivated fetal bovine 

serum and 10 mM HEPES buffers. PC12 GFP-Q74 cells were cultured in RPMI‐1640 

containing 5% fetal bovine serum and 10% horse serum. Murine colon carcinoma CT26 cells 

were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine 

serum, 10 mM HEPES buffers, 10 U/ml penicillin sodium and 10μg/ml streptomycin sulfate. 

PC12 cells stably expressing doxycycline-inducible Q74-GFP were maintained in (RPMI)-

1640 containing 5% fetal bovine serum and 10% horse serum. 281 

 

2.2.2 Automatized fluorescent biosensor-based screening 

 

Human osteosarcoma U2OS cells stably expressing green fluorescent protein (GFP)-tagged 

LC-3 were seeded in 384-well black microplates (Greiner-bio-one, Kremsmünster, Austria) 

and allowed to attach for 24 h (37 °C, 5% CO2 atmosphere). After 24h the cells were treated 

with the compounds of a custom arrayed library of microbial compounds at different 

concentrations and for different durations. After treatment cells were fixed with 4% 
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paraformaldehyde (PFA) in PBS containing 2µM (10μg/mL) Hoechst 33342 (Thermo 

Scientific, Waltham, MA, USA) for 30 minutes and washed three times with PBS. Four view 

fields/well were acquired by ImageXpress automated widefield microscope (Molecular 

Devices, Sunnyvale, CA, USA). High-content image analysis was used to determine markers 

of autophagy such as the generation of autophagy-associated GFP-LC3 puncta in the 

cytoplasm. Following images were processed and segmented with the MetaXpress software 

(Molecular Devices) to analyze GFP-LC3 granularity. Data were analyzed using the freely 

available software R (https://www.r-project.org).  

 

2.2.3 Cell death essay 

 

U2OS wild-type cells were seeded (2,000 cells/well) in 384-well clear cell culture plates and 

let adhere in a humidified incubator with 5% CO2 at 37°C for 24 h before treatment. Cells were 

treated with a wide range of concentrations for each compound for 24 h and then co-stained by 

the addition of 1μg/ml propidium iodide (PI) and 2μg/ml Hoechst 33342 for 30 min at 37°C 

before acquisition. Images were acquired on ImageXpress Micro XL automated microscopes 

(4 view fields per well). Before being acquired the plates were centrifuged in order to drive 

detached cells to the bottom of the wells. If the cell nucleus was stained by both Hoechst and 

PI signals (fluorescence co-localization), the cell was considered as dead. 282 

 

2.2.4 Autophagic flux analysis  

 

The autophagic flux analysis was conducted by using the U2OS GFP‐RFP-LC3 tandem 

reporter cells and PC12 GFP-Q74 cells. 
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U2OS cells stably expressing LC3 fused with tandem fluorescent GFP‐RFP proteins (GFP‐

RFP‐LC3) were treated with top hits compounds that emerged from the first and second 

screening, for 6 h. After fixation, GFP‐LC3 and RFP‐LC3 dots were evaluated by automated 

image acquisition and analysis. 

The PC12 GFP-Q74 cell is a cell line engineered to express a doxycycline-inducible autophagic 

cargo (namely a pathogenic huntingtin protein that contains 74 glutamine repeats, Q74, fused 

with GFP). 281 Different concentrations of our compounds were evaluated. Rapamycin 

(20 μM), Torin-1 (0.3 μM) and Bafilomycin (0.1 μM) were utilized as controls.  

PC12 GFP-Q74 cell were treated for 6 h according to the experimental scheme attached.  

 

2.2.5 Immunoblotting 

 

U2OS WT cells were treated with the different concentrations of our compound for 6 hours. 

Then, cells were washed twice with cold phosphate-buffered saline (PBS) and then dislodged 

by using a cell scraper and collected into microcentrifuge tubes. After centrifugation the lysis 

buffer with protease inhibitor cocktail was added and the cells were incubated for 30 minutes 

on ice followed. After removal of insoluble material by centrifugation, the supernatant was 

transferred into a new tube and the concentration of protein was assessed by using a 

spectrophotometer. For each sample, 20 µg of protein was resolved on polyacrylamide gel 

electrophoresis gel (Invitrogen). After migration protein were transferred to polyvinylidene 

difluoride membranes (Merck Millipore). LC3 and p62 protein levels were measured by SDS–

PAGE and immunoblot. Beta-actin was measured as loading control. Band intensities of p62, 

LC3‐I, and LC3‐II were measured, and ratios of p62 or LC3‐II vs. Beta-actin. (LC3‐II/Actin, 

p62/Actin) were calculated. 
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2.2.5 TFEB translocation and cotreatments with protein synthesis inhibition or lysosome 

inhibitors in vitro 

 

U2OS cells stably expressing GFP‐TFEB fusion protein were treated with different 

concentrations of our compound for 6 h. GFP intensities in nuclei and cytoplasm were 

measured. The ratio of GFP intensities (intensity in nuclei/intensity in the cytoplasm) was 

estimated to assess TFEB translocation into the nuclei. 

We further evaluated the ability of our compound to still induce LC3-II in the presence of 

transcription or protein synthesis inhibitors (with actinomycin D or cycloheximide) and 

inhibitor of the lysosomal proton pump (Bafilomycin) in vitro. 

2.5 × 103 U2OS-GFP-LC3 cells/well were plated in a 384 well plate and cotreated (after 24h) 

with our selected compound in combination with 1 μM dactinomycin (DACT), 50 μg ml−1 

cycloheximide (CHX) and Bafilomycin (0.1 μM) respectively, for 6 h. After fixation, GFP‐

LC3 dots were evaluated by automated image acquisition and analysis. 

 

2.2.6 Co-localization experiment: 

 

Prodigiosin is well-known for its autofluorescence. Prodigiosin signal was measured at an 

excitation of 561 nm and an emission of 594 nm (Texas Red). Briefly, for the co-localization 

experiment human osteosarcoma U2OS biosensors cells expressing the fluorescent fusion 

GALT1-GFP (for the Golgi apparatus), CALR-GFP/H2B-RFP (for the ER), LAMP1-GFP (for 

the lysosomes) and SMAC-GFP (for the mitochondria) were plated on 384-well black 

microplates (Greiner-bio-one, Kremsmünster, Austria).  Image segmentation and 

colocalization of auto-fluorescent compounds with the above-mentioned organelles were 

performed by the ColocalizR analysis algorithm. 283 
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2.2.7 In vivo experiment 

 

Syngeneic BALB/c female mice were implanted with CT26 mouse colon cancer cell line. Mice 

were used between 6 and 8 weeks of age. 1 × 106 CT26 cells were mixed with 100 μL PBS and 

injected subcutaneously into one flank. Once visible, tumors were measured across two 

diameters, and volumes were calculated. Body weights were also recorded. When tumors 

reached 20 to 35 mm² in size mice were treated according the scheme reported in Figure 6a 

with isotype control, clone 2A3, plus prodigiosin vehicle (controls); anti-PD-1 mAb 

(250µg/mouse; clone RMP1-14) plus vehicle; Prodigiosin plus isotype control; Prodigiosin 

plus anti-PD-1 mAb; anti-PD1 plus anti-CTLA-4 (100µg of anti-CTLA-4 mAb (clone 9D9). 

The size of the tumor was monitored after three days from the treatment by means of a caliper 

and mice were then sacrificed. The tumor size was calculated as: length(mm) x width(mm) = 

tumor size (mm2). The heart, the liver, the spleen, the colon, the ileum, and the tumors were 

collected after the sacrifice. 1% DMSO/12%PEG 400 in normal saline was chosen as drug 

delivery vehicle for prodigiosin according to previous report. Firstly 1 mg prodigiosin was 

dissolved in 1 mL of dimethyl sulfoxide in a 20μL DMSO/240μL PEG 400 solution. Then 

1740 normal saline was added to obtain the primary emulsion. 284 A fixed volume of 200μL 

was administered intraperitoneally in each mouse to achieve a dose of 5 mg/kg. Data analyses 

were performed either with the Prism 8 (GraphPad, San Diego, CA, USA) software. Tumor 

size differences were calculated either using two-way analysis of variance (ANOVA) and post 

hoc T-test with Bonferroni Correction (to compare the group treated with Prodigiosin plus 

Anti-PD-1 mAb versus Prodigiosin alone). To date, only one experiment has been performed. 
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Statistical analyses 

 

Unless otherwise specified, data are reported as mean ± SD of at least three independent 

experiments. Data were analyzed using Prism 8 (GraphPad Software, Inc., La Jolla, CA, USA) 

and R software. Statistical significance was analyzed by means of two-tailed Student’s t-test or 

ANOVA tests, as appropriate. Differences to negative controls were assessed to be significant 

if p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***). 
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2.3. Results 

 

2.3.1 Identification of prodigiosin as a ‘bona fide’ autophagy disruptor 

 

In an effort to identify new autophagy inducers, we initially screened a library of 85 bacterial 

metabolites (Appendix Table 1 in the introduction) for their capacity to stimulate the 

generation of cytoplasmic GFP-LC3 dots in human osteosarcoma U2OS GFP-LC3 cells.  

The screening approach is summarized in Suppl. Fig. 1 (description in the methods 

subsection). 

   

Supplementary Figure1. Scheme of the design of the screening. 

From our first screen we selected the bacterial metabolites that showed the strongest effect. Fig 

1a We further validate the results by a second validation screening. Fig 1b  
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1:30000

1:300000

1:1000

1:10000

1:100000

1:1000000

Mother master plate (max solubility or if >200 mM -> 200mM) 

96 well master plate
(84 compounds + Ctrs) 

1 2 3 4 5 6 7 8 9 10 11 12

A n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

B n13 n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24

C n25 n26 n27 n28 n29 n30 n31 n32 n33 n34 n35 n36

D n37 n38 n39 n40 n41 n42 n43 n44 n45 n46 n47 n48

E n49 n50 n51 n52 n53 n54 n55 n56 n57 n58 n59 n60

F n61 n62 n63 n64 n65 n66 n67 n68 n69 n70 n71 n72

G n73 n74 n75 n76 n77 n78 n79 n80 n81 n82 n83 n84

H n85 n86 Rapamycin Torin1 Thapsigargin Tunicamycin Brefeldin A Crizotinib R Ctr MEDIUM Ctr H2O Ctr DMSO Ctr

384 well treatment plate
(84 compounds + Ctrs) 

Different timepoints 
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Figure 1a. Human osteosarcoma U2OS GFP-LC3 cells and U2OS wt cells were treated with a library 

of bacterial metabolites for 6 h (compounds are listed in Appendix Table 1). After the treatment U2OS 

GFP-LC3 cells were fixed while U2OS wt cells were stained with Hoechst and PI for the cell death 

essay. GFP-LC3 dots were counted to measure autophagy activity. Scatter plots depicting the relative 

healthy cell count versus the LC3-GFP dots surface. 
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Figure 1b. Human osteosarcoma U2OS GFP-LC3 cells and U2OS wt cells were treated with a library 

of bacterial metabolites for 6 h (compounds are listed in Appendix Table 1). After the treatment U2OS 

GFP-LC3 cells were stained with DAPI and fixed, while U2OS wt cells were stained with Hoechst and 

PI for the cell death essay. GFP-LC3 dots were counted to measure autophagy activity. Scatter plots 

depicting the relative healthy cell count versus the LC3-GFP dots surface. 
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We then rescreened the hits with the U2OS GFP-LC3 (for a third time) Fig 1c and with U2OS 

GFP‐RFP-LC3 tandem reporter cells to deeper investigate their activity on the autophagic flux. 

Fig 1d-e  

 

Figure 1c. Detection of GFP-LC3 puncta from compound-mediated autophagy in U2OS GFP-LC3 

cells. Human osteosarcoma U2OS GFP-LC3 cells were treated with the hits compound of the previous 

screening. After the treatment U2OS GFP-LC3 cells were stained fixed. GFP-LC3 dots were counted 

to measure autophagy activity. Bar chart the quantitation of LC3-GFP dots. 
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Figure 1d. Human osteosarcoma U2OS GFP-LC3 cells were treated with the hits compound of the 

previous screening. After the treatment U2OS GFP-LC3 cells were stained fixed. GFP-LC3 dots were 

counted to measure autophagy activity. Scatter plots depicting the relative healthy cell count versus the 

flux inhibition score. Scatter plots depicting the relative healthy cell count versus the flux inhibition 

score. 
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Figure 1e. Human osteosarcoma U2OS RFP-GFP-LC3 tandem report cells were treated with the hits 

compound of the previous screening. After the treatment U2OS RFP-GFP-LC3 cells were stained fixed. 

GFP-LC3 and RFP-LC3 dots were counted to measure autophagy activity. Scatter plots depicting the 

flux inhibition score versus the autophagy score. 
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Given the pronounced activity of this compound even at low concentration we selected 

prodigiosin from our screen. The pattern of GFP fluorescence induced by prodigiosin was 

slightly different from that induced by torin1. The GFP-LC3 puncta tended to fuse at one 

district around the nucleus. We decided to further investigate on this compound.  

We repeated the experiment on U2OS GFP‐RFP-LC3 tandem reporter cells for Prodigiosin 

and violacein. In U2OS cells stable expressing a tandem GFP-RFP-LC3 fusion protein 285, 

prodigiosin increased the abundance of the autophagosomes (RFP and GFP fluorescence) but 

not the autolysosomes (RFP fluorescence only), partially contrasting with the autophagic flux 

inhibitors bafilomycin A1 (BafA1), which induced an increase of GFP fluorescence by 

interfering with the autolysosome generation. Fig 1f and Fig 1g 

 

Figure 1f. Representative images of U2OS LC3 GFP-RFP tandem report cell treated with prodigiosin 

(Prod.) 0.5μM, bafilomycin A1 (BafA1) 0.1μM, and controls. 

Prod. 0.5 BafA1 CtrFig 1f
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Figure 1g. Human osteosarcoma U2OS RFP-GFP-LC3 tandem report cells were treated with the hits 

compound of the previous screening. After the treatment U2OS RFP-GFP-LC3 cells were stained fixed. 

GFP-LC3 and RFP-LC3 dots were counted to measure autophagy activity. Scatter plots depicting the 

relative healthy cell count versus the flux inhibition score. 
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As mentioned above, prodigiosin can cross the lysosomal membrane, reach its protonated 

configuration due to the high intralysosomal H+ concentration and export a Cl- ion from the 

lysosome to the cytosol together with three H+. Inducing de-acidification of the lysosomes it 

acts as an autophagy disruptor. 72. 

We then evaluated the effect of prodigiosin cotreating cell with the inhibitor of protein 

synthesis cycloheximide (CHX) and the RNA synthesis inhibitor actinomycin D (ActD), and 

with the V-ATPase and autophagic flux blocker bafilomycin A1 (BafA1). Cycloheximide 

(CHX) and Actinomycin D (ActD) did not prevent the induction of GFP-LC3 dots by 

prodigiosin. Fig 2a-c 

 

 

 

Figure 2a. Representative images of U2OS GFP cell treated with prodigiosin (Prod.) 0.5μM and 1.5μM 

alone or in combination with actinomycin D (ActD) and Cycloheximide (CHX). 
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Figure 2b. Representative images of U2OS GFP cell treated with prodigiosin (Prod.) 0.5μM and 1.5μM 

alone or in combination with bafilomycin A1 (BafA1) 0.1μM. 
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Figure 2c. Bar chart. Data are expressed as means ± SD of one representative experiment and represent 

the GFP dots surface per cell, the GFP dots counts per cell, the DD and the cell count. (*p < 0.05, ***p 

< 0.0001, compared to untreated cells, Ctr DMSO). 
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In this condition we did not observed the fluorescence pattern induced by Prodigiosin alone. 

We hypothesize that the blocking of the V-ATPase by BafA1 results in impaired concentration 

of H+ within the lysosome and consequently lysosomal alkalinization. In this context 

Prodigiosin cannot act as H+/Cl- symporter from the lysosome to the cytosol. Conversely, 

treating the cell with Prodigiosin for 3h at first and then, after changing the culture medium, 

with BafA1 for other 3h we observed that the florescence phenotype induced by prodigiosin 

seem to reverse. Fig 2d-e 

 

 

Figure 2d. Representative images of U2OS GFP cell after treatment with prodigiosin (Prod.)1.5μM 

and Bafilomycin (BafA1) 0.1μM for 3 hours followed by other 3 hours of switched treatment with 

Bafilomycin (BafA1) 0.1μM and prodigiosin (Prod.)1.5μM, respectively. 

3h

Prod. 1.5μM  
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Fig 2d
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Figure 2e. Bar chart. Data are expressed as means ± SD of one representative experiment and represent 

the GFP dots surface per cell, the GFP dots counts per cell, the DD and the cell count. (*p < 0.05, ***p 

< 0.0001, compared to untreated cells, Ctr DMSO) 
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Through the PC12 GFP-Q74 model we confirmed that our selected compound, the prodigiosin, 

seems to disrupt the autophagic machinery rather instead to boost it. In PC12 neuronal cells 

expressing a doxycycline-inducible autophagic cargo tagged with GFP (more in detail a GFP-

tagged pathogenic huntingtin protein holding 74 glutamine repeats, Q74) prodigiosin, 

contrasting with the activity of positive controls (torin1 and rapamycin), increased the green 

florescence thus suggesting an accumulation of the autophagic substrate. Fig 3a-c 

This evidence is consistent with an impairment of the autophagic flux. 

 

 

Figure 3a. Design of the experiment 

 

 

Figure 3b. Representative images of PC12 GFP-Q74 cell after 6 hours treatment with prodigiosin (0.06, 

0.2 and 0.5μM), rapamycin (Rapa, 20μM) and torin1 (Torin) 0.3μM.  
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Figure 3c. Bar chart. Data are expressed as means ± SD of one representative experiment and represent 

the global GFP fluorescent intensity and the cytosolic dots surface per cell.  
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2.3.2 Prodigiosin induces a dose-depended increase of LC3-II and sequestosome 1 

 

Prodigiosin induced a dose-dependent increase in LC3 lipidation (detectable as an 

intensification of the LC3-II electrophoretic band). Concurrently an increase in the abundance 

of Sequestosome 1 (SQSTM1 or p62) protein level has been revealed. Fig 4a and 4b 

 

Figure 4 a-b. U2OS wild-type (WT) cells were treated with Prodigiosin (0.06, 0.2, 0.5 and 1.5μM) and 

torin (0.3 μM) for 6h. SDS–PAGE and immunoblots were conducted as described before. b. 

Immunoblot analysis of LC3 and p62 protein expression levels after 6-hour treatments. Band intensities 

of LC3-II, p62 and actin were assessed, and their ratios (LC3-II/actin) and (p62/actin) were calculated. 

Data are means +/- SEM of three replicates. 
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2.3.4 Implication of TFEB in prodigiosin-induced autophagy modifications 

 

We described the activity of prodigiosin in inducing the transcription factor EB (TFEB) 

translocation in the nucleus using U2OS cells stably expressing GFP fused to TFEB. TFEB is 

known to promote the lysosomal biogenesis 56  

Interestingly, we found that this compound was able to induce the translocation of GFP-TFEB 

from the cytoplasm to the nucleus. Fig 4c-d  

Probably this event may be attributable to the activity of prodigiosin analogues in inhibiting 

mTORC1 and mTORC2 complexes. 286 The inhibition of mTORC1 has been already described 

as a trigger of TFEB activation. 59 

We interpreted this evidence as a prodigiosin-mediated stimulus to the lysosomal genesis while 

standing a subsequent block to the autophagic flux. Furthermore, this could be speculatively 

consistent with the scope of S. marcescens to create intracellular niches where housing. 
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Figure 4 c-d. Prodigiosin induces TFEB translocation in the nucleus: static images and quantification. 

c. Representative images of U2OS GFP-TFEB treated with Prodigiosin (0.2, 0.5 and 1.5μM) and Torin 

(0.3, 0.5 and 1μM) as controls for 6h.  d. The average ratio between GFP-TFEB florescence intensity 

in the nucleus versus the cytoplasm is reported in the bar chart.  Data are expressed as means ± SEM of 

at least three independent wells from one of three independent experiment (*p < 0.05, **p <0.01, ***p 

< 0.0001, compared to untreated cells, Ctr). 
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2.3.5 Colocalization of prodigiosin with lysosomes and other organelles 

 

We took advantage of the prodigiosin autofluorescence to find where it localizes inside the 

cells by matching its red fluorescence with the green fluorescence of the biosensor cell lines or 

fluorescent antibody staining. As showed by the merged images the green (GFP) and red 

(Prodigiosin) fluorescence remarkably seem to overlap in the Golgi apparatus and in the 

lysosomes, predominantly. Fig 5a and Fig 5b 

 

 

 

 

Figure 5a. Colocalization of prodigiosin with lysosomes and Golgi apparatus: static images. 
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Figure 5b. Colocalization of prodigiosin with lysosomes and Golgi apparatus: quantification for all 
organelles. 
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2.3.6 Prodigiosin seems to impair the efficacy of anticancer immunotherapy. 

 

In light of its potential and previous literature on the immunosuppressive activity of 

Prodigiosines we evaluated the activity of this compound in vivo to address its potential in 

modifying the tumor growth and the response to anti-PD-1 ICB. BALC/c female were treated 

according the scheme reported in Figure 6a with isotype control, clone 2A3, plus prodigiosin 

vehicle (controls); anti-PD-1 mAb (250µg/mouse; clone RMP1-14) plus vehicle; Prodigiosin 

plus isotype control; Prodigiosin plus anti-PD-1 mAb; anti-PD1 plus anti-CTLA-4 (100µg of 

anti-CTLA-4 mAb (clone 9D9).  We observed that prodigiosin seems to promote the tumor 

growth (statistical significance not reached). Furthermore, the tumor growth was significantly 

higher in the group treated with prodigiosin plus anti-PD-1 as compared to the group treated 

with anti-PD-1 alone (mean tumor size: 45.2 vs 28.6 mm², respectively; p<0.05 by Anova 

statistics with Bonferroni post hoc test). Fig. 6b  

We point out that only one experiment has been performed so far. 
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Figure 6 a-b. Prodigiosin seems to impair the efficacy of anticancer immunotherapy. a design of the 

experiment. b. variation in tumor volume after 2 days from the treatment administration. Tumor size 

differences were calculated either using two-way analysis of variance (ANOVA) and post hoc T-test 

with Bonferroni Correction (to compare the group treated with Prodigiosin plus Anti-PD-1 mAb versus 

Anti-PD-1 mAb alone: *p < 0.05, **p <0.01, ***p < 0.0001). 

To date only one experiment has been performed.  
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2.4 Discussion and future perspectives  

 

Autophagy plays a cardinal and double-edge role during tumorigenesis. On the one hand, this 

catabolic mechanism acts as a tumor suppressor by removing oncogenic components. On the 

other hand, autophagy helps cancer cells survive by supporting their metabolic needs in a 

nutrient-deprived and hypoxic microenvironment. 287 The role of certain compounds in 

modulating anti-cancer immunosurveillance by targeting autophagy has recently emerged. 288 

However, the pleiotropic activity of certain systemic-administered molecules could deserve a 

double look, particularly regarding potential bystander effects on immune cells. 289 

Pharmacological autophagy inducers, as well as some lysosomotropic agents, have been shown 

to enhance anti-cancer immunosurveillance, potentiate immune checkpoint blockade 

treatment, and perhaps overcome chemoresistance, according to recent findings. 69 290 291 292 

From our screen on bacterial and host metabolites, we selected prodigiosin for its prominent 

activity in inducing LC3 dots, even at low concentrations. This compound is already known 

for its potential to induce apoptosis of leukemic and other malignant cells as well as for its 

immunosuppressive properties. 

In the present study, we further report that prodigiosin, a red metabolite produced by some 

strains of S. marcescens and other Gram-negative bacteria, is a potential disruptor of the 

autophagic machinery and probably hinders the efficacy of anti-PD-1 mAbs in the CT26-

BALB/c mouse model. This evidence, if confirmed by replicative experiments in vivo and 

retrospective clinical evidence, could open a scenario on the plausible activity of this bacterial 

metabolite as a disruptor of immunotherapy efficacy. 

In light of these results, two main perspectives remain open and could deserve attention.  
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The first, mainly clinical, is the investigation of the effect of immunotherapies in patients with 

concomitant opportunistic infection sustained by prodigiosin-producing bacteria. A research 

article published on NEJM in 2003 shed light on the relevance of S. Marcescens contamination 

in bronchoscopes. 197 Other previous studies depicted this bacterium as frequently involved in 

nosocomial infections. In light of the immunomodulatory activities of prodigiosin (especially 

the effect on cytotoxic CD8+ T lymphocytes) and the preliminary results of our experiment in 

vivo (Fig 6a – it requires confirmation) further investigation could be justified.  

A starting point could be the assessment of the efficacy of immunotherapy in a retrospective 

series of patients with lung or urothelial cancer and concomitant opportunistic infections 

sustained by S. Marcescens.  

The second, which mainly relies on the results of the experiment in combination with 

Bafilomycin (Fig 2 b-e) and on a previous research published on Chem 72, concerns the 

evaluation of the lysosome deacidification (and of the concomitant cytosolic acidification) as 

a potential player in reversing the canonical trafficking of autophago-lysosomes from 

endoplasmic reticulum to the cellular membrane.  

Some previous reports have shown how the cell precisely regulates the intracellular pH. As an 

example, histone deacetylases can induce histone deacetylation in a condition of decreased pH. 

293 This phenomenon results in the release of acetate anions which in turn were co-exported 

coupled with protons out of the cell at the hand of monocarboxylate transporters (MCTs). 293 

Viceversa in presence of increased pH, histones are acetylated. 293 Now, the role of protein 

deacetylation in inducing autophagy is clear and mentioned above.  

On account of that and other pieces of evidence, the intracellular-pH decrease could indirectly 

act as autophagy inducers. This hypothesis could open a new interesting scenario on the role 

of the intracellular pH decrease as an independent inducer of autophagy.  

Furthermore, evidence of defective autophagy in cancer cells is already known. Conversely, 
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from the tumor microenvironment, which exhibits an acidic pH, the intracellular pH of 

malignant cells is increased. 294 295 This evidence is consistent with the anabolic status of 

malignant cells, and with the observation of an increased pH in replicating cells. The pH is “de 

facto” one master regulator of autophagy.  

In such a context, the role of anion transporters, as our hit, prodigiosin, can gain attention when 

viewed from a different perspective. Worthy of note is the evidence that the protonophore 

FCCP, a mitochondrial uncoupler, is able to induce mitophagy at the concentration of 10μm 

through cytosol acidification rather than mitochondrial depolarization. 39  

As a result of our experiment and previous literature, we could state that prodigiosin probably 

induces autophagy (possibly inducing a decrease in cytosolic  pH) 296 as suggested by the TFEB 

translocation into the nucleus, but in the meantime hinders the autophagic flux (by inducing 

the alkalinization of lysosomes).   

In conclusion, prodigiosin acts primarily as an uncoupler of the pH gradient between the 

lysosomes and the cytosol. 72 This latter evidence could be further confirmed by visualizing 

the intracellular proton flux. 297 Furthermore, this compound is able of inducing death by 

apoptosis of the malignant cell 202 204, but its effect on the autophagic flux and its activity as an 

immunosuppressive agent could result in impaired efficacy of immunotherapy. 
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2.5 Key words and Abbreviations 

 

Key words: bacterial metabolites; prodigiosin; immune modulators; immune checkpoint 

blockers; immunogenic cell death, intracellular pH. 

 

List of abbreviations: 

 

ActD actinomycin D  

anti-PD-1 mAb anti-PD-1 monoclonal antibody 

anti-CTLA-4 anti-CTLA-4 monoclonal antibody 

BafA1 bafilomycin A1 

CHX cycloheximide  

ER Endoplasmic reticulum 

GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor  
 
IC50 inhibitory concentration 50 
 
LC3 light chain 3 
 
PIns-3P Phosphatidylinositol 3-phosphate 
 
Prod. prodigiosin
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