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Introduction

Since its introduction in 1935 by Whitney [Whi35], matroid theory has grown very
prolifically and has proven extremely useful both as a language and as a tool, not only
in pure combinatorics but in other branches of mathematics as well. The fact that many
topological invariants of the complement of a complex hyperplane arrangement are
encoded in the intersection lattice, viz. its underlying matroid, serves as an example
of a contact point between topology and matroid theory [OS80]. Moreover, in the
recent years such contact points, in this case between matroid theory and algebraic
geometry, have provided a deeper understanding (and proofs, of course) of facts that
were observed many years ago by renowned mathematicians and for which we lacked a
proper demonstration beyond some easy and/or particular cases [AHK18, BHMC20].

Both of the aforementioned examples have something in common: a geometric
point of view of matroids. This idea of the geometry of matroids has also been
explored in the recent years in the spirit of discrete (rather than algebraic or topological)
geometry. More precisely, the understanding of matroids as certain convex polytopes
provided a very rich and profound source of theorems and tools for both geometry and
combinatorics.

When talking about polytopes (particularly, lattice polytopes) one of the most
popular and interesting invariants is the so-called Ehrhart polynomial [Ehr62]. These
polynomials capture much of the geometry, the combinatorics and the arithmetics of
the polytope. Such an invariant, which is as simple as it could be, i.e. a polynomial
with rational coefficients, is in fact not that simple to understand for polytopes in their
full generality.

A reasonable question to ask is if there is some interpretation for the coefficients
of the Ehrhart polynomials that arise from matroid polytopes. However, it is already
a challenging problem to understand even particular coefficients of such polynomials.
The volumes of matroid polytopes, which happen to be the leading coefficients of
the Ehrhart polynomials, are already very enigmatic. There exist interpretations of
the volumes for the matroids belonging to the very restrictive class of representable
matroids [GGMS87] and a somewhat obscure formula for the general case [ABD10]
which does not seem to be very useful in practice. These issues already give a tiny
hint of how difficult the problem of understanding Ehrhart polynomials of matroid
polytopes is expected to be.

In a 2007 article (published two years thereafter) De Loera, Haws and Köppe
conjectured that the Ehrhart polynomial of matroid polytopes had only positive coef-
ficients [DHK09]. Since then, this conjecture was approached with different methods
and ideas without success. Much of the resistance of this problem to be solved was, in
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iv Introduction

part, because the community (myself included) believed the conjecture to be true. In
fact, Castillo and Liu in 2015 conjectured a stronger version of that statement and they
were able to provide very good evidence pointing to its truthfulness [CL18].

The ultimate aim of this thesis is to provide a counterexample to such conjectures.
Through the way we will prove many positive results that are interesting on their
own. In particular, we give a combinatorial formula for the Ehrhart polynomial of
hypersimplices, generalizing a result of Laplace. This had been classified as an open
problem in the highly influential book Enumerative Combinatorics by R. Stanley
[Sta12].

Our exposition is based on the following five articles, all of which were written
in the course of the last two years, [Fer21a, Fer21b, Fer21c, Fer21d, FJS21], listed in
order of appearance.

� L. Ferroni, Hypersimplices are Ehrhart positive, J. Comb. Theory Ser. A.
178:14, 2021.

� L. Ferroni, On the Ehrhart polynomial of minimal matroids, Discrete Comput.
Geom., 2021.

� L. Ferroni, Integer point enumeration on independence polytopes and half-open
hypersimplices, Discrete Math., 344(8):112446, 2021.

� L. Ferroni, Matroids are not Ehrhart positive, submitted.

� L. Ferroni, K. Jochemko, B. Schröter, Ehrhart polynomials of rank twomatroids,
preprint.

We have included in this thesis some (few) additional results that do not appear
within the above articles. They are mainly related to independence matroid polytopes
and their Ehrhart theory. For instance, we show that there exist independence matroid
polytopes that are not Ehrhart positive. In particular, we rule out the possibility of
these polytopes to be any better than the basis polytopes of matroids from the Ehrhart
theoretic perspective.

Outline

We now describe how this thesis is organized. The main matter of it is concentrated
in Chapters 3 and 4, which contain essentially all of the contributions of the papers
mentioned above, and some additional counterpart results for independence polytopes.

In Chapter 1 we state and prove all the preliminary of matroids that we need, so that
all of our exposition is self-contained from the point of view of matroids and matroid
polytopes. We assume a minimum of familiarity with convex polytopes, though.

In Chapter 2 we review the basic facts of Ehrhart theory, without giving the proofs,
and establish some very basic results for the case of matroid polytopes.

In Chapter 3 we study the Ehrhart theory of uniform matroids with an emphasis
on giving both a proof of the Ehrhart positivity for all hypersimplices and, even
more remarkably, an explicit combinatorial formula for each of the coefficients of
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such polynomials. Then we carry out a proof of the Ehrhart positivity of half-open
hypersimplices and of the independence polytope of uniform matroids.

In Chapter 4 we do the following:

� In Section 4.1 we introduce minimal matroids and link them with the geometric
point of view of the operation of circuit-hyperplane relaxation for matroids.

� In Section 4.2 we establish a formula for the Ehrhart polynomials of all sparse
paving matroids, a class of objects that is conjectured to dominate among all
matroids.

� In Section 4.3 we give an explicit construction of matroids that fail to be Ehrhart
positive. We prove that for k � 3 there exists a matroid of rank k that is not
Ehrhart positive.

� In Section 4.4 we address the case k D 2, and find an explicit formula for the
Ehrhart polynomial of rank two matroids, and prove their Ehrhart positivity.

In Chapter 5 we end this dissertation by discussing some related open problems
and conjectures on the Ehrhart theory of matroids.
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CHAPTER 1
The geometry of matroids

1.1 Matroids as combinatorial structures
The study of matroids was initiated byWhitney [Whi35] with the aim of abstracting the
notion of linear dependence. Since the first decades, the theory of matroids has evolved
and established links with other areas of mathematics. A fundamental characteristic
of matroids is that they can be defined in several different but equivalent ways. In this
section we will review some of the most basic definitions and results, following the
pace and the notation of Oxley’s book [Oxl11].

Definition 1.1.1. AmatroidM is a pair .E;B/whereE is a finite set andB is a family
of subsets of E, i.e. B � 2E , satisfying the following two properties:

� B ¤ ∅.

� If B1 and B2 are in B and x 2 B1 r B2, then there is an element y 2 B2 r B1
such that .B1 r fxg/ [ fyg 2 B.

If M D .E;B/ is a matroid, the members of B are referred to as the bases of the
matroid.

The second of the above properties is usually called the basis-exchange-property.
Also, it is customary to identify a matroidM with its groundset E, and talk about the
subsets of M or the elements of M . The number of elements of E is what we refer
to as the cardinality of the matroid M . The terminology on matroid theory and the
prototype of matroid come from notions of linear algebra.

Example 1.1.2. Let V be a vector space over a field F. Consider a finite list of vectors
E D fv1; : : : ; vng � V . Let W be the subspace of V spanned by the elements of
E. It is clear that W is finite dimensional over F, so let us assume that dimW D k.
Consider

B D fB � E W fvigi2B is a basis of W g:

1



2 Chapter 1. The geometry of matroids

It is clear that B ¤ ∅ (when k D 0 then B D f∅g ¤ ∅). Also let us verify that the
basis-exchange-property holds. If we pickB1 ¤ B2 inB and an element v 2 B1rB2,
we have that dim hB1 r fvgi D k � 1. Since dim hB2i D k, by a standard linear
algebra reasoning, we see that there has to be at least one vector w 2 B2 such that w
does not lie in hB1 r fvgi. Hence, we get that dim h.B1 r fvg/ [ fwgi D k and thus
.B1 r fvg/ [ fwg 2 B.

The matroids that Example 1.1.2 provides are known in the literature as repre-
sentable matroids. It is clear that all the bases in the above example have the same
cardinality. This phenomenom translates to matroids in their full generality.

Lemma 1.1.3 Let M D .E;B/ be a matroid. All the members of B have the same
cardinality.

Proof. Let us assume that there exist two bases B1 ¤ B2 ofM satisfying jB1j > jB2j
and, among all such pairs of bases, let us choose one that minimizes jB1 rB2j. Since
jB1j > jB2j, in particular we have that B1 r B2 ¤ ∅. Thus, choosing x 2 B1 r B2
and using the basis-exchange-property, we can find an element y 2 B2 r B1 such
that .B1 r fxg/ [ fyg 2 B. Calling B3 D .B1 r fxg/ [ fyg, we may observe that
jB3j > jB2j and that jB3 r B2j < jB1 r B2j. This contradicts our choice of B1 and
B2.

Since all the bases of a matroid have the same cardinality, it is customary to refer
to this cardinality as the rank of the matroid.

Example 1.1.4. Consider E D f1; : : : ; ng and B D fB � E W jBj D kg. It is
straightforward to verify that M D .E;B/ is a matroid. This matroid is called the
uniform matroid of cardinality n and rank k. We denote this matroid by Uk;n.

Observe that the uniformmatroidUk;n is in fact representable. If we take the vector
space V D Rk and n vectors in general position in V , the construction of Example
1.1.2 yields our matroid Uk;n. To be more explicit, we have an isomorphism between
Uk;n and the matroid we just outlined how to construct. We can make this statement
precise.

Definition 1.1.5. LetM1 D .E1;B1/ andM2 D .E2;B2/ two matroids. We say that
M1 andM2 are isomorphic if there exists a bijection ' W E1 ! E2 with the property
that B 2 B1 if and only if '.B/ 2 B2.

Observe that in our prototype of matroid, i.e. the matroids described by Example
1.1.2, we have a notion of linear independence. This can be translated to the general
case as follows.

Definition 1.1.6. Let M D .E;B/ be a matroid. A subset I � E is said to be
independent if I � B for some B 2 B. When a set is not independent we say it is
dependent. We denote the family of all independent subsets ofM by I.M/.

The family of all the independence subsets is a rich combinatorial object, possessing
a nice property. Recall that an (abstract) simplicial complex on E is a family� � 2E
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with the property that for every F 2 � and G � F , it holds G 2 �. A simplicial
complex is pure when all its elements of maximal cardinality have the same number
of elements.

Proposition 1.1.7 LetM D .E;B/ be a matroid and let I D I.M/. Then

(a) I is a pure simplicial complex.

(b) If I1 and I2 members of I satisfy jI1j < jI2j, then there is an element e 2 I2 r I1
such that I1 [ feg 2 I.

Proof. The fact that I is a simplicial complex is immediate, and its pureness follows
from Lemma 1.1.3. Assume that (b) does not hold. Choose I1 and I2 in I such that
jI1j < jI2j and that for all e 2 I2 r I1, it is I1 [ feg … I. By definition there exist
B1 and B2 in B such that I1 � B1 and I2 � B2. Assume that B2 is chosen so that
jB2 r .I2 [ B1/j is minimal. Because of our choice of I1 and I2 it must be:

I2 r I1 D I2 r B1:

Now, observe that

� B2r .I2[B1/ D ∅. To prove this, assume that this set was nonempty and pick
an element x in it. By the basis-exchange-property we must have an element
y 2 B1 r B2 such that B3 D .B2 r fxg/ [ fyg 2 B. However, in that scenario
it would be jB3 r .I2 [ B1/j < jB2 r .I2 [ B1/j, and thus contradicting our
choice of B2. This also proves that B2 r B1 D I2 r B1.

� B1r .I1[B2/ D ∅. To prove this, assume that this set was nonempty and pick
an element x in it. By the basis-exchange-property we must have an element
y 2 B2 r B1 such that B3 D .B1 r fxg/ [ fyg 2 B. This implies that
I1 [ fyg � B3, so that I1 [ fyg 2 I. Since we said that y 2 B2 r B1 and
we proved in the preceding bullet that B2 r B1 D I2 r B1, it follows that
y 2 I1 r I2. We have contradicted our choice of I1 and I2. This proves that
B1 r B2 D I1 r B2.

Observe now that
B1 r B2 D I1 r B2 � I1 r I2:

Also, since jB1j D jB2j, it must be jB1 r B2j D jB2 r B1j. Therefore:

jI1 r I2j � jB1 r B2j D jB2 r B1j D jI2 r B1j D jI2 r I1j:

But the inequality jI1 r I2j � jI2 r I1j implies that jI1j � jI2j which contradicts
jI1j < jI2j.

Remark 1.1.8. It can be proved that the simplicial complex of independent subsets of
a matroid is shellable [Bjö92]. Moreover, (b) in the above proposition guarantees that
all the vertex-induced subcomplexes of I are shellable. This property characterizes the
simplicial complexes coming from matroids.
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When one already has a matroid, it is possible to construct new matroids in a very
intuitive way. That is the spirit of the following result.

Lemma 1.1.9 Let M D .E;B/ a matroid with family of independent sets I. Let
A � E be a subset. If we denote I0 the set

I0 D fI 2 I W I \ A D ∅g;

then I0 is the family of independent subsets of a matroidM 0 D .E rA;B0/, where B0
are the maximal members of I0 with respect to set-inclusion.

Proof. Let us assume that A consists of only one element, say A D feg. Let us choose
two distinct elements B 01 and B 02 in B0. Since the B 01 and B 02 are in I, we have that
e … B 01 and e … B 02. Since B 01 and B 02 are independent in M , there are bases B1
and B2 such that B 01 � B1 and B 02 � B2. Let us pick x 2 B 01 r B 02. There are two
possibilities:

� e 2 B1. This implies that B 01 D B1 r feg because of the maximality of the
elements of B0 described in the statement. In particular, since B 02 was also
maximal, we have that jB 02j D jB 01j and that e 2 B2. In this case, we have
that x 2 B 01 r B 02 D B1 r B2. The basis-exchange-property inM gives us an
element y 2 B2 r B1 D B

0
2 r B 01 such that .B1 r fxg/ [ fyg 2 B. Since this

basis ofM does not contain the element e, we have the basis-exchange-property
for B 01 and B 02.

� e … B1. Reasoning as above, we get that e … B2, and again we have that
B1 rB2 D B 01 rB 02 and that B2 rB1 D B 02 rB 01, and we can repeat the same
proof as above.

If A has more than one element, we can delete one at a time and proceed inductively
as above.

The operation onmatroids described in the preceding Lemma is called the deletion.
We say that the matroidM 0 constructed above is obtained fromM by deleting A and
we denoteM 0 DM r A. Notice that if we delete the complement of A � E, we end
up obtaining a matroid on the groundset A. This is what we call the restriction ofM
to A, and we denote it byM jA.

Another property that Example 1.1.2 possesses is that we can define a notion of
dimension to every subset of the groundset E. This concept can be generalized to
arbitrary matroids.

Proposition 1.1.10 Let M D .E;B/ be a matroid. The function rk W 2E ! Z�0
given by

rk.A/ D max
B2B
jA \ Bj;

satisfies the following three properties:

(a) If A � E, then rk.A/ � jAj.
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(b) If A1 � A2 � E, then rk.A1/ � rk.A2/.

(c) If A1; A2 � E, then

rk.A1/C rk.A2/ � rk.A1 [ A2/C rk.A1 \ A2/:

Proof. Notice that (a) and (b) are immediate from the definition. We claim that, for
every A � E, it is

rk.A/ D rank ofM jA:

Indeed, if we denote by I the independent subsets of M and I0 the independent
subsets ofM jA, we have:

rank ofM jA D max
I 02I0
jI 0j

D max
I2I

I\.ErA/D∅

jI j

D max
B2B
jB r .E r A/j

D max
B2B
jB \ Aj

D rk.A/:

Now, to prove (c), fix A1; A2 � E and consider the matroidsM jA1
, M jA2

, M jA1\A2

and M jA1[A2
. Let us fix BA1\A2

a basis of M jA1\A2
. It is clear that BA1\A2

is
independent in M jA1[A2

so that we can find a basis BA1[A2
of this matroid that

contains that set. Now, BA1[A2
\ A1 and BA1[A2

\ A2 are independent inM jA1
and

M jA2
respectively. Thus, we have that

rk.A1/C rk.A2/ � jBA1[A2
\ A1j C rk.A2/

� jBA1[A2
\ A1j C jBA1[A2

\ A2j

D jBA1[A2
\ .A1 [ A2/j C jBA1[A2

\ .A1 \ A2/j

D rk.A1 [ A2/C jBA1\A2
j

D rk.A1 [ A2/C rk.A1 \ A2/

The function rk provided by the above proposition is what we call the rank function
of the matroid. Notice that A � E is independent if and only if rk.A/ D jAj.

Example 1.1.11. LetG be a graph with set of edgesE. We allowG to possess parallel
edges and loops. We say that B � E is a spanning forest of G if B does not contain
any cycle, all the vertices of G belong to at least one of the edges of B , and B is a
maximal set satisfying the preceding two properties. Let us call B the family of all
spanning forests of G. It is can be proved thatM D .E;B/ is a matroid. All matroids
arising with such a construction are called graphic.

The graph-theoretic framework allows us to motivate an abstract version of several
notions for arbitrary matroids.
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Definition 1.1.12. LetM D .E;B/ be a matroid. We say that C � E is a circuit if
C is dependent but all proper subsets of C are independent. We denote by C.M/ the
family of all circuits ofM .

Proposition 1.1.13 LetM D .E;B/ be a matroid and let C D C.M/. Then

(a) ∅ … C.

(b) If C1 and C2 are in C and C1 � C2, then C1 D C2.

(c) If C1 ¤ C2 are in C and e 2 C1 \ C2, then there is a circuit C3 2 C such that
C3 � .C1 [ C2/r feg.

Proof. Observe that (a) and (b) are immediate from the definitions. Observe also
that if C is a circuit, then rk.C / D jC j � 1. To prove (c) it suffices to proceed by
contradiction. Assuming that .C1 [ C2/ r feg contains no circuit yields that this set
is independent. Thus, we obtain that

rk..C1 [ C2/r feg/ D j.C1 [ C2/r fegj
D jC1 [ C2j � 1

D jC1j C jC2j � jC1 \ C2j � 1

D rk.C1/C 1C rk.C2/C 1 � jC1 \ C2j � 1
D rk.C1/C rk.C2/C 1 � jC1 \ C2j

But, notice that Proposition 1.1.10 gives us:

rk.C1/C rk.C2/ � rk.C1 [ C2/C rk.C1 \ C2/;

so that

rk..C1 [ C2/r e/C jC1 \ C2j � 1 � rk.C1 [ C2/C rk.C1 \ C2/:

However, since C1 \C2 is a proper subset of C1, then it has to be independent, so that
jC1 \ C2j D rk.C1 \ C2/. Hence, we obtained:

rk..C1 [ C2/r e/ � 1 � rk.C1 [ C2/;

which gives the desired contradiction, since rk.C1 [ C2/ � rk..C1 [ C2/r feg/.

Example 1.1.14. Observe that in a matroid coming from a graph as in Example 1.1.11,
a circuit of the matroid corresponds to a simple cycle of the graph. This also justifies
the terminology we have introduced.

Remark 1.1.15. If I is an independent set of a matroid and x … I , there is at most one
circuit C contained in I [fxg. Indeed, if we have two circuits C1; C2 � I [fxg, both
of them must contain x, because I was independent. Thus x 2 C1 \ C2 and hence
property (c) above implies that there is a circuit C3 � .C1 [ C2/r fxg � I , which is
impossible.
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Matroids admit a notion of closure. If one has a set A and an element x … A it
may happen that either rk.A[ fxg/ D rk.A/ or rk.A[ fxg/ D rk.A/C 1. In the first
case, we say that x is in the closure of A. This corresponds to the notion of span for a
list of vectors in a vector space. Also, this serves to motivate the following definition.

Definition 1.1.16. LetM D .E;B/ be a matroid. A subset F � E is said to be a flat
if rk.F [ feg/ > rk.F / for all e … F . The family of all flats ofM will be denoted by
F.M/. If F is a flat of rank rk.E/ � 1, we say that F is a hyperplane. The family of
all hyperplanes ofM will be denoted by H.M/.

Remark 1.1.17. Every subset A � E is contained in a unique inclusion-minimal flat.
Just by taking A D fx 2 E W rk.A [ fxg/ D rk.A/g, one obtains such a flat. This flat
is referred to as the flat spanned by A or the closure of A.

Remark 1.1.18. The set F of all flats of a matroidM D .E;B/ can be seen as a poset
with ther order given by the set-inclusion. This poset happens to be a lattice with two
particular properties: it is atomic and it is modular. Such lattices are called geometric,
and provide another way of talking about matroids.

We state and prove now a technical result that we will need to prove results
regarding matroid polytopes. It was originally proved in [Bru69]. We include a
somewhat different proof here.

Proposition 1.1.19 (Symmetric-exchange-property) LetM D .E;B/ be a matroid of
rank k. If B1 and B2 are inB and x 2 B1rB2, then there is an element y 2 B2rB1
such that .B1 r fxg/ [ fyg 2 B and .B2 r fyg/ [ fxg 2 B.

Proof. Since B2 [ fxg is dependent, it contains a circuit C . Moreover, by Remark
1.1.15 this circuit is unique. Now, observe that since C is a circuit, we have that
rk..B1 [ C/r fxg/ D rk.B1 [ C/ D k. In particular, since the rank of B1 r fxg is
k � 1 and the rank of this set joined with C r fxg is k, we can find a basis B3 such
that B1 r fxg � B3 � .B1 [ C/ r fxg. It follows that B3 D .B1 r fxg/ [ fyg for
some y 2 C r fxg. Now, observe that by our choice of C and its uniqueness, we have
that .B2 r fyg/ [ fxg is independent, because it does not contain any circuits. Since
the cardinality of this independent set is k, it is a basis.

Duality of Matroids

A fundamental operation of matroids is that of duality. The main motivation comes
from the orthogonality of vector spaces when the matroid is representable, and from
the graph-theoretic duality when the matroid comes from a (planar) graph.

Theorem 1.1.20 LetM D .E;B/ be a matroid. Let B� be the family given by all the
complements of the members of B. ThenM � D .E;B�/ is a matroid.

Proof. SinceB is non-empty, so has to beB�. Let us pickB�1 andB�2 distinct members
ofB�, and let x 2 B�1 rB�2 . By calling B1 and B2 the complements of these two sets,
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we have thatB1; B2 2 B and that x 2 B2rB1, so by the symmetric-exchange-property
we can find an element y 2 B1 r B2 such that both B3 D .B1 r fyg/ [ fxg 2 B and
B4 D .B2 r fxg/ [ fyg 2 B. It follows that y 2 B�2 r B�1 and that B�3 D E r B3
satisfies B�3 D .B�1 r fxg/ [ fyg, so .E;B�/ is indeed a matroid.

The matroid M � given by the above theorem is what we call the dual of M .
Obviously .M �/� D M , so that duality is an involution and the terminology is
justified. Observe that ifM has cardinality n and rank k, then the rank ofM � is n�k.

Example 1.1.21. Consider the uniform matroid Uk;n of rank k and cardinality n. Its
dual is exactly U �

k;n
D Un�k;n. Observe that the matroids Uk;2k are self-dual.

Proposition 1.1.22 LetM D .E;B/ be a matroid of rank k, and letM � be its dual.
Suppose that X � E. Then

(a) rk.X/ D k if and only if E rX is independent inM �.

(b) X is a hyperplane ofM if and only if E rX is a circuit ofM �.

(c) X is circuit ofM if and only if E rX is a hyperplane ofM �.

Proof. Let us prove (a). The condition rk.X/ D k inM holds if and only ifX contains
a basis B ofM . This, in turn, is equivalent to E rX � E rB , which happens if and
only if E rX is independent inM �.

Notice that (c) is just (b) applied to the matroidM � and its dualM . Observe that
X is a hyperplane ofM is equivalent to X being a flat of rank k � 1, and this in turn
is equivalent to the condition that X has rank k � 1 but X [ feg has rank k for all
e … X , and using (a) this is equivalent to E rX being dependent and E r .X [ feg/
being independent inM � for all e … X . The last assertion is equivalent to saying that
all proper subsets of E rX are independent inM � but E rX is dependent or, more
simply, that E rX is a circuit ofM �.

We introduce more terminology that we will refer to in the sequel.

Definition 1.1.23. LetM D .E;B/ be a matroid and fix x; y 2 E.

� We say that x is a loop if rk.feg/ D 0.

� We say that x is a coloop if x is a loop ofM �.

� We say that x and y are parallel if fx; yg is a circuit.

Remark 1.1.24. It is not difficult to prove that x is a loop ofM if and only if x is not
contained in any basis ofM and that x is a coloop if and only if x is contained in every
basis ofM .
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Connectivity

Unlike the previous notions we have established for matroids, the concept of connected
matroid is not actually a way of abstracting connected graphs but biconnected graphs.

To justify the necessity of looking at biconnectedness for graphs, notice that ifG1 is
a graph consisting on three vertices fv1; v2; v3g and two edges fv1; v2g and fv2; v3g and
G2 is a graph on four vertices fw1; w2; w3; w4g and two edges fw1; w2g and fw3; w4g,
then the matroids associated to G1 and to G2 are isomorphic, although it is clear that
G1 is connected but G2 is not.

Thus, we will state a definition of connected matroid that captures the notion of
being biconnected when restricted to graphic matroids. Recall that a connected graph
is biconnected when the graph obtained by the deletion of any vertex and its incident
edges remains connected.

Definition 1.1.25. A connected matroid is a matroidM D .E;B/ such that for every
two distinct elements x; y 2 E there is a circuit C that contains both x and y.

Remark 1.1.26. Let G be a loopless graph without isolated vertices and suppose that
G has at least 3 vertices. ThenG is biconnected if and only if, for every pair of distinct
edges of G, there is a cycle containing both. This fact is what motivates the above
definition. The proof of this fact is a standard graph-theoretic exercise.

The following property, which is another important property of the circuits of
a matroid, essentially states that a certain relation on the elements of a matroid is
transitive.

Proposition 1.1.27 Let M D .E;B/ be a matroid and let x; y; z 2 E be distinct
elements. If there is a circuit C1 containing x and y, and there is a circuit C2
containing y and z, then there is a circuit C3 containing x and z.

Proof. [Oxl11, Proposition 4.1.2] or [Wel76, pg. 68].

It is possible to define an equivalence relation between the elements of a matroid
as follows. We say that x � y if either x D y or there exists a circuit C of M such
that x; y 2 C . The reflexivity and symmetry are trivial, and the transitivity follows
from the last Proposition. The equivalence classes under this relation are called the
connected components of the matroid. Hence a matroid is disconnected when there
are two or more connected components.

Definition 1.1.28. LetM D .E;B/ be a matroid. We say that A � E is inseparable
if the matroidM jA is connected. If A is not inseparable, we say that it is separable.

It is not difficult to see that an inseparable subset of a matroid is contained in one
of its connected components. In other words, all the maximal inseparable subsets are
exactly the connected components ofM .

This discussion also motivates us to introduce another basic operation on matroids
that provides another way of understanding matroid connectivity.
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Definition 1.1.29. LetM1 D .E1;B1/ andM2 D .E2;B2/ be twomatroids. Consider
the disjoint union E D E1 tE2, and the family:

B D fB1 t B2 W B1 2 B1 and B2 2 B2g;

thenM D .E;B/ is a matroid. We callM the direct sum ofM1 andM2 and we write
M DM1 ˚M2.

The proof of the fact that the above object is well-defined requires only a straight-
forward use of the definitions. Notice thatM DM1˚M2 implies that the rank ofM
is the sum of the ranks ofM1 andM2.

Lemma 1.1.30 A matroidM is disconnected if and only if there exists two matroids
M1 andM2 such that

M DM1 ˚M2:

Proof. IfM DM1˚M2, let us choose two elements x 2M1 and y 2M2 and assume
there exists a circuit C ofM containing both. Since C r fxg is independent, then it is
contained in a basis B ofM . Thus, we have that C r fxg � B1 t B2 for some bases
B1 ofM1 and B2 ofM2. Since this is a disjoint union, we must have C r fxg � B1
or C r fxg � B2. Since y 2 C , it has to be C r fxg � B2. We can prove in an
entirely analogous way that C r fyg is contained in a basis B 01 of M1. This implies
that C r fx; yg � B 01 \ B2 D ∅. Hence, C D fx; yg, which yields a contradiction
because fxg and fyg are thus independent, and so would be their union because the
independent subsets of a direct sum are obtained that way. This proves that such a
circuit C cannot exist, andM is disconnected.

Conversely, assume thatM is disconnected, so that there are two elements x; y that
lie in different connected components. Let us say that T1 is the connected component
containing x. Consider T2 D E r T1. Let us prove that M D M jT1

˚M jT2
. The

equality between the groundsets is clear. It remains to prove that the set of bases ofM
andM jT1

˚M jT2
coincide.

� A basis ofM jT1
˚M jT2

is the disjoint union of a basis B1 ofM jT1
and a basis

B2 of M jT2
. We claim that B1 [ B2 is independent in M . Let us assume the

opposite. Then it must contain a circuit C � B1[B2, and given that B1 and B2
are both independent in M , in particular C has to contain at least one element
of B1 and one element of B2. This says that these two elements are in the same
connected component inM , which is clearly impossible.
Now, let us prove that B1 [ B2 is indeed a basis ofM . Choose a basis B ofM
containing B1[B2. If it was possible to choose an element e 2 B r .B1[B2/,
then we would have two possibilities according on e 2 T1 or e 2 T2. If e 2 T1,
then B1 [ e would be an independent set contradicting that B1 was a basis. The
other case is entirely analogous. This proves that all the bases ofM jT1

˚M jT2

are bases ofM .

� Fix a basis B of M and consider B1 D B \ T1 and B2 D B \ T2. Clearly
B D B1 t B2. Observe that B1 is independent in M jT1

, so that we can find a
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basis B 01 of M jT1
containing it. Analogously, we can find a basis B 02 of M jT2

containing it. Since B 01 t B 02 is a basis of M by the preceding bullet, and it
contains B1tB2 which is also a basis ofM , we must have B 01tB 02 D B1tB2,
and hence B 01 D B1 and B 02 D B2. This proves that all the bases ofM are the
disjoint union of a basis ofM jT1

and a basis ofM jT2
.

It is natural to ask if every matroid can be decomposed uniquely as a direct sum of
connected matroids. That is the subject of the following proposition.

Proposition 1.1.31 Let M be a matroid and let T1; : : : ; Ts be its connected compo-
nents. Then

M D

sM
iD1

M jTi
:

Moreover, ifN1; : : : ; Nr are connected matroids such thatM D
Lr

iD1Ni , then r D s
and the Ni ’s are a permutation of theM jTi

’s.

Proof. This result is a straightforward extension of Lemma 1.1.30, and the proof is a
direct consequence of the proof of that Lemma.

Also, we have the following result.

Proposition 1.1.32 Let M D .E;B/ be a matroid. A subset A � E is separable if
and only if it admits a partition into non-empty sets A D A1 t A2 such that

rk.A/ D rk.A1/C rk.A2/:

Proof. If M jA is disconnected, in particular we can write M jA D M jA1
˚M jA2

for
some setsA1 andA2 such thatA1tA2 D A. It follows that rk.A1/C rk.A2/ D rk.A/.

Conversely, if there exists such a partition, one can prove directly that M jA1
˚

M jA2
DM jA, which is thus a disconnected matroid.

Another property of the connected components that we will use is the following.

Proposition 1.1.33 LetM D .E;B/ be amatroid. Two elements x; y belong the same
connected component if and only if there exists a basis B 2 B such that .B r fxg/ [
fyg 2 B.

Proof. ()) By definition, two elements lie in the same connected component if and
only if there is a circuit containing both of them. Let us assume that fx; yg � C 2

C.M/. Since C r fyg is independent, in particular it is contained in some basis B .
Hence y 2 C � B [ fyg. Also, we have that x 2 C � B [ fyg, so that x 2 B .
Consider X D .B r fxg/ [ fyg and Y D C . By the properties of the rank, we have:

rk.X/C rk.Y / � rk.X [ Y /C rk.X \ Y /;

which translates into:

rk.X/C rk.C / � rk.B [ fyg/C rk.C r fxg/;
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and using that C is a circuit, we see that rk.C r fxg/ D rk.C /, so that in fact:

rk.X/ � rk.B [ fyg/ D k;

from where it follows that X is a set of cardinality k and rank k or, in other words, a
basis.

(() If X D .B r fxg/ [ fyg is a basis of M , then X [ fxg is dependent and
thus contains a circuit C which, in turn, contains x. Now, if y … C , we have that
C � .X [fxg/r fyg D B , which is impossible since B was a basis. Hence it follows
that y 2 C , so that C is a circuit containing both x and y.

1.2 Matroids as polytopes
The basis polytope

Having established the basic combinatorics of matroids, we will move into the world
of polytopes. In this subsection we will be following [FS05].

Definition 1.2.1. Let M D .E;B/ be a matroid. Assume that jEj D n and label its
elements as f1; : : : ; ng. For each A � E consider the point eA 2 Rn given by

eA D
X
i2A

ei ;

where ei is the i -th canonical vector of Rn.

� We define the basis polytope ofM as the polytope

P.M/ D convex hull feB W B 2 Bg:

� We define the independence polytope ofM as the polytope

PI.M/ D convex hull feI W I 2 Ig;

where I stands for the family all the independent sets ofM .

Observe that different labelings for the elements of the groundset E yield different
embeddings of the polytopes in Rn. As we will be primarily focused on Ehrhart
polynomials, we can assume that the groundset is E D f1; : : : ; ng and forget about the
labelings. We will customarily assume that.

Also, notice thatP.M/ is obtained fromPI.M/ by intersectingwith the hyperplane:

H D

(
x 2 Rn W

nX
iD1

xi D rk.M/

)
:

In other words, P.M/ is a face of PI.M/.
Let us introduce now a basic polytope that will appear repeatedly throughout this

thesis.
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Definition 1.2.2. The hypersimplex �k;n is the polytope defined by

�k;n D

(
x 2 Œ0; 1�n W

nX
iD1

xi D k

)
:

Observe that ifM is a matroid of rank k and cardinality n, the polytope P.M/ is
contained in the hypersimplex �k;n. This is because all the vertices eB of P.M/ have
sum of coordinates equal to k and obviously lie in the hypercube Œ0; 1�n.

Example 1.2.3. Let us consider the uniform matroid U2;4 D .E;B/ where E D
f1; 2; 3; 4g andB consists of all subsets ofE of cardinality 2. If we denoteB1 D f1; 2g,
B2 D f1; 3g, B3 D f1; 4g, B4 D f2; 3g, B5 D f2; 4g and B6 D f3; 4g, the six bases of
M , we have the corresponding points in R4:

eB1
D .1; 1; 0; 0/;

eB2
D .1; 0; 1; 0/;

eB3
D .1; 0; 0; 1/;

eB4
D .0; 1; 1; 0/;

eB5
D .0; 1; 0; 1/;

eB6
D .0; 0; 1; 1/:

The polytope P.U2;4/ is given by the convex hull of feB1
; eB2

; eB3
; eB4

; eB5
; eB6
g. As

we will see below, this is exactly the hypersimplex �2;4.

Something that is immediate from the definition is that both the basis polytope and
the independence polytope of a matroid are the convex hull of a finite set of points with
0=1-coordinates. This points are in fact vertices of the polytopes. This is a general
fact.

Proposition 1.2.4 Let p1; : : : ; ps 2 Rn be points such that the coordinates of each pj
are either 0 or 1. Consider the polytope:

P D convex hull fp1; : : : ; psg:

Then the vertices of P are exactly p1; : : : ; ps.

Proof. Let us assume, without loss of generality, that ps is not a vertex of P. It follows
thatP D convex hull fp1; : : : ; ps�1g. Hence, we can writeps as a convex combination
of p1; : : : ; ps�1:

ps D

s�1X
iD1

�ipi ;

where 0 � �i � 1 for each 1; : : : ; s � 1 and
Ps�1
iD1 �i D 1. Let us assume that ps has

a 1 on its j -th coordinate. We have:

1 D
˝
ps; ej

˛
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D

s�1X
iD1

�i
˝
pi ; ej

˛
:

Since the sum of all �i ’s was one, it follows that
˝
pi ; ej

˛
D 1 for all i ’s such that

�i > 0. Hence, it follows that

�i > 0 H)
˝
pi ; ej

˛
D 1 for all j such that

˝
ps; ej

˛
D 1:

Analogously, we can prove that

�i > 0 H)
˝
pi ; ej

˛
D 0 for all j such that

˝
ps; ej

˛
D 0:

And both of these statements can be summarized in:

�i > 0 H)
˝
pi ; ej

˛
D
˝
ps; ej

˛
for all j ,

and the expression on the right says that pi D ps. This is impossible, because there
is at least one �i > 0, and for any such i , the above implies that pi D ps which
contradicts that the pi ’s were all distinct.

Polytopes having all of its vertices with coordinates 0 or 1 are called 0=1-polytopes.
Observe that both the basis polytope and the independence polytope of a matroid are
0=1-polytopes.

Proposition 1.2.5 The basis polytope of the uniform matroid Uk;n coincides with the
hypersimplex �k;n.

Proof. Consider the affine space generated by the vertices of P.Uk;n/. Since the sum
of coordinates of all the vertices of P.Uk;n/ is k, we know that its codimension is
at least 1. Consider a vector u orthogonal to that affine space. We claim that u is
parallel to .1; : : : ; 1/. Indeed, observe that for each 1 � i < j � n, we can choose two
0=1-vectors with exactly k ones that differ only in the positions i and j . In other words,
there are two vertices of P.Uk;n/ whose difference is ei � ej . Since u is orthogonal to
this difference, we get that ui D uj . Since i and j were arbitrary, we obtain that all
the coordinates of u are equal. This proves that u is parallel to .1; : : : ; 1/. Hence, the
affine space generated by the vertices of P.Uk;n/ is exactly the set of points of equationPn
iD1 xi D k. This proves that P.Uk;n/ D �k;n.

Now let us establish the geometric counterpart of the operations of dualization and
direct sum. Both of these operations have nice interpretations for the basis polytope.

Proposition 1.2.6 Let M and N be two matroids on n elements. The following are
equivalent:

(a) M and N are the dual of each other.

(b) P.M/ and P.N / are obtained by an involution of the form:

P.M/ D .1; : : : ; 1/ � P.N /:
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Proof. Observe that ifM andN are the dual of each other, to every vertex eB of P.M/

corresponds a vertex eErB of P.N / which is clearly obtained by the involution of (b).
Conversely, let B be a basis of M . By the involution of (b) we obtain the basis

E r B on N , and this is indeed a bijection. This implies that N DM �.

For the operation of direct sum, we also get a nice interpretation for the indepen-
dence polytope.

Proposition 1.2.7 LetM1 andM2 be two matroids. Then

P.M1 ˚M2/ D P.M1/ � P.M2/;

and
PI.M1 ˚M2/ D PI.M1/ � PI.M2/:

Proof. The first is evident from the definitions. The second too, because the indepen-
dence subsets ofM1 ˚M2 are exactly the disjoint union of an independent subset of
M1 and an independent subset ofM2.

We have the following fundamental result, which is due to Gel’fand, Goresky,
MacPherson and Serganova [GGMS87]. It gives a complete characterization of the
polytopes that can arise as the basis polytope of a matroid.

Theorem 1.2.8 A polytope P � Rn is the basis polytope of a matroid if and only if it
satisfies the following two conditions:

� P is a 0=1-polytope.

� All the edges of P are parallel to ei � ej for some i ¤ j .

Proof. ()) Let P be the basis polytope of the matroid M D .E;B/ of rank k. By
Proposition 1.2.4 we automatically have that P is a 0=1-polytope. Notice also that all
the points of P have sum of coordinates equal to k, because in particular all of its
vertices do so by Lemma 1.1.3. Let us prove that all the edges of P are of the claimed
form.

Fix eB1
and eB2

adjacent vertices on the polytope. The edge determined by these
two vertices admits a supporting hyperplane H . In other words, there exists u 2 Rn
and a half-spaceHCu defined by an inequality:

hx; ui � 1;

and a hyperplaneHu, given by
hx; ui D 1;

with the property that P � HCu and that P \Hu D conv .feB1
; eB2
g/.

Since B1 ¤ B2, by the symmetric-exchange-property, for any i 2 B1rB2 we can
find j 2 B2 r B1 such that

B3 WD .B1 r fig/ [ fj g 2 B;
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B4 WD .B2 r fj g/ [ fig 2 B:

Let us assume thatB2 ¤ B3. Since it obviously isB3 ¤ B1, we have that heB3
; ui < 1,

and in particular �
eB3
C eB4

2
; u

�
D
1

2
heB3

; ui C
1

2
heB4

; ui < 1

But, on the other hand,�
eB3
C eB4

2
; u

�
D

�
eB1
C eB2

2
; u

�
D 1:

This contradiction implies that it has to be B2 D B3, so that B1 and B2 differ by just
one element and, in fact:

eB1
� eB2

D ei � ej ;

as desired.
(() Let us assume that P is a 0=1-polytope with all the edges of the desired form.

Since all the vertices of P can be associated to a certain subset of E D f1; : : : ; ng
by taking the indices of the coordinates that are equal to 1, we can construct a family
B � 2E . We must prove that this is indeed the set of bases of a matroid. To this end,
fix B1 and B2 in B and consider an element i 2 B1rB2. Observe that if we consider
all the vertices adjacent to eB1

in the polytope, we can cone over the vertex eB1
and, in

particular, every point of the polytope can be written as a non-negative combination
of the generators of this cone. In particular, we can write:

eB2
� eB1

D

X
eB adjacent to eB1

�B.eB � eB1
/;

where each �B is non-negative. Since i 2 B1 r B2, by equating the i -th coordinates
in the above equality, we get that there is at least one eB adjacent to eB1

such that
�B ¤ 0 and i … B . Hence, by the property on the edges, there exists j such that
eB � eB1

D ej � ei . By equating the j -th coordinates we get that j 2 B2 r B1, and
also .B1 r fig/ [ fj g D B 2 B which is then the set of bases of a matroid.

Theorem 1.2.9 LetM D .E;B/ be a matroid such that jEj D n. The dimension of
its basis polytope is given by

dimP.M/ D n � c.M/;

where c.M/ denotes the number of connected components ofM . In particular,M is
connected if and only if dimP.M/ D n � 1.

Proof. By definition dimP.M/ is the dimension of the least affine space containing
P.M/. In particular, since this coincides with the dimension of the following linear
space:

span feB1
� eB2

W eB1
and eB2

are adjacent in P.M/g ;
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we have the following chain of equalities:

dimP.M/ D dim span feB1
� eB2

W eB1
and eB2

are adjacent in P.M/g

D dim span
˚
ei � ej W for some B1 2 B it is .B1 r fig/ [ fj g 2 B

	
D dim span

˚
ei � ej W i and j lie in the same connected component

	
D

X
T connected

component ofM

.jT j � 1/

D n � c.M/

where we used Proposition 1.1.33.

So far we have a description of the polytope by means of its vertices. It is also
desirable to be able to expressP.M/ as the solution set of a systemof linear inequalities.
That is what we do in the following result. Observe that since the loops of a matroid
are exactly the elements that do not belong to any basis, ifM has a set of loopsL, then

P.M/ D P.M r L/ � f.0; : : : ; 0„ ƒ‚ …
jLj

/g:

In particular, we can restrict to loopless matroids.

Theorem 1.2.10 LetM D .E;B/ be a loopless matroid of rank k and cardinality n.
Let F.M/ denote the set of all flats ofM . Then

P.M/ D

(
x 2 �k;n W

X
i2F

xi � rk.F / for all inseparable F 2 F.M/

)
:

Proof. Consider any faceQ of the polytope P.M/. There exists a hyperplaneHu and
a corresponding half-spaceHCu such thatHu is defined by the equation:

hu; xi D 1;

andHCu by the inequality
hu; xi � 1;

having the property that P.M/ � HCu and Q D P.M/ \ H . Since u is normal to
the face Q, and all the edges of that face have the form ei � ej for some i ¤ j , then
in particular

˝
u; ei � ej

˛
D 0 for all such i; j . This imposes conditions of the form

ui D uj . Conversely, for a vector to be normal toQ it suffices to satisfy the condition
ui D uj for all i ¤ j such that ei �ej appears as an edge. In other words, it is possible
to choose u to be a 0=1-vector, by putting a 1 on the i -th coordinate if in Q there is
an edge of the form ei � ej , and a 0 if there is not such an edge. In particular, we can
adjust our half-spaces to be described by an inequality of the form:X

i2A

xi � r;
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for some r 2 R and A � E, or the form:X
i2A

xi � r
0:

for some r 0 2 R and A � E. Observe that the second case is just:X
i2ErA

xi � r;

for r D k� r 0, since all our points x lie in the hypersimplex�k;n. In either case, what
we have is that for each face Q, we can choose the defining inequality to be of the
form: X

i2S

xi � mS

for some subset S � E and some real valuemS � 0. We can further determinemS by
noticing that the expression on the left is maximized at some vertex of the polytope.
In other words,

mS D max
B2B

X
i2S\B

ei D max
B2B
jB \ S j D rk.S/:

Hence, we have proved:

P.M/ D

(
x 2 �k;n W

X
i2S

xi � rk.S/ for all S � E

)
: (1.1)

This is because � follows from what we have just showed, and � is clear since all the
vertices eB of P.M/ satisfy all such inequalities.

Also, we can reduce the list of inequalities as follows. For a subset S � E, pick
the least flat F containing S . We have that rk.F / D rk.S/. Hence, the inequalityP
i2F xi � rk.F / trivially implies the inequality

P
i2S xi � rk.S/. Now, observe that

if F is a separable flat, we can partition it into two non-empty parts as F D A1 t A2
such that rk.F / D rk.A1/ C rk.A2/. Since M is loopless, the rank of both A1 and
A2 is at least one, so that rk.A1/ < rk.F / and rk.A2/ < rk.F /. Now, A1 and A2
are contained in some flats F1 � F and F2 � F . This implies that the inequality
for the flat F is obtained by those of F1 and F2. We can inductively reduce only to
inseparable flats.

Remark 1.2.11. Observe that if F is an inseparable flat of M , then since M jF is
connected, in particularM jF does not have coloops. A flat with this property is called
a cyclic flat. This is equivalent for F to be a union of circuits. It is known (see for
instance [Oxl11, Exercise 2.1.13]) that if F is a cyclic flat ofM , thenErF is a cyclic
flat ofM �.

Remark 1.2.12. In [FS05, Proposition 2.6] Feichtner and Sturmfels introduced the
notion of flacet. A flacet of M is a flat F 2 F.M/ such that M jF and M �jErF
are inseparable. Since by Proposition 1.2.6 there is an rigid transformation mapping
P.M/ toP.M �/ it is not difficult to see that one can reduce the inequalities description
of Theorem 1.2.10 by only using the flacets instead of all inseparable flats.
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Independence polytopes

Now we will approach independence polytopes, which were defined as the convex hull
of the indicator vectors of the independent sets of a matroid. Our goal is to establish
a version of Theorem 1.2.8 for these polytopes and a corresponding description using
inequalities. A standard reference is Volume B of Schrijver’s book Combinatorial
Optimization [Sch03].

Let us first start with a result concerning the dimension of this polytope whenever
the matroid does not contain loops.

Proposition 1.2.13 IfM D .E;B/ is a loopless matroid such that jEj D n, then

dimPI.M/ D n:

Proof. We proceed by induction in n. For n D 1 the conclusion is true, because we
have just one element e which by hypothesis is not a loop, and hence the matroid
has two independent sets: ∅ and feg. They determine a segment in R which of
course has dimension 1. Now, for an arbitraryM , if it is disconnected, we can write
M DM1 ˚M2 and use Proposition 1.2.7 and the induction hypothesis, because

dimPI.M/ D dimPI.M1/C dimPI.M2/

D jM1j C jM2j

D n:

If M is connected, then we know that P.M/ has dimension n � 1. Since this
polytope is a facet of PI.M/ and the origin is a vertex of this polytope lying outside
such facet, we get that its dimension is n, as desired.

Now, let us establish the edge directions of an independence polytope.

Proposition 1.2.14 Let M be a matroid and PI.M/ its independence polytope. All
the edges of PI.M/ are of the following form:

� ei � ej for i ¤ j .

� ei or �ei .

Proof. Let us assume now that I and J are independent subsets ofM such that eI and
eJ are adjacent in PI.M/. We have two possibilities:

� If rk.I / < rk.I [ J /, then there is an element j 2 J r I such that I [ fj g is
independent. But observe that we have the following equality:

eI C eJ D eI[fj g C eJrfj g;

and since the involved vectors are all vertices of PI.M/ and we assumed that eI
and eJ were adjacent, we must have that I [ fj g D J and J r fj g D I . Hence
eI � eJ D �ej .
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� If rk.I / D rk.I [ J /. If rk.J / < rk.I [ J / we can further proceed as
above, so we may also assume that rk.I / D rk.J / D rk.I [ J /. Consider
the matroid M 0 D M jI[J . We have that I and J are bases of M 0. By the
symmetric-exchange-property, for any j 2 J r I there exists i 2 I r J such
that .I r fig/ [ fj g and .J r fj g/ [ fig are bases ofM 0. In particular, these
two sets are independent onM , and we have:

eI C eJ D e.Irfig/[fj g C e.Jrfj g/[fig;

and by the same reasoning that we used above, it follows that .Irfig/[fj g D J ,
and thus eI � eJ D ei � ej .

Now that we know what the edge directions are, we may obtain a description using
inequalities forPI.M/. By the same reasoning as for the basis polytope, we can restrict
only to loopless matroids.

Theorem 1.2.15 LetM D .E;B/ be a loopless matroid of cardinality n and rank k.
The independence polytope PI.M/ is given by

PI.M/ D

(
x 2 Rn�0 W

X
i2F

xi � rk.F / for all inseparable F 2 F.M/

)
:

Proof. The proof carries out exactly as in Theorem 1.2.10. Essentially, since the edge
directions are ei � ej and˙ei , for every face of PI.M/ with normal vector u, we have
conditions of the form ui D uj and ui D 0. By proceeding as in the basis polytope
case, we can reduce the description to inequalities of the form:X

i2S

xi � mS ;

for every subset S � E. The right-hand-side can be determined as

mS D max
I2I

X
i2S\I

ei D max
I2I
jI \ S j D rk.S/;

so that our polytope is described by

PI.M/ D

(
x 2 Rn�0 W

X
i2S

xi � rk.S/ for all S � E

)
(1.2)

which is the analog of equation (1.1). Now, we can reduce only to inseparable flats
exactly as in the proof of Theorem 1.2.10.

Remark 1.2.16. The preceding result is due to Edmonds and its first proof appeared
in [Edm70]. The proof within in that article depends on the interplay of the greedy
algorithm and matroids. Another version of the same proof can be found in [Sch03].
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Remark 1.2.17. An important fact from the algorithmic point of view is that the
inequalities description of PI.M/ given in Theorem 1.2.15 is minimal. In other words
for a loopless matroidM of cardinality n, we have:

#ffacets of PI.M/g D nC #fF 2 F.M/ inseparableg:

For a proof of this fact we refer to [Sch03, Theorem 40.5]. However, it is important
to emphasize that the description for the basis polytope given in Theorem 1.2.10 is not
minimal, even when restricting only to flacets instead of inseparable flats. In general
it may happen that some of the inequalities xi � 0 are redundant.

Example 1.2.18. Let us consider the uniform matroid Uk;n. In Proposition 1.2.5 we
proved that P.Uk;n/ is the hypersimplex �k;n. Notice that the flats of Uk;n are exactly
the subsets of cardinality 0; 1; : : : ; k � 1 and n. The only inseparable flats of Uk;n are
the whole groundset and the singletons. Hence:

PI.Uk;n/ D

(
x 2 Œ0; 1�n W

nX
iD1

xi � k

)
:

Now we are ready to state the corresponding characterization of the polytopes that
arise as the independence polytope of a matroid.

Theorem 1.2.19 A polytope P � Rn is the independence polytope of a matroid if and
only if it satisfies the following three conditions:

� P is a 0=1-polytope.

� All the edges of P are parallel to ei � ej for some i ¤ j or parallel to ei for
some i .

� The origin is a vertex of P.

Proof. ()) Assume P is the independence polytope of a matroid. The first condition
follows from Proposition 1.2.4. The second condition follows from Proposition 1.2.14.
The third is a consequence of the fact that the empty set is independent in any matroid,
so that the origin has to be a vertex of P.

(() Assume thatP satisfies all the conditions of the statement. Clearly, the vertices
of P give place to a family of subsets of E D f1; : : : ; ng. Let us call s the maximum
sum of coordinates of a vertex of P. Since P is a 0=1-polytope, this number s is a
non-negative integer. We will proceed by induction in s. If s D 0, then the whole
polytope is actually a point, and it corresponds to a matroid consisting on n loops. If
s D 1, then we have the origin and some points of the form ei . Our matroid is realised
as a set of parallel edges and some loops.

Assume now that we have proved that when s D 0; : : : ; k � 1, and k � 2, then a
polytope satisfying the three conditions of the statement is the independence polytope
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of a matroid. Assume now that our polytope P satisfies such conditions and has s D k.
Consider the hyperplaneHk of equation:

nX
iD1

xi D k;

and the intersection Q D P \ Hk. It is clear that Q is a 0=1-polytope with edge-
directions of the form ei � ej . By Theorem 1.2.8 we know that Q is the basis polytope
of a matroidM . Also, if we consider the vertices of P with sum of coordinates less or
equal than k � 1, by induction hypothesis, they determine the independence polytope
of a matroidM 0.

Fix any vertex eB of Q and consider the set I D B r feg for any e 2 B . We claim
that eI is a vertex of P. Assume eI was not a vertex and consider the inequality:

hx; eI i � k � 2

The vertices of P, which are obviously all of the form eA for A � E, satisfy this
inequality if and only if either:

� A ( I is such that jAj D k � 2 and A is independent inM 0.

� A ) I is such that jAj D k and A is a basis ofM .

(There are not other possibilities because we are assuming that eI is not a vertex of
P). Notice that this implies that there is an edge in P which is not of the form˙ei nor
ei � ej , which is a contradiction.

Hence, we obtain that eI is a vertex of P. Also, since jI j D k � 1, we have that eI
is a vertex of PI.M

0/ and this implies that all subsets of I are vertices of PI.M
0/ and

thus of P. Now, recall that I was an arbitrary subset of cardinality k � 1 of a basis B
ofM . This proves that P D PI.M/, and the proof is complete.

Generalized Permutohedra and Polymatroids

In [Pos09] Postnikov introduced a family of polytopes which generalizes the notion of
matroid polytope.

Definition 1.2.20. A polytope P � Rn is a generalized permutohedron if all the edges
of P are parallel to some vector of the form ei � ej .

The terminology is justified because a generalized permutohedron is in essence a
polytope obtained by deforming the regular permutohedron (i.e. the polytope having
as vertices all the permutations of the vector .1; 2; : : : ; n/), always preserving the edge
directions.

Observe that nowwe can restate Theorem 1.2.8 in a shorter way: matroid polytopes
are exactly generalized permutohedra which are 0=1-polytopes.

It is clear that the independence polytope of a matroid will fail to be a generalized
permutohedron. However, with a clever trick, we can obtain a description of this
polytope as a generalized permutohedron.
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Definition 1.2.21. Let M be a matroid of rank k and cardinality n. We define the
lifted independence polytope ofM as the polytope�PI.M/ � RnC1 given by

�PI.M/ WD convex hull f.eI ; k � rk.I // W I � E is independentg � RnC1:

Two lattice polytopes P1 � Rn and P2 � Rm are said to be integrally equivalent
when there is an affine map ' W Rn ! Rm such that its restriction to P1 induces a
bijection ' W P1 ! P2 which preserves the lattice, i.e. the image under ' ofZn\aff P1
is Zm \ aff P2, where aff P1 denotes the affine space spanned by P1 and analogously
for P2.

We have PI.M/ and�PI.M/ are integrally equivalent, as the projection that forgets
the last coordinate fulfills the conditions. Something immediate from the definitions
is that integrally equivalent polytopes have the same Ehrhart polynomial (cf. Chapter
2).

Theorem 1.2.22 For every matroid M , the lifted independence polytope �PI.M/ is a
generalized permutohedron.

Proof. Let us pick two adjacent vertices v and w in�PI.M/. They are of the form:

v D .eI1
; k � rk.I1//;

w D .eI2
; k � rk.I2//;

for some independent sets I1 and I2 of M . Moreover, the vertices eI1
and eI2

are
adjacent in PI.M/. There are two cases:

� If jI1j D jI2j, then rk.I1/ D jI1j D jI2j D rk.I2/. Since eI1
and eI2

are
adjacent in PI.M/ the only possibility is that eI1

� eI2
D ei � ej for some i; j .

In particular, v � w D .ei � ej ; 0/.

� If jI1j ¤ jI2j, assume without loss of generality that jI1j < jI2j. The condition
of eI1

and eI2
being adjacent in PI.M/ implies that eI2

� eI1
D ei for some i .

This says that I2 D I1 t fig. In particular rk.I2/ D rk.I1/C 1, and then

v � w D .ei ;�1/;

which has the desired form.

Remark 1.2.23. This result was stated implicitly in [ABD10]. We include it explicitly
here to simplify future referencing and motivate the main results.

We now digress about a family of objects that were introduced by Edmonds and
Rota in [ER66] as another generalization of matroid.

Definition 1.2.24. A polymatroid P D .E; f / consists of a finite set E and a map
f W 2E ! R with the following properties:

� f .∅/ D 0.



24 Chapter 1. The geometry of matroids

� If A1 � A2 � E, then f .A1/ � f .A2/.

� If A1; A2 � E, then

f .A1/C f .A2/ � f .A1 [ A2/C f .A1 \ A2/:

Remark 1.2.25. Observe that if we further require that f .A/ � jAj and that the values
that f assume are integers, what we end up obtaining is in fact a matroid. This is why
polymatroids are a generalization of matroids indeed.

We can associate two polytopes to any polymatroid, just as we did for matroids.
Since the concepts of bases and independent sets were not defined for polymatroids,
we shall approach a definition of the polytopes by using inequalities instead of giving
its list of vertices as we did for matroids.

Definition 1.2.26. Let P D .E; f / be a polymatroid on E D f1; : : : ; ng. We define
the following two polytopes

P.P / D

(
x 2 Rn W

nX
iD1

xi D f .E/;
X
i2S

xi � f .S/ for all S � E

)
:

PI.P / D

(
x 2 Rn�0 W

X
i2S

xi � f .S/ for all S � E

)
:

We call P.P / the basis polytope of P and PI.P / the independence polytope of P .

Both objects are indeed polytopes, as they are bounded. This is because the basis
polytope has each coordinate bounded by

0 � f .E/ � f .E r fig/ � xi � f .fig/;

and the independence polytope by

0 � xi � f .fig/:

In either case, we want to emphasize that the coordinates of the vertices of both
the basis polytope and the independence polytope of a polymatroid are nonnegative.

Notice also that by the inequalities description we obtained in equation (1.1) for
the basis polytope of a matroid and equation (1.2) for the independence polytope of a
matroid, it follows that when the polymatroid is amatroid, the above polytopes coincide
with its basis and its independence polytope, respectively.

Recall that Theorem 1.2.8 proves the remarkable fact that the class of basis poly-
topes of matroids is just the class of 0=1-generalized permutohedra. We can charac-
terize the class of basis polytopes of polymatroids in a very nice way.

Theorem 1.2.27 A polytope P is the basis polytope of a polymatroid if and only if it
has nonnegative coordinates and it is a generalized permutohedron.



1.2. Matroids as polytopes 25

Proof. A proof of this fact can be found explicitly in the note [Fin15], or implic-
itly in [DF10] (where the result follows from the corresponding characterization for
megamatroids). Another proof can be found in [CL20].

In other words, up to a translation, we have that basis polytopes of polymatroids
and generalized permutohedra are the same thing. Although the study of these objects
has grown especially since the appearance of Postnikov’s article [Pos09], during the
four preceding decades the study of polymatroids had been extensive and many results
were already known for them.





CHAPTER 2
The Ehrhart polynomial

2.1 A glimpse of Ehrhart theory
In 1962 Eugène Ehrhart [Ehr62] initiated the study of the lattice-point counting for
integral polytopes with the following remarkable result.

Theorem 2.1.1 (Ehrhart’s Theorem) Let P � Rn be a lattice polytope of dimension
d . For each integer t � 1 consider the number of lattice points in tP (the dilation of
P with respect to the origin):

ehr.P; t / D #.tP \ Zn/:

Then ehr.P;�/ is a polynomial in the variable t of degree d .

The polynomial ehr.P; t / is called the Ehrhart polynomial of P. For a proof of
Theorem 2.1.1, we refer to [BR15, Theorem 3.8] by Beck and Robins, which is the
standard introductory bibliography to Ehrhart’s theory.

Ehrhart polynomials have proven useful invariants of polytopes that encode much
of its arithmetic, geometric and combinatorial information. Moreover, they appear
naturally when dealing with

� Hilbert functions of finitely generated graded algebras.

� Triangulations of polytopes.

� Order polynomials of posets.

� Chromatic polynomials of graphs.

� The number of solutions to certain diophantine equations.

Some of these interactions (and many others) are explored in [BS18]. The aim of
this section is to review all the results in Ehrhart theory that we will need in the sequel.
All the proofs can be found in [BR15].

27
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Basic results

We start by introducing another polynomial associated to the Ehrhart polynomial. It
encodes essentially the same information but has nicer combinatorial properties as we
will see below.

Definition 2.1.2. Let P � Rn be a lattice polytope of dimension d . Let us write
ehr.P; t / in the basis

�
tCd

d

�
;
�
tCd�1

d

�
; : : :

�
t

d

�
of the vector space of real polynomials of

degree at most d . We have

ehr.P; t / D h�0
�
t C d

d

�
C h�1

�
t C d � 1

d

�
C : : :C h�d�1

�
t C 1

d

�
C h�d

�
t

d

�
:

The .d C 1/-uple .h�0; : : : ; h�d / is called the h
�-vector of P. The polynomial

h�.P; x/ WD h�0 C h
�
1x C : : :C h

�
d�1x

d�1
C h�dx

d ;

is called the h�-polynomial of P.

Remark 2.1.3. If we consider the Ehrhart series of P, which is defined by the formal
series

Ehr.P; x/ WD
1X
mD0

ehr.P; m/xm;

then it holds:
Ehr.P; x/ D

h�.P; x/

.1 � x/dimPC1
:

In other words, the h�-polynomial is just the numerator of the generating function of
the Ehrhart polynomial evaluated on the nonnegative integers.

Example 2.1.4. Consider the polytope

T D convex hull f.0; 0; 0/; .1; 0; 0/; .0; 1; 0/; .1; 1; 13/g � R3:

This is called the Reeve’s tetrahedron. It is not difficult to prove that the above is
a lattice polytope of dimension 3. Thus, we know that ehr.T; t / is a polynomial of
degree 3. We can translate the above to an inequalities description of the polytope and
count by hand the number of lattice points that lie in T, 2T, 3T and 4T and see that
these quantities are respectively 4, 22, 68 and 155. By interpolating, we can see that

ehr.T; t / D 13
6
t3 C t2 � 1

6
t C 1: (2.1)

Also:
h�.T; x/ D 12x2 C 1:

Observe that the Ehrhart polynomial of T has a negative coefficient.

One of the main reasons that we pay attention to the h�-polynomial is the following
important result by Stanley [Sta93].
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Theorem 2.1.5 Let P � Rn be a lattice polytope. The Ehrhart h�-vector of P has
non-negative integer entries.

Observe that in general the coefficients of the Ehrhart polynomial are rational
and, moreover, they can be negative, as we have seen in Equation (2.1). Hence, in
many situations it is more desirable to deal with (or to understand) the h�-polynomial
of a polytope P instead of its Ehrhart polynomial. There are, however, geometric
interpretations for three of the coefficients of Ehrhart polynomials.

Recall that the relative volume of a lattice polytope P of dimension d in Rn is
defined as the volume of P with respect to the sublattice aff.P/ \ Zd . For example,
the segment with endpoints .0; 0/ and .3; 3/ has relative volume 3 (and not

p
18), as

we must restrict ourselves to the sublattice Z.1; 1/.

Theorem 2.1.6 Let P � Rn be a polytope of dimension d . Then

Œtd � ehr.P; t / D vol.P/;
Œtd�1� ehr.P; t / D 1

2
vol.@P/;

Œt0� ehr.P; t / D 1;

where vol stands for relative volumes.

As we mentioned, from the work of McMullen [McM77] it follows that there are
formulas for all the coefficients in terms of relative volumes of certain faces of the
polytope. However, such expressions are not easy to deal with.

Another basic result is the so-called reciprocity. It establishes a relation between
the number of lattice points on the relative interior of the dilations of P and the Ehrhart
polynomial of P evaluated at negative integers.

Theorem 2.1.7 (Macdonald’s Reciprocity) Let P � Rn be a lattice polytope of di-
mension d . The number of integer points in the relative interior of tP is given by

ehr.Pı; t / WD .�1/d ehr.P;�t /:

This is part of a family of combinatorial-reciprocity theorems, see the book [BS18]
by Beck and Sanyal for a beautiful and detailed treatment of this topic. We formulate
now some of the consequences of the reciprocity theorem.

Proposition 2.1.8 Let P � Rn be a lattice polytope of dimension d . Then

deg h�.P; x/ D m;

where .d �mC 1/P is the smallest integer dilation of P that contains a lattice point
in its relative interior.

Also, we have an interpretation for the value of the h�-polynomial evaluated at
x D 1.
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Proposition 2.1.9 Let P � Rn be a lattice polytope of dimension d . Then

h�.P; 1/ D
1

dŠ
vol.P/:

2.2 Ehrhart positivity and some conjectures
Some of the principal open problems in Ehrhart theory are given by the following
questions:

� Which polynomials arise as the Ehrhart polynomial of some polytope?

� When does the Ehrhart polynomial of a polytope have positive coefficients?

� Are there combinatorial interpretations for the coefficients of the h�-polynomial
of a polytope?

� When is the h�-vector of a polytope unimodal?

� When do two polytopes have the same Ehrhart polynomial?

Providing answers to these questions is a challenging task even in low dimensions.
In this dissertation we will be primarily concerned with the question regarding the
positivity of the Ehrhart coefficients of polytopes.

We have established that

ehr.P; t / D vol.P/td C
1

2
vol.@P/td�1 C : : :C 1; (2.2)

where vol is the function that associates to a lattice polytope its relative volume.
Equation (2.2) exhibits explicitly that the coefficients of degrees d , d � 1 and

0 of the Ehrhart polynomial of a polytope P of dimension d are always positive.
Unfortunately, the coefficients accompanying the terms of degrees 1; : : : ; d �2 are not
as well-understood. Although it is possible to derive general formulas for each of the
coefficients of ehr.P; t /, they are of a much more complicated nature.

As we saw in equation (2.1), some of the remaining coefficients can be negative
when one deals with a general lattice polytope. Even when one restricts to the family
of 0=1-polytopes, it is possible to construct examples of polytopes that have negative
Ehrhart coefficients [LT19].

When P is an integral polytope such that ehr.P; t / has positive coefficients, we say
that P is Ehrhart positive. A main reference about Ehrhart positivity is Fu Liu’s survey
[Liu19].

One of the main open problems in this framework was a conjecture posed in 2007
by De Loera, Haws and Köppe [DHK09].

Conjecture 2.2.1 If M is a matroid and P.M/ is its basis polytope, then P.M/ is
Ehrhart positive.

In 2015 Castillo and Liu posed the following stronger conjecture [CL18].
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Conjecture 2.2.2 If P is an integral generalized permutohedron, then P is Ehrhart
positive.

Since by Theorem 1.2.22 every independence matroid polytope is integrally equiv-
alent to an integral generalized permutohedron, Conjecture 2.2.2 implies that also all
independence matroid polytopes are Ehrhart positive.

There was much evidence to support these two conjectures. In [Pos09], Postnikov
gave a proof of the fact that all the members of a quite large family of generalized
permutohedra, which he called Y-generalized permutohedra, were Ehrhart positive.
This family, although very general, does not contain the family of matroid polytopes
as a subclass.

In the same paper in which they conjectured the Ehrhart positivity of generalized
permutohedra, Castillo and Liu proved that the Ehrhart coefficients of degree d � 2
and d � 3 of a generalized permutohedron are always positive. In [CL21] they also
proved that the linear coefficient is always positive. The following is a summary of
their results.

Proposition 2.2.3 Let P be an integral generalized permutohedron of dimension d �
3, and let ehr.P; t / denote its Ehrhart polynomial. Then

� Œt1� ehr.P; t / is positive.

� Œtd�2� ehr.P; t / is positive.

� Œtd�3� ehr.P; t / is positive.

Also, if dimP D d � 6, then P is Ehrhart positive.

Another proof of the positivity of the linear term was independently found by
Jochemko and Ravichandran in [JR21].

With a direct software computation, it was also verified that for every matroidM
with at most 9 elements, both its basis polytope P.M/ and its independence polytope
PI.M/ were Ehrhart positive.

More evidence was provided by two of our main results. In Chapter 3 we will
prove the following.

Theorem2.2.4 IfM is a uniformmatroid, thenP.M/ andPI.M/ are Ehrhart positive.

In Chapter 4 we will also prove that

Theorem 2.2.5 IfM is a matroid of rank 2, then P.M/ is Ehrhart positive.

However, in spite of all the aforementioned evidence, we will disprove Conjectures
2.2.1 and 2.2.2. In fact, wewill show that there exist counterexamples with any possible
rank greater than 2.
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Theorem 2.2.6 For every k � 3 there exists a connected matroid of rank 3 such that
P.M/ is not Ehrhart positive.

2.3 Basic results for matroids
The goal of this section is to establish a few very basic results on the Ehrhart theory of
matroids. By doing this, we will be able to reveal some of the most fundamental facts
about these polytopes and justify that sometimes we pay attention only to connected
matroids.

Theorem 2.3.1 LetM DM1 ˚M2 be a matroid. Then

ehr.P.M/; t/ D ehr.P.M1/; t/ � ehr.P.M2/; t/;

and
ehr.PI.M/; t/ D ehr.PI.M1/; t/ � ehr.PI.M2/; t/:

Proof. This is a consequence of Proposition 1.2.7 and the fact that the Ehrhart poly-
nomial of a product of polytopes is the product of the Ehrhart polynomials of each of
them.

The following result is useful for example to predict what the degree of the Ehrhart
polynomial of a matroid polytope will be.

Proposition 2.3.2 LetM be a loopless matroid on n elements. Then

(a) deg ehr.P.M/; t/ D n � c.M/, where c.M/ denotes the number of connected
components ofM .

(b) deg ehr.PI.M/; t/ D n.

Proof. Both statements are consequence of the fact that the degree of the Ehrhart
polynomial of a polytope is its dimension. Recall that the dimension of the basis
polytope of a matroid on n elements is precisely n � c.M/ by Theorem 1.2.9, while
the dimension of the independence polytope is n (whenM is loopless) by Proposition
1.2.13.

Another operation that behaves well with Ehrhart polynomials is matroid duality.

Proposition 2.3.3 LetM be a matroid. Then

ehr.P.M/; t/ D ehr.P.M �/; t/:

Proof. Proposition 1.2.6 tells us that P.M/ and P.M �/ are one obtained from of the
other by an involution that is an integral equivalence. Hence, their Ehrhart polynomials
must coincide.
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Remark 2.3.4. Let M a matroid of cardinality n and rank k. Since the Ehrhart
polynomial of P.M/ is equal to that of P.M �/, when speaking about basis polytopes,
it suffices to restrict ourselves only to the case on which 2k � n.

It is natural to ask about the degree of the h�-polynomials. A somewhat brief
description of such degrees exists for independence polytopes of matroids.

Proposition 2.3.5 Let M be a loopless matroid on E D f1; : : : ; ng. Let m be the
minimum positive integer such that mPıI .M/ \ Zn ¤ ∅. Then

m D 1C max
F 2F.M/

�
jF j

rk.F /

�
: (2.3)

Moreover, the maximum can be taken over all inseparable flats.

Proof. Let us call m0 D maxF 2F.M/

j
jF j

rk.F /

k
and let us call m the least integer such

that mPI.M/ contains an interior lattice point.
Assume thatmPıI .M/ contains a lattice point p D .p1; : : : ; pn/ in its interior. We

claim that the point eE D .1; : : : ; 1/ is in the interior of the polytope too. Observe
that by the description of PI.M/ given in 1.2.15 and by Remark 1.2.17, we have that
xi � 0 is a facet. In particular it has to be pi > 0 for each i D 1; : : : ; n. Now, observe
that if we decrease any coordinate of p while leaving it positive, the point still satisfies
all the inequalities that define PI.M/. This proves that eE 2 PıI .M/.

Now, the fact that eE … .m � 1/PıI .M/ gives;

jF j D
X
i2F

1 � .m � 1/ rk.F / for some (inseparable) F 2 F.M/:

Choose any such a flat. Observe that
j
jF1j

rk.F1/

k
� m0. So that m � 1 � m0. Also, since

eE 2 mP
ı
I .M/, we have that

jF j D
X
i2F

1 < m � rk.F / for all (inseparable) F 2 F.M/:

This yields that m0 < m. It follows that m0 C 1 D m, as we claimed.

Corollary 2.3.6 If M is a loopless matroid on n elements, the degree of the h�-
polynomial of PI.M/ is exactly n �mC 1 where m is given by (2.3).

Proof. It follows from Proposition 2.1.8 and the result above.

Corollary 2.3.7 LetM be a looplessmatroid. Letm be as in (2.3). Then ehr.PI.M/; t/

is divisible by the polynomial .t C 1/.t C 2/ � � � .t Cm � 1/.

Proof. Since ehr.PıI .M/; j / D 0 for j D 1; : : : ; m � 1, by the Macdonald’s reci-
procity, we get that such values of j are zeros of ehr.PI.M/; t/.





CHAPTER 3
The Ehrhart polynomial of the

hypersimplex

The leit motiv of this thesis are the Ehrhart polynomials of matroid polytopes. In some
sense, the first nontrivial example of matroid polytope that one encounters is that of
hypersimplices. Recall that in Proposition 1.2.5 we proved that the hypersimplex�k;n
is the basis polytope of the uniform matroid Uk;n. In this chapter we will prove that
all hypersimplices are Ehrhart positive and that the same holds for the independence
polytopes of all uniform matroids. Moreover, we will give a combinatorial formula
for each of the coefficients of ehr.�k;n; t /. This was classified as an open problem in
Richard Stanley’s book Enumerative Combinatorics [Sta12, Ch. 4, Problem 62].

It is worth noting that according to [Sta77] the calculation of the leading coefficient
of these polynomials (it is, the normalized volume of the hypersimplex) dates back
to Laplace, though apparently he did not do it explicitly. The leading coefficients of
ehr.�k;n; t /, after multiplying by .n � 1/Š, are what in the literature mathematicians
call Eulerian numbers and they are usually denoted by A.n� 1; k � 1/. This quantity
counts the number of permutations on n � 1 elements with exactly k � 1 descents
[Sta12, GKP94]. Thanks to the fact that the second highest coefficient of an Ehrhart
polynomial is half the sum of volumes of the facets of the polytope, and the facets of a
hypersimplex are smaller hypersimplices, there existed also a combinatorial interpre-
tation of the second highest coefficient in terms of Eulerian numbers. The remaining
coefficients remained elusive.

There exists interpretations for the coefficients of the h�-polynomial of the hyper-
simplex. In [Li12], Li introduced the half-open hypersimplices and proved a conjecture
of Stanley on the interpretation of their h�-vector. Also, more recently Early conjec-
tured and Kim proved [Ear17, Kim20] a different combinatorial interpretation of the
coefficients h�-polynomial of all hypersimplices. We will not say much about the
h�-polynomial of hypersimplices here, but we will discuss ramifications and further
directions of research in the last chapter of this dissertation.

35
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3.1 Katzman’s formula
In [Kat05] Katzman found an explicit formula for the Ehrhart polynomial of �k;n,
in the context of algebras of Veronese type. In [DHK09, Lemma 29] De Loera et
al. used this formula to prove that hypersimplices �2;n have an Ehrhart polynomial
with positive coefficients. Their proof is based on inequalities using properties of the
binomial coefficients. We will prove Katzman’s formula by using generating functions
and we will use it to deduce the Ehrhart positivity of all hypersimplices.

Theorem 3.1.1 The Ehrhart polynomial of the hypersimplex �k;n is given by

ehr.�k;n; t / D
k�1X
jD0

.�1/j
�
n

j

��
.k � j /t C n � 1 � j

n � 1

�
: (3.1)

It is not at all apparent from this formula that the coefficients of ehr.�k;n; t / are
positive. Indeed the alternating factor .�1/j and the fact that the variable t appears
inside a binomial coefficient which in turn for j > 1 is a polynomial with some
negative coefficients do not permit us to see this fact directly. Before proving Theorem
3.1.1 we establish a useful Lemma.

Lemma 3.1.2 If 1 � k � n�1 and t � 0, then the coefficient of xkt in the polynomial
.1C x C x2 C � � � C xt/n is exactly ehr.�k;n; t /.

Proof. By definition, the polynomial ehr.�k;n; t / counts the number of elements in
the set t�k;n \ Zn. This set can be rewritten as:(

y 2 f0; 1; : : : ; tgn W

nX
iD1

yi D kt

)
:

But notice that the coefficient of xkt in the product

.1C x C x2 C � � � C xt/n D .1C x C x2 C � � � C xt/ � � � .1C x C x2 C � � � C xt/„ ƒ‚ …
n times

is exactly the number of ways of choosing a sequence of n elements in the set
f0; 1; : : : ; tg in such a way that their sum is exactly kt . That is exactly the cardi-
nality of our set.

Recall that if one has a (formal) power series f .x/ WD
P1
jD0 ajx

j , it is customary
to use the notation Œx`�f .x/ WD a`.

Proof of Theorem 3.1.1. We will use generating functions to compute the coefficient
of xkt in .1C x C � � � C xt/n and then we will use the preceding Lemma. Notice that

Œxkt �
�
1C x C � � � C xt

�n
D Œxkt �

�
1 � xtC1

1 � x

�n
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D Œxkt �

�
.1 � xtC1/n �

1

.1 � x/n

�
So writing .1� xtC1/n D

Pn
jD0.�1/

j
�
n

j

�
x.tC1/j and 1

.1�x/n
D
P1
jD0

�
n�1Cj

n�1

�
xj , the

coefficient of xkt in this product can be computed as a convolution:

k�1X
jD0

.�1/j
�
n

j

��
n � 1C .k � j /t � j

n � 1

�
;

where the sum ends in k � 1 since in the first of our two formal series we have x.tC1/j
and we are computing the coefficient of xkt . Also, the second binomial coefficient in
our expression comes from the fact that .t C 1/j C ..k � j /t � j / D kt .

3.2 Weighted Lah Numbers
In this section we develop some useful tools to prove the Ehrhart positivity of �k;n.
We recall the definition of the Lah numbers (also known as Stirling Numbers of the
3rd kind).

Definition 3.2.1. The Lah number L.n;m/ is defined as the number of ways of
partitioning the set f1; 2; : : : ; ng in exactly m linearly ordered blocks. We will denote
the set of all such partitions by L.n;m/.

Example 3.2.2. L.3; 2/ D 6 because we have the following possible partitions:

f.1; 2/; .3/g; f.2; 1/; .3/g;

f.1; 3/; .2/g; f.3; 1/; .2/g;

f.2; 3/; .1/g; f.3; 2/; .1/g:

If � is a partition of f1; : : : ; ng inm linearly ordered blocks, for any of these blocks
b, we will write b 2 � . So, for example .2; 3/ 2 f.2; 3/; .1/g. Also, we will use the
notation jbj to denote the number of elements in b.

Remark 3.2.3. We have the equality L.n;m/ D nŠ
mŠ

�
n�1

m�1

�
. This can be proven easily

by a combinatorial argument as follows. Order the n numbers on the set in any fashion.
To get the partition we can put m � 1 divisions in any of the n � 1 spaces between
two consecutive numbers. Then divide by mŠ, the number of ways of ordering all the
blocks.

There already exist some generalizations of these numbers. We will introduce a
new one that we will call weighted Lah numbers.

Definition 3.2.4. Let � be a partition of the set f1; : : : ; ng into m linearly ordered
blocks. We define the weight of � by the following formula:

w.�/ WD
X
b2�

w.b/;
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where w.b/ is the number of elements in b that are smaller (as positive integers) than
the first element in b.

Example 3.2.5. Among the 6 partitions that we have seen that exist of f1; 2; 3g into 2
blocks, we have:

w.f.1; 2/; .3/g/ D 0C 0 D 0; w.f.2; 1/; .3/g/ D 1C 0 D 1;

w.f.1; 3/; .2/g/ D 0C 0 D 0; w.f.3; 1/; .2/g/ D 1C 0 D 1;

w.f.2; 3/; .1/g/ D 0C 0 D 0; w.f.3; 2/; .1/g/ D 1C 0 D 1:

Note that there are exactly 3 of these partitions of weight 0 and exactly 3 of weight 1.

Definition 3.2.6. We define the weighted Lah Numbers W.`; n;m/ as the number of
partitions of weight ` of f1; : : : ; ng into exactly m linearly ordered blocks.

Example 3.2.7. Rephrasing the conclusion of theExample 3.2.5, we have thatW.0; 3; 2/ D
3 and W.1; 3; 2/ D 3.

m

1 24 24 24 24 24
2 50 70 70 50
3 35 50 35
4 10 10
5 1

0 1 2 3 4
`

Table 3.1: W.`; 5;m/

m

1 120 120 120 120 120 120
2 274 404 444 404 274
3 225 375 375 225
4 85 130 85
5 15 15
6 1

0 1 2 3 4 5
`

Table 3.2: W.`; 6;m/

The set of all partitions of f1; : : : ; ng into m linearly ordered blocks and weight `
will be denoted by W.`; n;m/.

Remark 3.2.8. Observe thatW.`; n;m/ ¤ 0 only for 0 � ` � n�m. This is because
the maximum weight can be obtained by ordering every block in such a way that its
maximum element is on the first position. Also, we have the following:

W.0; n;m/ D

�
n

m

�
;

where the brackets denote the (unsigned) Stirling numbers of the first kind [GKP94].
This can be proven combinatorially by noticing that for every permutation with exactly
m cycles, we can present it in a unique way as a partition of f1; : : : ; ng into m linearly
ordered blocks having every block its minimum element in the first position.
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Remark 3.2.9. We have symmetry, namely:

W.`; n;m/ D W.n �m � `; n;m/:

This equality is a consequence of the fact that for � 2 W.`; n;m/ we can associate
bijectively an element � 0 2 W.n � m � `; n;m/ as follows. In � interchange the
positions of 1 and n, of 2 and n� 1, and so on. What one gets is exactly a partition of
weight n �m � `.

Some recurrences

It is possible to obtain many recurrences to compute W.`; n;m/ recursively. For
instance we include the following:

Proposition 3.2.10 The following recurrence holds for n;m � 2:

W.`; n;m/ D .n � 1/W.` � 1; n � 1;m/C

n�1X
jD0

�
n � 1

j

�
j ŠW.`; n � 1 � j;m � 1/:

Proof. Every � 2 W.`; n;m/ has the number 1 inside a block. If this number is not
the first element of its block, this means that if we remove it from � we end up getting
an element of W.` � 1; n � 1;m/ (with every element shifted by one). Analogously,
we can pick an element of W.` � 1; n � 1;m/ (which we think of as having every
element shifted by one) and reconstruct an element of W.`; n;m/ by adjoining the
element 1 in such a way that it is not the first element of a block. There are n � 1
possibilities of where to put the number 1 to get an element of W.`; n;m/. So we get
the first summand.

The remaining cases to consider are those in which 1 is the first element of its block.
In this case we choose j elements to be in this block, and in every possible order of
these elements, the block will always have weight 0. So the remaining n � j � 1
elements will have to be arranged in m � 1 blocks of total weight `.

Remark3.2.11. The last proposition tells us that ifwemake the subtractionW.`; n;m/�
.n� 1/W.`; n� 1;m/ we end up getting an expression for which the sum cancels out
to give just the recurrence:

W.`; n;m/ D .n � 1/W.` � 1; n � 1;m/C .n � 1/W.`; n � 1;m/

CW.`; n � 1;m � 1/ � .n � 1/.n � 2/W.` � 1; n � 2;m/:

We take the opportunity to state and prove two additional results that we will need
in the sequel.

Proposition 3.2.12 The following recurrence holds for n;m � 2:

W.`; n;m/ D .n � 1/W.`; n � 1;m/C

n�1X
jD0

�
n � 1

j

�
j ŠW.` � j; n � 1 � j;m � 1/:
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Proof. Every � 2 W.`; n;m/ has the number n inside a block. If this number is not
the first element of its block, this means that if we remove it from � we end up getting
an element ofW.`; n�1;m/. Analogously, we can pick an element ofW.`; n�1;m/
and reconstruct an element of W.`; n;m/ by adjoining the element n in such a way
that it is not the first element of a block. There are n � 1 possibilities of where to put
the number n to get an element ofW.`; n;m/. So we get the first summand.

The remaining cases to consider are those in which n is the first element of its block.
In this case we choose j elements to be in this block, and in every possible order of
these elements, the block will always have weight j . So the remaining n � j � 1
elements will have to be arranged in m � 1 blocks of total weight ` � j .

Corollary 3.2.13 For each 2 � m � n and 0 � ` � n �m one has:

W.`; n;m/ > .n � 1/W.`; n � 1;m/:

Proof. From the preceding Proposition, it suffices to show that at least one term of the
sum:

n�1X
jD0

�
n � 1

j

�
j ŠW.` � j; n � 1 � j;m � 1/;

is nonzero. Notice that taking j D ` in the above sum yields the term:�
n � 1

`

�
`ŠW.0; n � 1 � `;m � 1/:

Notice that W.0; n � 1 � `;m � 1/ > 0 under the constraints on `, n, and m. In fact,
by Remark 3.2.8 we know that it is equal to an unsigned Stirling number of the first
kind.

A generating function for W.`; n;m/

We establish now a bivariate generating function for W.`; n;m/ for a fixed m.

Theorem 3.2.14 We have the equality:

W.`; n;m/ D
nŠ

mŠ
Œxns`�

�
1

.1�s/m

�
log

�
1
1�x

�
� log

�
1

1�sx

��m�
Proof. Notice that it suffices to prove that

W.`; n;m/ D
nŠ

mŠ
Œxns`�

 
1X
kD1

xk

k
.1C s C � � � C sk�1/

!m
: (3.2)

This is because using the formula for the geometric series, the sum in the parentheses
can be rewritten as 1

1�s

�P1
kD1

xk

k
�
P1
kD1

.sx/k

k

�
which in turn is just

1

1 � s

�
log

�
1

1 � x

�
� log

�
1

1 � sx

��
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which gives the desired result. Now, to prove (3.2) we proceed as follows. First notice
that

mŠW.`; n;m/ D
X
��

X
.j1;:::;jm/2Zm

j1C���CjmD`
0�ji<jbi j

mY
iD1

.jbi j � 1/Š (3.3)

where the first sum runs over all the orderings �� D .b1; : : : ; bm/ of all elements
� D fb1; : : : ; bmg 2 L.n;m/. This comes from the fact that for every such �� , if
we choose how much weight to assign to each of the blocks, each block has its first
element determined, and the remaining elements can be reordered in any fashion. Of
course, this way we count every element of W.`; n;m/ exactly mŠ times. Taking out
the product out of the second sum above, we get:

mŠW.`; n;m/ D
X
��
 
mY
iD1

.jbi j � 1/Š

! ˇ̌̌̌
ˇ
(
.j1; : : : ; jm/ 2 Zm W

mX
iD1

ji D `; 0 � ji < jbi j

)ˇ̌̌̌
ˇ

D

X
��
 
mY
iD1

.jbi j � 1/Š

!
Œs`�

0@ mY
iD1

jbi j�1X
jD0

sj

1A
D Œs`�

X
��
0@ mY
iD1

.jbi j � 1/Š

jbi j�1X
jD0

sj

1A
Notice that the term inside the last sum does not take into account the whole element�� D .b1; : : : ; bm/, but only the size jbi j of each block. Thus, if we fix the sizes
jb1j; : : : ; jbmj of the blocks, we can recover exactly how many elements�� have blocks
of such sizes. Using multinomial coefficients, and abusing notation to write bi D jbi j:

mŠW.`; n;m/ D Œs`�
X

.b1;:::;bm/2Zm

b1C���CbmDn
bi�0

�
n

b1; : : : ; bm

�0@ mY
iD1

.bi � 1/Š

bi�1X
jD0

sj

1A

D Œs`�
X

.b1;:::;bm/2Zm

b1C���CbmDn
bi�0

nŠ

0@ mY
iD1

1

bi

bi�1X
jD0

sj

1A

D Œs`xn�nŠ

 
nX
kD1

xk

k
.1C s C � � � C sk�1/

!m
;

which proves (3.2).

Corollary 3.2.15 For all `; n;m one has:

W.`; n;m/ D
X̀
jD0

n�mX
iD0

.�1/iCj
�
n

j

��
mC ` � j � 1

m � 1

��
j

j � i

��
n � j

mC i � j

�
:



42 Chapter 3. The Hypersimplex

Proof. From the exponential generating function of the Stirling numbers of the first
kind [GKP94, pg. 351] one has:�

˛

ˇ

�
D
˛Š

ˇŠ
Œx˛�

�
log

�
1
1�x

��ˇ
:

Now, using Theorem 3.2.14, we have the chain of equalities:

W.`; n;m/ D
nŠ

mŠ
Œxns`�

�
1

.1�s/m

�
log

�
1
1�x

�
� log

�
1

1�sx

��m�
D
nŠ

mŠ
Œxns`�

 
1

.1 � s/m

mX
kD0

.�1/k
�m
k

� �
log

�
1
1�x

��m�k �log � 1
1�sx

��k!

D nŠŒxns`�

 
1

.1 � s/m

mX
kD0

.�1/k
log

�
1
1�x

�m�k
.m � k/Š

log
�

1
1�sx

�k
kŠ

!

D nŠŒs`�

0@ 1

.1 � s/m

mX
kD0

.�1/k
nX

jD0

Œxn�j �

 
log

�
1
1�x

�m�k
.m � k/Š

!
Œxj �

 
log

�
1

1�sx

�k
kŠ

!1A
D nŠŒs`�

0@ 1

.1 � s/m

mX
kD0

.�1/k
n�mCkX
jDk

Œxn�j �

 
log

�
1
1�x

�m�k
.m � k/Š

!
Œxj �

 
log

�
1

1�sx

�k
kŠ

!1A
D nŠŒs`�

0@ 1

.1 � s/m

mX
kD0

.�1/k
n�mCkX
jDk

1

.n � j /Š

�
n � j

m � k

�
1

j Š
sj
�
j

k

�1A
D Œs`�

0@ 1

.1 � s/m

mX
kD0

n�mCkX
jDk

.�1/k
�
n

j

�
sj
�
n � j

m � k

��
j

k

�1A
D Œs`�

0@ 1

.1 � s/m

nX
jD0

jX
kDj�mCn

.�1/k
�
n

j

�
sj
�
n � j

m � k

��
j

k

�1A
D Œs`�

0@ 1

.1 � s/m

nX
jD0

n�mX
iD0

.�1/j�i
�
n

j

��
n � j

mC i � j

��
j

j � i

�
sj

1A
D

X̀
jD0

n�mX
iD0

.�1/j�i
�
n

j

��
m � 1C ` � j

m � 1

��
n � j

mC i � j

��
j

j � i

�
where in the fifth equation we changed the limits from 0 � j � n to k � j �

n � m C k given that the coefficients of the first factor inside the sum are zero for
degree n� j < m�k and the coefficients of the second factor are zero for j < k.

3.3 The Ehrhart positivity of the hypersimplex
For 0 � m � n � 1, we will call ek;n;m the coefficient of tm in the polynomial
ehr.�k;n; t /. Our aim is to show that all these ek;n;m are positive.
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For a; b; u integer numbers such that u � 0, we will denote P u
a;b

the sum of all
possible products of u different integer numbers chosen in the interval of integers
Œa; b�. This is:

P ua;b WD
X

a�x1<:::<xu�b

x1 � � � xu:

It is easy to see that for a D 1 one gets:

P u1;b D

�
b C 1

b C 1 � u

�
: (3.4)

Lemma 3.3.1 The following formula holds:

ek;n;m D
1

.n � 1/Š

k�1X
jD0

n�m�1X
iD0

.�1/iCj
�
n

j

�
.k � j /m

�
n � j

mC 1C i � j

��
j

j � i

�
:

Proof. We will work with the formula (3.1). Observe that

Œtm�

�
.k � j /t C n � 1 � j

n � 1

�
D

1

.n � 1/Š
Œtm� ...k � j /t C n � 1 � j / � � � ..k � j /t C 1 � j //

D
1

.n � 1/Š
.k � j /mP n�1�m1�j;n�1�j ;

Observe that one has the following equality:

P n�1�m1�j;n�1�j D

n�m�1X
iD0

P i1�j;�1P
n�1�m�i
1;n�1�j

D

n�m�1X
iD0

.�1/iP i1;j�1P
n�1�m�i
1;n�1�j :

Therefore, using (3.4) we have that

P n�m�11�j;n�1�j D

n�m�1X
iD0

.�1/i
�

j

j � i

��
n � j

mC 1C i � j

�
;

so, in particular,

Œtm�

�
.k � j /t C n � 1 � j

n � 1

�
D

1

.n � 1/Š

n�m�1X
iD0

.�1/i.k�j /m
�

j

j � i

��
n � j

mC 1C i � j

�
:

The result follows easily from (3.1) and this last identity.

Remark 3.3.2. If we use the shorter name

fj;n;m WD

n�m�1X
iD0

.�1/i
�

j

j � i

��
n � j

mC 1C i � j

�
;
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we can rewrite the formula of Lemma 3.3.1 as follows:

ek;n;m D
1

.n � 1/Š

kX
jD0

.�1/j
�
n

j

�
.k � j /mfj;n;m; (3.5)

where we changed the upper limit of the sum since, when j D k, we are adding 0.

Now we are ready to state and prove the main result of this chapter. We establish
a formula for the coefficients of the Ehrhart polynomial of all hypersimplices by using
the weighted Lah numbers and the Eulerian numbers.

Theorem 3.3.3 For all hypersimplices �k;n and 0 � m � n � 1, we have that

Œxm� ehr.�k;n; t / D
1

.n � 1/Š

k�1X
`D0

W.`; n;mC 1/A.m; k � ` � 1/;

In particular all hypersimplices are Ehrhart positive.

Proof. From equation (3.5) we can see that

ek;n;m D
1

.n � 1/Š
Œxk�Fn;m.x/ �Gm.x/;

where Fn;m.x/ WD
Pn
jD0.�1/

j
�
n

j

�
fj;n;mx

j and Gm.x/ WD
P1
jD0 j

mxj . It is a well
known consequence of the Worpitzky Identity [GKP94] that

Gm.x/ D
1

.1 � x/mC1

mX
jD0

A.m; j /xjC1;

where A.m; j / an Eulerian number, the number of permutations of m elements with
exactly j descents.

So we have that the product Fn;m.x/ �Gm.x/ is equal to:

1

.1 � x/mC1
Fn;m.x/

mX
jD0

A.m; j /xjC1:

We compute the product of the first two factors. Let:

Cn;m.x/ WD
1

.1 � x/mC1
Fn;m.x/;

and observe that

Œx`�Cn;m.x/ D Œx
`�

�
1

.1 � x/mC1
Fn;m.x/

�
D

X̀
jD0

.�1/j
�
n

j

�
fj;n;m

�
mC ` � j

m

�
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D

X̀
jD0

n�m�1X
iD0

.�1/iCj
�
n

j

��
mC ` � j

m

��
j

j � i

��
n � j

mC 1C i � j

�
D W.`; n;mC 1/:

where in the last step we used Corollary 3.2.15. In particular Cn;m.x/ is a polynomial,
and the result now follows computing the product Cn;m.x/ �

Pm
jD0A.m; j /x

jC1 to get
the identity of the statement.

Remark 3.3.4. As a consequence of our formula, we have:

Œtn�1� ehr.�k;n; t / D
1

.n � 1/Š

k�1X
`D0

W.`; n; n/A.n � 1; k � ` � 1/

D
1

.n � 1/Š
W.0; n; n/A.n � 1; k � 1/

D
1

.n � 1/Š
A.n � 1; k � 1/;

which was Laplace’s result, proved also by Stanley [Sta77].

3.4 The independence polytope of the uniform
matroid

Recall that in Example 1.2.18we showed that the independence polytope of the uniform
matroid Uk;n is given by

PI.Uk;n/ D

(
x 2 Œ0; 1�n W

nX
iD1

xi � k

)
: (3.6)

By following almost the same steps of the proof of Theorem 3.1.1, we can find a
formula for the Ehrhart polynomial of this polytope that looks like Katzman’s formula
for the hypersimplex.

Theorem 3.4.1 The Ehrhart polynomial of PI.Uk;n/ is given by

ehr.PI.Uk;n/; t/ D

k�1X
jD0

.�1/j
�
n

j

��
.k � j /t C n � j

n

�
: (3.7)

Proof. By definition we have that

ehr.PI.Uk;n/; t/ D #

(
y 2 f0; : : : ; tgn W

nX
iD1

yi � kt

)
:



46 Chapter 3. The Hypersimplex

In other words, we see that ehr.PI.Uk;n/; t/ is just the following:

ehr.PI.Uk;n/; t/ D

ktX
mD0

Œxm�.1C x C � � � C xt/n:

Thus, by reasoning as in the proof of Theorem 3.1.1, we have:

ehr.PI.Uk;n/; t/ D

ktX
mD0

Œxm�

�
1 � xtC1

1 � x

�n
D

ktX
mD0

mX
jD0

.�1/j
�
n

j

��
n � 1C .m � .t C 1/j /

n � 1

�
D

ktX
jD0

ktX
mDj

.�1/j
�
n

j

��
n � 1C .m � .t C 1/j /

n � 1

�
D

ktX
jD0

.�1/j
�
n

j

� ktX
mDj

�
n � 1C .m � .t C 1/j /

n � 1

�

D

ktX
jD0

.�1/j
�
n

j

� kt�jX
mD0

�
n � 1 � tj Cm

n � 1

�
D

ktX
jD0

.�1/j
�
n

j

��
nC .k � j /t � j

n

�
D

k�1X
jD0

.�1/j
�
n

j

��
nC .k � j /t � j

n

�
;

where we used the Hockey-stick identity, which is stated in the appendix as Lemma
A.0.1, and in the last step we changed the upper limit to avoid summing zeros.

In [Li12], Li introduced the so-called half-open hypersimplices �0
k;n

:

�0k;n WD

(
x 2 Œ0; 1�n�1 W k � 1 <

n�1X
iD1

xi � k

)
: (3.8)

for k > 1 and �01;n WD �1;n. This was done in the context of studying the h�-
polynomial of the hypersimplex �k;n. Observe that although �0k;n is a polytope with
some missing facets, the function that counts the number of lattice points in each
integral dilation of �0

k;n
is still a polynomial. This can be proven by means of a

simple inclusion-exclusion argument. Hence, it makes sense to talk about the Ehrhart
polynomial of �0

k;n
, which we will denote by ehr.�0

k;n
; t /.

An interesting property of these half-open hypersimplices is that

PI.Uk;n/ D �
0
1;nC1 t�

0
2;nC1 t � � � t�

0
k;nC1; (3.9)
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where the symbol t stands for disjoint union. Hence, if we prove that each of these
half-open hypersimplices is Ehrhart positive, we can conclude so for the independence
matroid polytope of the uniform matroid Uk;n.

The Ehrhart polynomial of �0
k;n

can be calculated in terms of the Ehrhart polyno-
mials of two hypersimplices.

Proposition 3.4.2 If 1 < k < n � 1, then

ehr.�0k;n; t / D ehr.�k;n; t / � ehr.�k�1;n�1; t /:

Proof. Observe that the map � W �k;n ! Rn�1 that forgets the last coordinate is an
integral equivalence, and its image is given by

�.�k;n/ D

(
x 2 Œ0; 1�n�1 W k � 1 �

n�1X
iD1

xi � k

)
;

the set of points in Œ0; 1�n�1 that have sum of coordinates in the interval Œk � 1; k�.
The following decomposition

�.�k;n/ D �
0
k;n t�k�1;n�1;

yields an equality between Ehrhart polynomials:

ehr.�.�k;n/; t/ D ehr.�0k;n; t /C ehr.�k�1;n�1; t /;

and since � was an integral equivalence, we have that ehr.�.�k;n/; t/ D ehr.�k;n; t /,
from where the result follows.

Let us now prove that half-open hypersimplices are Ehrhart positive.

Theorem 3.4.3 Let us denote ehr.�0
k;n
; t / the Ehrhart polynomial of �0

k;n
. Then

Œtm� ehr.�0k;n; t / > 0 for all 1 � m � n � 1:

Also, the constant term is 1 for k D 1 and 0 for k > 1.

Proof. Notice that �01;n D �1;n, so the case k D 1 is already settled by the Ehrhart
positivity of hypersimplices.

From now on, consider 1 � m � n � 1. Proposition 3.4.2 says that we have to
prove:

ek;n;m > ek�1;n�1;m:

Since the hypersimplices �k;n and �n�k;n are one obtained from the other via an
integral equivalence, we also know that ek;n;m D en�k;n;m. This reasoning shows that
ek�1;n�1;m D en�k;n�1;m: So, it suffices to show that

en�k;n;m > en�k;n�1;m:
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However, setting for simplicity k0 D n�k and using equation (3.5), the last inequality
is equivalent to:

1

.n � 1/Š

k0�1X
`D0

W.`; n;mC1/A.m; k0�`�1/ >
1

.n � 2/Š

k0�1X
`D0

W.`; n�1;mC1/A.m; k0�`�1/

Which in turn is equivalent to prove that

k0�1X
`D0

�
1

n � 1
W.`; n;mC 1/ �W.`; n � 1;mC 1/

�
A.m; k0 � ` � 1/ > 0

And as we saw in Corollary 3.2.13, the term in the parentheses is positive, and thus
the proof is complete.

Theorem 3.4.4 The independence matroid polytope of the uniform matroid Uk;n is
Ehrhart positive.

Proof. From the disjoint decomposition of equation (3.9) it follows that

ehr .PI.Uk;n/ ; t/ D

kX
jD1

ehr.�0j;nC1; t /;

and hence, the independent term is 1, and the rest of them are positive because in each
summand on the right one has such positivity.



CHAPTER 4
Ehrhart polynomials of matroids

In Chapter 3 we discussed the case of uniform matroids and we proved that both P.M/

and PI.M/ are Ehrhart positive whenM is uniform.
Observe that ifM is a matroid on n elements and rank k, it holds that P.M/ is a

subpolytope of the hypersimplex�k;n D P.Uk;n/. In particular, for every nonnegative
integer t , one has the inequality:

ehr.P.M/; t/ � ehr.�k;n; t /:

On the other hand, an analogous reasoning shows that

ehr.PI.M/; t/ � ehr.PI.Uk;n/; t/:

We in fact conjecture that these inequalities are true coefficient-wise.

Conjecture 4.0.1 IfM is a connected matroid of rank k and cardinality n, then

� ehr.P.M/; t/ is coefficient-wise smaller than ehr.�k;n; t /.

� ehr.PI.M/; t/ is coefficient-wise smaller than ehr.PI.Uk;n/; t/.

This suggests that, as we have a matroid that presumably realises the maximum
Ehrhart coefficient at each degree, it might as well exist a matroid that realises the min-
imum coefficient-wise Ehrhart polynomial when looking only at connected matroids
of rank k, cardinality n. The requirement on the connectedness is put to guarantee
that the Ehrhart polynomials of the matroids will all have the same degree, and thus
it would make more sense to compare all of their coefficients. Notice that uniform
matroids are pretty natural candidates to realise the maximum, but for the minimum
we lack such a handy matroid. Experimenting with small values of n and k revealed
that the matroid realising the minimum coefficients seemed always to be the (unique)
matroid with the least number of bases.

In Section 4.1 we will describe our candidates which are coined minimal matroids,
prove a formula for their Ehrhart polynomials, and prove in Corollary 4.1.9 that they

49
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are Ehrhart positive. Minimal matroids play a prominent role in the construction of
counterexamples to the main Conjectures in Section 4.3. In particular, we see that
although these matroids were introduced to understand if they were the minimum
coefficient-wise Ehrhart, this in fact is no longer true for sufficiently large values of n
and k.

In Section 4.2 we will describe the operation of circuit-hyperplane relaxations and
prove a formula for the Ehrhart polynomial of all sparse paving matroids. This will
prove Conjecture 4.0.1 for this class of matroids.

In Section 4.3 we will disprove the Ehrhart positivity conjectures for matroids
(Conjecture 2.2.1) and hence for generalized permutohedra (Conjecture 2.2.2): for
every k � 3 there exists a connected matroid of rank k that has a negative Ehrhart
coefficient.

Finally, in Section 4.4 we will discuss the rank 2 case: we will find a formula for
the Ehrhart polynomial of all connected matroids of rank 2, and we will prove that
all of them are Ehrhart positive. Moreover, we will see that the minimal matroid and
the uniform matroid realise the minimum and the maximum coefficient-wise Ehrhart
polynomials.

4.1 Minimal matroids and relaxations

Minimal matroids and their polytopes

We start this section by recalling a result established independently in [Din71] and
[Mur71].

Theorem 4.1.1 If M is a connected matroid with n elements and rank k, then
jB.M/j � k.n�k/C1. Furthermore there is a unique (up to isomorphism) connected
matroid of size n and rank k for which equality is attained.

These matroids will be referred to as the minimal matroids. We proceed to a
realization of them. They happen to be indeed graphic matroids.

Proposition 4.1.2 Let Tk;n be the graph given by a cycle of length k C 1 where one
edge is replaced with n�k parallel copies. Then the matroid of Tk;n is connected, has
cardinality n, rank k and exactly k.n � k/C 1 bases.

Proof. We will use the name red edges when we refer to the n� k parallel edges as in
the statement. The remaining edges will be called black edges.
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Figure 4.1: T5;8

Observe that the matroid of Tk;n does indeed trivially satisfy the cardinality and
rank conditions: we have n elements in total and the maximal independent sets are
of cardinality k. It is also straightforward to verify that this graph is biconnected and
hence its matroid is connected.

Finally, since a basis of the matroid corresponds to a spanning tree on the graph,
we notice that we have two kind of spanning trees: those that contain just one red edge,
and those that contain none. In the first case, we can choose one among the n � k red
edges, and leave out one among of the k black edges. In the second case, no red edges
implies that the spanning tree must consist of all black edges. Thus, .n � k/k C 1 is
the total number of spanning trees.

Remark 4.1.3. It is clear from the uniqueness of the minimal matroid that the dual of
the minimal matroid Tk;n is isomorphic to Tn�k;n.

In all what follows we will use the name Tk;n for the matroid of the graph Tk;n.
This abuse of notation should not cause confusions.

Let us characterize all flats of the matroid Tk;n. Using the notation of the proof of
Proposition 4.1.2, we see that there are two types of flats in Tk;n: those that contain a
red edge (and hence all of them), and those that consist of only black edges.

We label all black edges with the numbers f1; 2; : : : ; kg and the red ones with the
numbers fk C 1; : : : ; ng.

� Those flats that contain all red edges, may contain any number m ¤ k � 1 of
black edges. It cannot contain exactly k � 1, since adding the remaining edge
will not increase the rank, thus contradicting the definition of flat. Hence there
are 2k � k such flats.

� Those flats that do not contain red edges may contain any proper subset of black
edges. Hence there are 2k � 1 such flats.

Using Proposition 1.2.10 we can formulate now a characterization ofP.Tk;n/ using
inequalities.
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Proposition 4.1.4 The polytope P.Tk;n/ is described with inequalities as

P.Tk;n/ D

(
x 2 Œ0; 1�n W

nX
iD1

xi D k and
nX

iDkC1

xi � 1

)
:

Proof. Among the flats that we have just described, notice that the inseparable ones are
the singletons and the set of all red edges. In other words, by using Theorem 1.2.10,
the result of the statement follows.

Remark 4.1.5. It is not true that the polytope of every connected matroid of rank k
and cardinality n contains a copy of P.Tk;n/. For example, let M be the matroid of
the following graph:

This matroid M has 8 bases, given that the graph has 8 spanning trees. It is
connected, has rank 2 and cardinality 5. Also, T2;5 has exactly 7 bases. There is no
way we can delete one basis from the setB.M/ and obtain the set of bases of a matroid
isomorphic to T2;5. At the level of polytopes, this means that no subset of 7 vertices
of P.M/ induces a polytope that is a copy of P.Tk;n/.

The Ehrhart polynomial of minimal matroids

In this section we give a formula for the Ehrhart polynomial of P.Tk;n/. Our proofs
are elementary and consist of several manipulations using combinatorial identities.
In the Appendix we include the proofs of some results that are used throughout our
computations. We remark that alternative proofs are possible using the language of
generalized hypergeometric functions and hypergeometric transformations [GKP94].

We start with our first formula for ehr.P.Tk;n/; t/. We will denote this polynomial
by Dk;n.t/. An equivalent version of this formula was found in [KMR18, Theorem
3.8].

Theorem 4.1.6 Let Dk;n.t/ 2 QŒt � be the Ehrhart polynomial of P.Tk;n/. Then the
following equality holds.

Dk;n.t/ D

k�1X
jD0

�
k � 1

j

��
n � k � 1

j

��
t C n � 1 � j

n � 1

�
:

Proof. Using Proposition 4.1.4, this is:

Dk;n.t/ D # .Zn \ tP.Tk;n//
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D #

(
x 2 Œ0; t �n W

nX
iD1

xi D tk and
nX

iDkC1

xi � t

)
:

To count the number of elements of this set, we proceed as follows. Let us fix a
number 0 � j � t and set the sum

Pn
iDkC1 xi to be exactly j . The number of ways

to achieve this is exactly the number of ways of putting j indistinguishable balls into
n � k distinguishable boxes, which is just

�
n�k�1Cj

n�k�1

�
.

Now we have to count the number of ways of putting tk � j indistinguishable
balls into exactly k distinguishable boxes, each of them having a capacity of t . Using
Proposition A.0.3 in the appendix one has then

Dk;n.t/ D

tX
jD0

�
n � k � 1C j

n � k � 1

��
k � 1C tk � .tk � j /

k � 1

�
:

D

tX
jD0

�
n � k � 1C j

j

��
k � 1C j

j

�
(4.1)

Then, by the Double Hockey-stick identity, stated as Proposition A.0.5 in the appendix,
one gets the result.

The formula presented in the preceding Theorem, and the one of equation (4.1) are
useful for computations, but do not show the positivity of the coefficients of Dk;n. A
first step towards that is to notice the following factorization:

Lemma 4.1.7 The following identity holds:

Dk;n.t/ D

�
t C n � k

n � k

� k�1X
jD0

n � k

n � k C j

�
t

j

��
k � 1

j

�
Proof. The proof consists only of sum manipulations starting with equation (4.1).
Steps on numbered equations are justified below.

Dk;n.t/ D

tX
jD0

�
n � k � 1C j

j

��
k � 1C j

j

�
D

tX
jD0

�
n � k � 1C j

j

� k�1X
iD0

�
k � 1

k � 1 � i

��
j

i

�
(4.2)

D

k�1X
iD0

tX
jD0

�
k � 1

i

��
n � k � 1C j

j

��
j

j � i

�
D

k�1X
iD0

tX
jD0

�
k � 1

i

��
n � k � 1C j

j � i

��
n � k � 1C i

i

�
(4.3)

D

k�1X
iD0

�
k � 1

i

��
n � k � 1C i

i

� tX
jD0

�
n � k � 1C j

n � k � 1C i

�
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D

k�1X
iD0

�
k � 1

i

��
n � k � 1C i

i

��
t C n � k � 1

n � k C i

�
(4.4)

D

k�1X
iD0

�
k � 1

i

�
n � k

n � k C i

�
t

j

��
t C n � k

n � k

�
(4.5)

where in (4.2) we used Vandermonde’s Identity, in (4.3) the identity
�
r

m

��
m

k

�
D�

r

k

��
r�k

m�k

�
, in (4.4) the Hockey-Stick Identity (also known as the parallel summation

formula [GKP94]) and in (4.5) just some simplifications (see the Appendix for the
statements of some identities).

Observe that from this Lemma we get thatDk;n.t/ can be written as a product of a
polynomial with positive coefficients:

�
tCn�k

n�k

�
and a remaining factor, which we will

call Rk;n.t/. It is:

Rk;n.t/ D

k�1X
jD0

n � k

n � k C j

�
t

j

��
k � 1

j

�
Hence, if we prove that Rk;n has positive coefficients, then we will be able to

conclude the positivity of the coefficients of Dk;n. This is done in the following
Lemma.

Lemma 4.1.8

Rk;n.t/ D
1�
n�1

k�1

� k�1X
jD0

�
n � k � 1C j

j

��
t C j

j

�
Proof. We have the following chain of equalities:�

n � 1

k � 1

�
Rk;n.t/ D

�
n � 1

k � 1

� k�1X
jD0

n � k

n � k C j

�
t

j

��
k � 1

j

�

D

k�1X
jD0

�
n � 1

k � 1

� �n�k�1Cj
j

�
�
n�kCj

j

� �
t

j

��
k � 1

j

�

D

k�1X
jD0

�
n � 1

k � 1

��
k � 1

k � 1 � j

� �n�k�1Cj
j

�
�
n�kCj

j

� �
t

j

�

D

k�1X
jD0

�
n � 1

k � 1 � j

��
n � k C j

n � k

� �n�k�1Cj
j

�
�
n�kCj

j

� �
t

j

�
(4.6)

D

k�1X
jD0

�
n � 1

k � 1 � j

��
n � k � 1C j

j

��
t

j

�
(4.7)
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where in (4.6) we used the identity
�
r

m

��
m

k

�
D
�
r

k

��
r�k

m�k

�
. On the other hand:

k�1X
jD0

�
n � k � 1C j

j

��
t C j

j

�
D

k�1X
jD0

�
n � k � 1C j

j

� jX
iD0

�
t

i

��
j

j � i

�
(4.8)

D

k�1X
iD0

k�1X
jDi

�
t

i

��
n � k � 1C j

j

��
j

j � i

�
D

k�1X
iD0

k�1X
jDi

�
t

i

��
n � k � 1C j

j � i

��
n � k � 1C i

i

�
D

k�1X
iD0

�
n � k � 1C i

i

��
t

i

� k�1X
jDi

�
n � k � 1C j

j � i

�
D

k�1X
iD0

�
n � k � 1C i

i

��
t

i

� k�1�iX
jD0

�
n � k � 1C i C j

j

�
D

k�1X
iD0

�
n � k � 1C i

i

��
t

i

��
n � 1

n � k C i

�
(4.9)

where in (4.8) we used Vandermonde’s Identity (cf. Appendix A) and in (4.9) we used
the classic Hockey Stick Identity. Observe that (4.7) and (4.9) are equal, so the result
of the statement follows.

Corollary 4.1.9 The polynomialDk;n.t/ is given by,

Dk;n.t/ D
1�
n�1

k�1

� � t C n � k
n � k

� k�1X
jD0

�
n � k � 1C j

j

��
t C j

j

�
(4.10)

and in particular has positive coefficients.

Proof. The equation (4.10) is just a consequence of the preceding Lemmas. From
this equality, as we said above, the positivity of the coefficients is clear as the variable
appears in binomial coefficients of the form

�
tCa

a

�
which are polynomials with positive

coefficients.

Remark 4.1.10. Notice that from our formula (4.10) forDk;n it is evident thatDk;n.t�

1/ has nonnegative coefficients.

The h�-polynomial

As a consequence of Theorem 4.1.6 we have a formula for the h�-polynomial of Tk;n.
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Corollary 4.1.11 The h�-polynomial of the basis polytope of Tk;n is given by the
formula:

h�.P.Tk;n/; x/ D

k�1X
jD0

�
k � 1

j

��
n � k � 1

j

�
xj :

This polynomial is real-rooted.

Proof. It follows readily from Theorem 4.1.6 and the definition of the h�-polynomial.
The real-rootedness of this polynomial is a well known fact, see for example the
Concluding Remarks in [KMR18].

Although the Ehrhart polynomial of Tk;n is a bit difficult to work with, the h�-
polynomial permits us to obtain some information of the polytope P.Tk;n/.

Corollary 4.1.12 The volume of the polytope P.Tk;n/ is given by

vol.P.Tk;n// D
1

.n � 1/Š

�
n � 2

k � 1

�
:

Proof. Since by Proposition 2.1.9 the normalized volume is given by h�.Tn;k; 1/, it
suffices to do the computation:

h�.Tk;n; 1/ D

k�1X
jD0

�
k � 1

j

��
n � k � 1

j

�
D

k�1X
jD0

�
k � 1

k � 1 � j

��
n � k � 1

j

�
D

�
n � 2

k � 1

�
;

where in the last step we used Vandermonde’s Identity (see the appendix).

Circuit-hyperplane relaxations

We will discuss a matroidal operation that behaves nicely with the Ehrhart polynomial
of basis and independence polytopes. It will turn out that this operation behaves well
with valuative invariants such as the Ehrhart polynomial, or the volume1 . In fact, it
has a very tight connection with the minimal matroids.

Recall that ifM is a matroid on the ground set E of rank k and cardinality n, then
a hyperplane ofM is a coatom in the lattice of flats ofM . Equivalently, a flat F � E
is said to be a hyperplane if rk.F / D k � 1.

1Moreover, the Kazhdan-Lusztig polynomial of a matroid (introduced in [EPW16]) is a valuative
invariant [AS20]. With an approach very similar to what we are about to do here with the Ehrhart
theory of matroids, in a joint work with L. Vecchi we were able to explore the Kazhdan-Lusztig theory
of all sparse paving matroids [FV21]. For more about valuative invariants of matroids, we recommend
[DF10].
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If H � M is a hyperplane and a circuit, then one can relax the matroid M ,
declaring thatH is a basis. More precisely:

Proposition 4.1.13 Let M be a matroid with set of bases B that has a circuit-
hyperplane H . Let �B D B [ fH g. Then �B is the set of bases of a matroid �M
on the same ground set asM .

Proof. By the definition of matroid, we only need to verify that if we pick H and
a basis B of M , for every element h 2 H r B there exists x 2 B r H such that
.H r fhg/ [ fxg is a basis ofM .

Indeed, for such h 2 H r B , choose any x 2 B rH . Since H is a circuit, we
have that rk.H/ D rk.H r fhg/ D jH j � 1. Since H is a hyperplane, we have that
rk.H/ D jBj � 1. In particular, we have that jH j D jBj. Also, notice that H r fhg
is independent. We have that H r fhg � H D H and since x … H , it follows that
adding x toH r fhg increases its rank. In other words, .H r fhg/[ fxg has rank jBj
and cardinality jBj, and is thus a basis.

The operation of declaring a circuit-hyperplane to be a basis is known in the
literature by the name of relaxation. Many famous matroids arise as a result of this
operation on another matroid. For example the Non-Pappus matroid is the result of
relaxing a circuit-hyperplane on the Pappus matroid, and analogously the Non-Fano
matroid can be obtained by a relaxation of the Fano matroid (for some other examples
see [Oxl11]).

Of course, relaxing a circuit-hyperplane does not alter the rank of the matroid. It
also preserves or increases its degree of connectivity (see [Oxl11, Propositon 8.4.2]).

Lemma 4.1.14 LetM be a matroid with set of bases B and a circuit-hyperplane H .
Let �M be the relaxed matroid. Then, the set of flats�F of �M is given by

�F D .F r fH g/ [ fF � H W jF j D jH j � 1g;

where F is the set of flats ofM .

Proof. Notice that the rank function �rk of �M coincides with the rank function rk ofM
with the only exception of rk.H/C 1 D �rk.H/.

Let F be a flat of �M that is not a flat of M . Then �rk.F [ feg/ > �rk.F / for all
e … F . Since F ¤ H , we have that �rk.F / D rk.F /. Notice that there exists an e such
that F [feg D H , since otherwise our inequality holds for all e but using rk instead of�rk and thus contradicting that F is not a flat ofM . Then F � H and jF j D jH j � 1,
as claimed.

The reverse inclusion follows from the fact that all such sets are flats of �M . If
F ¤ H is a flat of M , then rk.F [ feg/ > rk.F / for all e … F ; in particular, by
using �rk instead of rk this will still be true even if F [ feg D H , because in that case�rk.F [ feg/ D 1C rk.F [ feg/ > rk.F / D �rk.F /. Also, if F D H r fhg for some
h 2 H , then clearly adding h to F will increase its rank in �M , so let us pick an element
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e … H and notice that as F [ feg ¤ H , we have:

�rk.F [ feg/ D rk.F [ feg/ D rk..H r fhg/ [ feg/ D rk.M/

where in the last equality we used that .H rfhg/[feg is a basis ofM , as we have seen
in the proof of Proposition 4.1.13. Since rk.M/ D �rk.H/ D �rk.F /C1, it follows that
F is indeed a flat.

This description of the flats of the relaxed matroid �M helps us to characterize its
basis polytope and its independence polytope by deleting just one inequality. Namely,
the precise inequality corresponding to the flatH .

Proposition 4.1.15 Let M be a matroid of rank k and cardinality n with a circuit-
hyperplaneH . Then the basis polytope of the relaxation �M is given by

P. �M/ D

(
x 2 Rn�0 W

nX
iD1

xi D k and
X
i2F

xi � rk.F / for all F 2 F.M/r fH g

)
;

and its independence matroid polytope is given by

PI. �M/ D

(
x 2 Rn�0 W

X
i2F

xi � rk.F / for all F 2 F.M/r fH g

)
:

Proof. Using the notation of the precedingLemma, it suffices to see that the inequalities
that come fromflats of �M of the formF D Hrfhgwith h 2 H are redundant. Indeed,
since any such F is independent, the inequality

P
i2F xi � rk.F / is trivially implied

by the inequalities xi � 1.

The following result states the exact relation between minimal matroids and the
operation of circuit-hyperplane relaxation in the language of polytopes. We will say
that a polytope P is obtained by stacking a polytope Q on a facet of another polytope
R if

P D Q [ R;

and Q \ R is a facet of both Q and R.

Theorem 4.1.16 Let M be a connected matroid of rank k and cardinality n with a
circuit-hyperplaneH and let �M be the relaxed matroid. Then

(a) The polytope P. �M/ is obtained by stacking a copy of P.Tk;n/ on a facet of P.M/.

(b) The polytope PI. �M/ is obtained by stacking a polytope integrally equivalent to
P.Tk;nC1/ on a facet of PI.M/.

Proof.
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(a) Notice that P. �M/ contains all the vertices of P.M/ and an extra vertex corre-
sponding to H . In the proof of Proposition 4.1.13, we have seen that the basis H
of �M has the property that .H r fhg/[ fxg 2 B.M/ � B. �M/ for all h 2 H and
x … H . By Theorem 1.2.8, we know that eH is adjacent to all the bases of that form
in P. �M/. Let us prove that there are k.n�k/ such bases. CallH D fh1; : : : ; hkg.
Since H is a circuit-hyperplane of M , if we call fe1; : : : ; en�kg the elements in
the complement ofH , we have that

Bij WD .H r fhig/ [ fej g

is a basis ofM for each 1 � i � k and each 1 � j � n� k. These correspond to
the k.n� k/ vertices adjacent toH in P. �M/. Also, for each i and j we have that
Bij is adjacent with all Bi 0j and all Bij 0 for i 0 ¤ i and j 0 ¤ j . All this amounts
to say that if we restrict ourselves to the polytope Q given by the k.n � k/ C 1
vertices given by H and all the Bij , it is the basis polytope of some matroid N
of rank k, cardinality n and k.n � k/ C 1 bases. Since this polytope also has
dimension n � 1, such matroid N has to be connected, so that by the uniqueness
of the minimal matroid we see that N D Tk;n, and what we are doing is exactly
stacking P.Tk;n/ on a facet of P.M/.

(b) The polytopePI. �M/ has only one extra vertex with respect toPI. �M/. By the proof
of Theorem 1.2.19, we have that the vertices adjacent toH are of the formHrfhg
for h 2 H and the k.n � k/ vertices of the facet P.M/ that we described in (a).
To each of the vertices eHrfhg assign a point in RnC1 given by .eHrfhg; 1/. To
each the vertices eBij

assign the point .eBij
; 0/, and toH assign the point .eH ; 0/.

Observe that we have k.n � k/ C k C 1 D k.n C 1 � k/ C 1 vertices. Using
the same reasoning we used in the proof of Theorem 1.2.22, we can see that it
is 0=1-polytope having all of its edges of the form ei � ej , and moreover, it has
dimension n. It follows that it is the basis polytope of a connected matroid of rank
k and n C 1 elements having k.n C 1 � k/ C 1 bases, and is thus the polytope
P.Tk;nC1/.

An immediate consequence of the above subdivision is that the circuit-hyperplane
relaxation behaves nicely with Ehrhart polynomials.

Corollary 4.1.17 Let M be a connected matroid of rank k and cardinality n with a
circuit-hyperplaneH . Let �M be the corresponding relaxation. Then

(a) ehr.P. �M/; t/ D ehr.P.M/; t/C ehr.P.Tk;n/; t � 1/.

(b) ehr.PI. �M/; t/ D ehr.PI.M/; t/C ehr.P.Tk;nC1/; t � 1/.

In particular, the circuit-hyperplane relaxation preserves Ehrhart positivity for basis
polytopes and independence polytopes of matroids.

Proof. We do the proof for the basis polytope since the other is analogous. Using the
notation of the proof of the preceding Theorem, we know that

P. �M/ D P.M/ [ Q;
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and that P.M/ \ Q is a common facet of P.M/ and Q. So an inclusion-exclusion
argument reveals now that

ehr.P. �M/; t/ D ehr.P.M/; t/CDk;n.t/ � S.t/;

where S.t/ is the Ehrhart polynomial of the facet of Q consisting of all the k.n � k/
bases of Tk;n containing a red edge. It is evident from Proposition 4.1.4 that this facet
of Q can be interpreted as(

x 2 Œ0; 1�n W

nX
iD1

xi D k and
nX

iDkC1

xi D 1

)
;

and then the number of integer points in a dilation by the factor t of this facet is given
by

S.t/ D #

(
x 2 Zn \ Œ0; t �n W

nX
iD1

xi D kt and
nX

iDkC1

xi D t

)
;

from which, using the same balls and boxes reasoning, exactly as in the proof of
Theorem 4.1.6, we see that

S.t/ D

�
n � k � 1C t

n � k � 1

��
k � 1C t

k � 1

�
;

and we have from equation (4.1) thatDk;n.t/� S.t/ is equal then toDk;n.t � 1/. We
conclude then the Ehrhart positivity ofP.M/ andPI.M/ is preserved under relaxations
by Remark 4.1.10.

Remark 4.1.18. It is worth noting that the case of the presence of a circuit-hyperplane
is the only scenario in which one can add just one basis and preserve the matroid
structure [Mil99]. To be precise, if B is the set of bases of a matroid M and H is
a subset such that B t fH g is also the set of bases of a matroid, this means that H
was originally a circuit-hyperplane ofM . For a proof of this result one can also read
[Tru82, Lemma 6].

Of course, one has an equivalent version of the above result in the language of
h�-polynomials.

Corollary 4.1.19 If M is a matroid of rank k and cardinality n with a circuit-
hyperplaneH and �M is the relaxed matroid, then

h�.P. �M/; x/ D h�.P.M/; x/C x � h�.P.Tk;n/; x/:

h�.PI. �M/; x/ D h�.PI.M/; x/C x � h�.P.Tk;nC1/; x/:

Proof. The result follows by using that the h�-polynomial is the numerator of the
generating function of the Ehrhart polynomial.
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4.2 Sparse paving matroids
Now let us describe a class of matroids that is intimately related with the circuit-
hyperplane relaxation.

Definition 4.2.1. Let M be a matroid of rank k. We say that M is paving if every
circuit ofM has cardinality at least k. We say thatM is sparse paving if bothM and
its dualM � are paving.

Observe that if a matroidM of rank k is paving, then its circuits must be all of size
k or k C 1. Also, since the hyperplanes ofM are exactly the complements of circuits
of M �, when M � is paving what we have is that all the hyperplanes of M have size
exactly k or k � 1.

If M is sparse paving, when one picks a circuit C of length k, since its rank is
k � 1, it must be contained in a hyperplane H . Thus, k D jC j � jH j 2 fk � 1; kg.
Hence, the only possibility is jH j D k, and therefore C D H . In particular C is
a hyperplane. Conversely, any hyperplane of size k of a sparse paving matroid is a
circuit.

Lemma 4.2.2 A matroid M of rank k is sparse paving if and only if every subset of
cardinality k is either a basis or a circuit-hyperplane.

Proof. Observe that if a matroid is such that every subset of cardinality k is either a
basis or a circuit-hyperplane, then it automatically is sparse paving. This is because the
existence of a circuit of size less than k is ruled out. Such a circuit can be completed to
a set of cardinality k which will fail to be a basis and a circuit-hyperplane. Analogous
considerations avoid the possibility of the existence of a hyperplane of size greater
than k.

For the other implication, assume M is sparse paving and pick a subset A of
cardinality k that is not a basis. Hence, we have that A is dependent, and thus contains
a circuit C . Since M is sparse paving we have that k � jC j � jAj D k, and since
C � A, it follows that C D A and hence A is a circuit. Since A has cardinality
k, by the considerations prior to the statement of the Lemma, it follows that A is a
hyperplane.

It follows easily from the above result that uniform matroids are sparse paving
and, moreover, that every sparse paving matroid can be relaxed until obtaining a
uniform matroid. This is because after relaxing one circuit-hyperplane, the remaining
circuit-hyperplanes are still circuit-hyperplanes of the new matroid.

Remark 4.2.3. In [MNWW11] Mayhew, Newman, Welsh and Whittle conjectured
that asymptotically all matroids are sparse paving. There is some evidence supporting
that assertion [Pv15].

As a corollary of Theorem 4.1.17 and of the fact that we have explicit formulas for
ehr.P.Tk;n/; t �1/ (Corollary 4.10), ehr.�k;n; t / (Theorem 3.1.1) and ehr.PI.Uk;n/; t/

(Theorem 3.4.1), we can deduce explicit formulas for the Ehrhart polynomial of the
polytopes all sparse paving matroids.
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Theorem 4.2.4 Let M be a sparse paving matroid having n elements, rank k, and
exactly � circuit-hyperplanes. Then

ehr.P.M/; t/ D ehr.�k;n; t / � � ehr.P.Tk;n/; t � 1/
ehr.PI.M/; t/ D ehr.PI.Uk;n/; t/ � � ehr.P.Tk;nC1/; t � 1/:

Proof. It is a direct consequence of Theorem 4.1.17, since relaxing all the � hyper-
planes ofM yields the uniform matroid Uk;n.

Corollary 4.2.5 Conjecture 4.0.1 is true for all sparse paving matroids.

Proof. Since we already know that ehr.P.Tk;n/; t � 1/ has positive coefficients, The-
orem 4.2.4 gives the result.

Now that we have a good method to compute Ehrhart polynomials for a presumably
enormous family of matroids, it is reasonable to try to search for a potential counterex-
ample to Conjecture 2.2.1 within that family. This is what we will do in the next
section.

Bounding the number of circuit-hyperplanes

The heuristics of our search will be the following. Since ehr.P.Tk;n/; t�1/ has positive
coefficients, we see in Corollary 4.2.4 that the coefficients of ehr.P.M/; t/ are smaller
when � is bigger. We will try to find n and k that admit a � sufficiently big to attain a
negative coefficient for ehr.P.M/; t/.

Fortunately, sparse paving matroids have a nice relation with two classes of objects
that are very interesting on their own, and for which we have plenty of literature to
deduce good bounds.

The Johnson Graph J.n; k/ is the graph having as vertices all the subsets of
cardinality k of the set f1; : : : ; ng, and edges connecting them when their intersection
is a set of cardinality k � 1. It can be seen that J.n; k/ is the 1-skeleton of the
hypersimplex �k;n.

The following result provides a dictionary between sparse paving matroids, a
particular class of binary codes and stable subsets of the Johnson graph.

Theorem 4.2.6 Let S be a subset of f1; : : : ; ng such that all members of S have
cardinality k. Then the following are equivalent:

(a) S is the set of circuit-hyperplanes of a sparse paving matroid with n elements and
rank k.

(b) S is a stable subset of nodes of the Johnson Graph J.n; k/.

(c) The set of all the indicator vectors of the elements of S is the set of words of a
binary code such that all words have length n, constant weight k and minimum
Hamming distance at least 4 (i.e. any two distinct words of the code differ in at
least 4 positions).
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Proof. The proof of the equivalence between (a) and (b) can be found in [BPV15,
Lemma 8]. We reproduce it here for the sake of completeness. To prove that (a))
(b), assume that M is sparse paving and that H1 and H2 are two circuit-hyperplanes
such that jH1\H2j D k�1 (i.e. that they correspond to adjacent vertices of J.n; k/).
SinceM is paving we obtain that rk.H1 \H2/ D jH1 \H2j D k � 1. Also, as H1

andH2 are hyperplanes, we have:

rk.H1/C rk.H2/ D 2.k � 1/ D 2k � 2:

But, on the other hand, asH1 [H2 must have rank k, we have:

rk.H1 \H2/C rk.H1 [H2/ D .k � 1/C k D 2k � 1:

All this information together implies that

rk.H1/C rk.H2/ < rk.H1 [H2/C rk.H1 \H2/;

which cannot happen for a matroid. Now, to prove that (b) implies (a), assume that S
is a stable subset of the Johnson Graph J.n; k/, and consider the collection B of all
subsets of f1; : : : ; ng of cardinality k that are not in S. We trivially have that B ¤ ∅
because the Johnson graph contains edges. Assume that the basis-exchange-property
does not hold. There exist two sets B1 and B2 in B and an element x 2 B1 r B2
such that .B1 r fxg/ [ fyg … B for all y 2 B2 r B1. Observe that this implies
that jB2 r B1j > 1, because otherwise it would be .B1 r fxg/ [ fyg D B2 2 B for
the only y 2 B2 r B1. Now, let us choose two distinct elements y; z 2 B2 r B1
and consider the sets H1 D .B1 r fxg/ [ fyg and H2 D .B1 r fxg/ [ fzg. Since
H1 and H2 are not in B, it holds that they are in S. This is a contradiction, because
jH1 \H2j D jB1 r fxgj D k � 1 which contradicts that S was stable.

The equivalence between (b) and (c) follows from the definitions: an edge on the
Johnson graph corresponds to two words that have Hamming distance equal to 2.

A stronger form of Theorem 4.2.6 has also appeared in [JS17, Theorem 26], in
the context of the study of split matroids, a generalization of sparse paving matroids.
Now we will use the fact that there are binary codes of length n, constant weight k and
minimum Hamming distance at least 4 that contain many words. Although there are
several constructive proofs for such codes with even more words for special cases of n
or k, the bounds we will use here suffice for our purposes. The statement and the proof
of the following result are due to Graham and Sloane and can be found in [GS80]. We
reproduce the proof here for the sake of completeness.

Theorem 4.2.7 There exists a binary code S with words of length n, constant weight
k, Hamming distance at least 4, and such that jSj � 1

n

�
n

k

�
.

Proof. Let us denote by Fn
2;k

the set of all binary words of length n and constant weight
k, and by Zn the set of integers modulo n. Consider the map:

T W Fn2;k ! Zn;
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T .a1; : : : ; an/ D

nX
iD1

.i � 1/ai .mod n/:

For each i D 0; : : : ; n � 1 let us call Ci D T �1.fig/. We claim that for each Ci , the
minimum distance between two of its words is at least 4. Assume on the contrary that
there are two distinct words a D .a1; : : : ; an/ and b D .b1; : : : ; bn/ at distance less
than 4. Since both words have the same weight, we have that their distance is exactly
2. Also, we see that there must exist two positions, say r and s, such that ar D 1 and
br D 0 and as D 0 and bs D 1. But observe that

T .a/ D x C r D i .mod n/;
T .b/ D x C s D i .mod n/

for a certain x 2 Zn. This implies that r � s .mod n/ which is clearly impossible.
Thus, the minimum distance between words of Ci is 4. Now, since:�n

k

�
D jFn2;kj D

n�1X
iD0

jCi j;

we see that there has to be at least one i such that jCi j � 1
n

�
n

k

�
.

Let us show quickly how this set-up allows us to construct a counterexample to
Conjectures 2.2.1 and 2.2.2.

Theorem 4.2.8 There exists a sparse paving matroidM with 20 elements, rank 9 and
having 8398 circuit-hyperplanes, and hence having Ehrhart polynomial with negative
quadratic and cubic coefficients.

Proof. By Theorem 4.2.7 there exists a binary code of length 20, constant weight 9
and Hamming distance at least 4, having at least 1

20

�
20

9

�
D 8398 words. In fact, it can

be proved that for the particular choice of n D 20 and k D 9 all the Ci ’s in the proof
of Theorem 4.2.7 have cardinality 8398. In particular, by choosing for instance C0 as
our code, we have a code with 8398 words.

By the equivalence between (a) and (c) in Theorem 4.2.6, we get that there is a
sparse paving matroid M with 20 elements and rank 9 that has exactly 8398 circuit-
hyperplanes.

Now, using the formula of Theorem 4.1.17, we obtain that

ehr.P.M/; t/ D ehr.P.U9;20/; t/ � 8398 ehr.P.T9;20/; t � 1/

and we can compute this polynomial explicitly and see that its quadratic coefficient is
�
142179543511
15437822400

< 0 and its cubic coefficient is �4816883312963
51459408000

< 0.

Remark 4.2.9. Incidentally, this method provides a way of constructing 0=1-polytopes
inRn that have nice properties on their edges, andwhich possess an exponential number
of facets.
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Observe that Proposition 4.1.15 and Remark 1.2.17 guarantee that

#ffacets of PI. �M/g D #ffacets of PI.M/g � 1:

This is because a circuit-hyperplane is always an inseparable flat of a matroid,
given thatH is itself a circuit andM jH is thus connected.

Notice that the number of facets of PI.Uk;n/ is exactly 2nC 1, because by (1.2.18)
it is determined by the inequalities 0 � xi � 1 and

Pn
iD1 xi � k. In particular,

we obtain that choosing a sparse paving matroid on n elements and rank bn
2
c with as

many as 1
n

�
n

bn
2
c

�
circuit-hyperplanes, we obtain a 0=1-polytope in Rn (an independence

matroid polytope) with the following number of facets:

2nC 1C
1

n

�
n

b
n
2
c

�
� c

2n

n3=2
:

The best known methods to construct 0=1-polytopes with many facets are random
[BP01], though there are deterministic methods that achieve a bound of� 3:6n facets.
We can construct similarly a basis polytope with the same asymptotic number of facets
using the same idea.

4.3 Counterexamples to Ehrhart positivity
We have already disproved both Conjectures 2.2.1 and 2.2.2. We will see that the
strategy we used in fact allows us to find matroids of any rank k � 3 such that P.M/ is
not Ehrhart positive. This phenomenom also happens for the independence polytope.

Experimentation with several values of n and k shows that the most well-behaved
coefficient for our purposes is the quadratic one. In other words, in the vast majority
of cases, when a matroid is not Ehrhart positive, in particular its quadratic Ehrhart
coefficient is negative.

Remark 4.3.1. It is not true that if a matroid has a negative Ehrhart coefficient, then
in particular the quadratic coefficient must be negative. For example our construction
yields a matroid with 22 elements, rank 7 and 7752 circuit-hyperplanes that has a
negative term only on degree 3.

The idea is to give a good lower bound for Œt2� ehr.P.Tk;n/; t �1/ and a good upper
bound for Œt2� ehr.�k;n; t / that allow us to work more comfortably.

We start with a precise expression for the quadratic coefficient of the polynomial
ehr.P.Tk;n/; t � 1/.

Lemma 4.3.2 The quadratic coefficient of ehr.P.Tk;n/; t � 1/ is given by

Œt2� ehr.P.Tk;n/; t�1/ D
1�
n�1

k�1

� 0@�n � k
2

�
1

.n � k/Š
C

1

n � k

k�1X
jD1

1

j

�
n � k � 1C j

j

�1A :
Proof. This can be obtained by hand from the formula on Equation (4.10).
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Using the preceding Lemma we can give a nice lower bound for the quadratic coef-
ficient of ehr.P.Tk;n/; t � 1/, essentially by just ignoring many of the terms appearing
in the expression we just obtained.

Proposition 4.3.3 The quadratic coefficient of ehr.P.Tk;n/; t � 1/ satisfies:

Œt2� ehr.P.Tk;n/; t � 1/ �
1

k.n � 1/
:

Proof. Observe that in the sum inside the parentheses in the formula of Lemma 4.3.2,
we can pick only the term corresponding to j D k � 1 and forget the rest. Hence,

Œt2� ehr.P.Tk;n/; t � 1/ �
1�
n�1

k�1

� ��n � k
2

�
1

.n � k/Š
C

1

.n � k/.k � 1/

�
n � 2

k � 1

��
�

1�
n�1

k�1

� � 1

.n � k/.k � 1/

�
n � 2

k � 1

�
D

1

.k � 1/.n � 1/

�
1

k.n � 1/

where in the second to last step we just expanded the binomial coefficients and canceled
many factors.

Remark 4.3.4. Before establishing an upper bound for the quadratic coefficient of
ehr.�k;n; t /, we will state some formulas that relate the Stirling numbers of the first
kind with the so-called harmonic numbers. If we denote byH .k/

n the number 1C 1
2k C

: : :C 1
nk , andHn D H

.1/
n , we have the following identities:

1

.n � 1/Š

�
n

1

�
D 1; (4.11)

1

.n � 1/Š

�
n

2

�
D Hn�1; (4.12)

1

.n � 1/Š

�
n

3

�
D
1

2

�
H 2
n�1 �H

.2/
n�1

�
: (4.13)

To bound Œt2� ehr.�k;n; t / we will use Theorem 3.3.3.

Proposition 4.3.5 The quadratic coefficient of ehr.�k;n; t / satisfies:

Œt2� ehr.�k;n; t / �

�
kC1

2

�
C

�
k

2

�
.n � 1/Š

�

�
n

3

�
�

�
k C 1

2

�
H 2
n�1

whereHn�1 denotes the harmonic number 1C 1
2
C : : :C 1

n�1
.
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Proof. From Theorem 3.3.3 we know a formula for each of the Ehrhart coefficients of
the uniform matroid Uk;n. In particular, for the quadratic term it holds:

Œt2� ehr.�k;n; t / D
1

.n � 1/Š
.W.k � 1; n; 3/CW.k � 2; n; 3// : (4.14)

Let us prove that

W.`; n; 3/ �

�
`C 2

2

�
W.0; n; 3/: (4.15)

To this end, let us start with a partition of f1; : : : ; ng into 3 blocks having total weight
0. Consider the operation consisting of the following three steps:

� Swap the elements in the first position of the first block with the x-th smallest
element of the first block.

� Swap the elements in the first position of the second block with the y-th smallest
element of the second block.

� Swap the elements in the first position of the third block with the z-th smallest
element of the third block.

If .x � 1/ C .y � 1/ C .z � 1/ D ` what we obtain is a partition of f1; : : : ; ng into
three blocks having total weight `. Observe that we can do this in at most

�
`C2

2

�
ways

(the number of ways of putting ` balls into 3 boxes). Also, in this way we can achieve
all the possible partitions of weight `. It is clear how to deduce the inequality (4.15)
from this fact. Now, we know from Remark 3.2.8 that W.0; n;m/ D Œ n

m
�. If we use

the formula of equation (4.14), we get the first inequality in our statement. Also, since

1

.n � 1/Š

�
n

3

�
D
1

2

�
H 2
n�1 �H

.2/
n�1

�
�
1

2
H 2
n�1;

it is easy to conclude the second inequality of the statement (we also used that
�
k

2

�
��

kC1

2

�
to get a simpler form of the right-hand-side).

We can use our bounds to construct counterexamples on every rank k � 3.

Theorem 4.3.6 If n � 3589 and 3 � k � n � 3 then there exists a matroid of rank
k and cardinality n that is not Ehrhart positive. For 4 � k � n � 4 we may choose
n � 104. Moreover, there exists non Ehrhart positive connected matroids with n
elements for all n � 19.

Proof. From Theorem 4.2.7 and the equivalence between (a) and (c) in Theorem 4.2.6,
we have that there exists a sparse paving matroidM of rank k and cardinality n, having
at least

� D
1

n

�n
k

�
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circuit-hyperplanes. We know by Theorem 4.2.4 that

ehr.M; t/ D ehr.�k;n; t / � � ehr.P.Tk;n/; t � 1/;

and thus:

Œt2� ehr.M; t/ D Œt2� ehr.�k;n; t / � �Œt2� ehr.P.Tk;n/; t � 1/

� Œt2� ehr.�k;n; t / �
1

n

�n
k

�
Œt2� ehr.P.Tk;n/; t � 1/

�

�
k C 1

2

�
H 2
n�1 �

1

n

�n
k

� 1

k.n � 1/

where we used Lemmas 4.3.3 and 4.3.5. It suffices to analyze when the following
inequality is achieved: �

k C 1

2

�
H 2
n�1 <

1

n

�n
k

� 1

k.n � 1/
(4.16)

Let us split into some cases:

� If k D 3, we obtain:
6H 2

n�1 �
1

3n.n � 1/

�n
3

�
;

Since H 2
n�1 � log.n/2, we see that the right-hand-side grows much faster than

the left-hand-side. In particular, the inequality holds for all n � 10439. Also,
we can verify by hand the following finite cases 3589 � n � 10438 and see
that for all of them one has Œt2� ehr.M; t/ < 0. This proves that there exist
counterexamples of rank 3 for all n � 3589.

� If k D 4; 5; 6; 7; 8, analogous considerations show that for n � 104, we can
always find such counterexamples.

� If k � 9, recalling that in Remark 2.3.4 we stated that the Ehrhart polynomial
of a matroid is equal to that of its dual, we can assume that 2k � n and consider
a stronger version of inequality (4.16):�

nC 1

2

�
.log.n/C 1/2 <

1

n

�n
9

� 1

n.n � 1/
;

which holds for all n � 55 (we used the basic inequality Hn � log.n/ C
1). By checking manually the cases n D 20; : : : ; 54, we prove that there are
counterexamples with any cardinality � 20 (the case n D 19 is addressed
below).

An analogous procedure allows us to find matroids of any rank k � 3 such that its
independence polytope has a negative Ehrhart coefficient.

Theorem 4.3.7 There exists a matroid M of rank 3 with 4000 elements such that
ehr.PI.M/; t/ has a negative coefficient.
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The smallest counterexample

We have proved that for every k � 3 there is a (connected) matroid of rank k that is
not Ehrhart positive.

Also, from all of our results it follows that for all n � 20 there is a (connected)
matroid of cardinality n that is not Ehrhart positive. It is natural to ask if there are
smaller counterexamples.

In fact, for small values of k and n there exist much better bounds and many precise
values for the maximum number of circuit-hyperplanes that a sparse paving matroid
of rank k and cardinality n can have. See for instance [BE11, Table 2] by Brouwer and
Etzion. Using these values, one can prove that there exists a sparse pavingmatroid with
19 elements, rank 9 and having 6726 circuit-hyperplanes that is not Ehrhart positive.

We can rule out the existence of sparse paving matroids with less than 18 elements.
To prove this, it suffices to give a good enough upper bound for the maximum number
of circuit-hyperplanes a matroid of rank k and n elements can have.

Lemma 4.3.8 LetM be a sparse paving matroid of rank k having n elements. Then,
the number of circuit-hyperplanes � ofM satisfies:

� �
�n
k

�
min

�
1

k C 1
;

1

n � k C 1

�
: (4.17)

Proof. If M is paving, in particular all the
�
n

k�1

�
subsets of cardinality k � 1 are

independent. Let us form a bipartite graph where one of the parts has a node for each
independent set of cardinality k � 1 and the other part has the bases of the matroid
M , where we put an edge connecting an independent set I with a basis B whenever
I � B . Since an independent set I of rank k � 1 is contained in a unique hyperplane
(the flat spanned by I itself), it follows that either I is a hyperplane or I ( H for
a unique H hyperplane. In the latter case, jH j � k and since M � is paving, this
implies that jH j D k, so that H is a circuit-hyperplane. Summarizing, each of the
nodes of our graph corresponding to independent sets of cardinality k � 1 has degree
n � k C 1 (when I is itself a hyperplane) or n � k (when I is contained in a unique
circuit-hyperplane). In particular, the number of edges of the whole graph is at least
.n � k/

�
n

k�1

�
. However, by looking at the nodes corresponding to the bases, we know

that each basis has degree k, so that the number of edges is exactly kjB.M/j. Hence:

.n � k/
� n

k � 1

�
� kjB.M/j;

which translates into �
1 �

1

n � k C 1

��n
k

�
� jB.M/j:

Since the number of circuit hyperplanes is � D
�
n

k

�
� jB.M/j, it follows that

� �
1

n � k C 1

�n
k

�
:
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Finally, using the same reasoning that we used above but with M � instead of M , as
the number of circuit-hyperplanes is the same forM andM �, it follows also that

� �
1

k C 1

� n

n � k

�
D

1

k C 1

�n
k

�
;

from where one concludes the inequality of the statement.

Corollary 4.3.9 If M is a sparse paving matroid on n � 17 elements, then M is
Ehrhart positive.

Proof. Let us denote by �k;n the expression on the right-hand-side of inequality (4.17).
Calculating explicitly the polynomials ehr.P.Uk;n/; t/ � �k;n ehr.P.Tk;n/; t � 1/ for
1 � k � n � 17, we can see that they all have positive coefficients.

Remark 4.3.10. According to [BE11] the maximum size that a stable set in the
Johnson Graph J.18; 9/ can have is at least 3540, which improves the bound coming
from Theorem 4.2.7, 1

18

�
18

9

�
D 2702. However, using the bound from Lemma 4.3.8 we

get that this quantity is at most 4862. A sharper inequality using the so-called Johnson
bound yields that, in fact, this quantity is less or equal than 4420. In other words, we
know that the maximum number of circuit-hyperplanes that a matroid on 18 elements
and rank 9 can have lies between 3540 and 4420, and this seems to be the best we can
currently assert for k D 9 and n D 18 (see [AVZ00]). However:

ehr.P.U9;18/; t/ � 4240 ehr.P.T9;18/; t � 1/;

has a negative cubic coefficient. This implies that if we could improve our 3540 to a
4240, then there would be a matroid on 18 elements that is not Ehrhart positive.

4.4 The rank 2 case
We define a partial order� on the ring of polynomialsRŒt � as follows. The polynomial
p.t/ D

Pd
jD0 aj t

j is said to be nonnegative if all its coefficients are nonnegative, that
is, aj � 0 for all j � 0. In this case, we write p.t/ � 0. Furthermore, we write
p.t/ � q.t/ whenever p.t/ � q.t/ � 0. We say that the inequality is strict on the
coefficients of positive degree if p.t/ � q.t/ has only positive coefficients, except for
possibly the constant coefficient which may be zero.

We observe that � defines a partial order that is preserved under multiplication
with nonnegative polynomials. That is, for p; q; r 2 RŒt � and r.t/ � 0

p.t/ � q.t/ H) p.t/ � r.t/ � q.t/ � r.t/: (4.18)

Note that if a matroidM has a loop, thenM is a direct sumM DM 0 ˚ U0;1. As
loops do not change the polytope, only their embedding, we may assume from now on
that all matroids that we consider are loopless. We benefit of the following fact.
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Lemma 4.4.1 LetM be a matroid of rank 2with no loops. ThenM is either connected
or a direct sum of two uniform matroids of rank one. In particular, the basis polytope
of the latter is a product of two simplices.

The flats of a rank 2 matroid M are the set of all loops, the hyperplanes and the
ground set. IfM is loopless or connected, then the set of loops is empty. Neither the
empty set nor the ground set impose a facet defining inequality in the description of
Theorem 1.2.10. Thus we obtain the following simplification of Theorem 1.2.10 for a
loopless matroid of rank 2 on a groundset of size n.

P.M/ D

(
x 2 �2;n W

X
i2H

xi � 1 for all matroid hyperplanesH ofM

)
: (4.19)

A key property of rank 2 looplessmatroids is that they are all paving. Geometrically
this is captured in the following Lemma.

Lemma 4.4.2 LetM be a loopless matroid of rank 2 and u 2 �2;n r P.M/. Then u
violates exactly one of the inequalitiesX

i2H

xi � 1

whereH is a matroid hyperplane ofM .

Proof. Clearly u 2 �2;n r P.M/ has to violate at least one of the above inequalities.
Suppose u satisfies X

i2H

ui > 1 and
X
i2G

ui > 1

where G and H are distinct matroid hyperplanes. The intersection G \H is empty
asM has no loops. Therefore

2 <
X
i2H

ui C
X
i2G

ui �

nX
iD1

ui :

Contradicting that the coordinate sum of u is 2 whenever u 2 �2;n.

In [JS17] Joswig and Schröter introduced the class of split matroids which provides
the same separation property in arbitrary rank. This class strictly contains paving
matroids and thus include the loopless matroids of rank 2.

Ehrhart polynomials

We consider the polytopes

Qk;n D

(
x 2 �2;n W

k�1X
iD1

xi � 1;

nX
iDkC1

xi � 1

)
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for all 1 � k � n � 1, together with their half-open version

�Qk;n WD (x 2 �2;n W k�1X
iD1

xi � 1;

nX
iDkC1

xi < 1

)
:

Observe that for k D 1, Q1;n is isomorphic to �1;n�1 and�Q1;n is the empty polytope.

Remark4.4.3. The polytopeQk;n is the basis polytope of a rank 2matroid of cardinality
n, where the first k � 1 elements are parallel and the last n � k elements are parallel.
This particular matroid is induced by a graph. This graph consists of a cycle of length
three whenever k > 1 to which several parallel edges have been added as follows,
there is one copy of one edge, n� k parallel copies of another edge, and k � 1 parallel
copies of a third edge.

Figure 4.2: The graph of Remark 4.4.3 with n D 9 edges and k D 4.

Figure 4.2 depicts this graph for the case n D 9 and k D 4. These matroids fall
into the well studied class of lattice path matroids. More precisely they are the snakes
S.k � 1; 2; n � k � 1/ in the notation of [KMR18].

We obtain the following formulas for the Ehrhart polynomials of the polytope Qk;n
and the half-open polytope�Qk;n.
Proposition 4.4.4 For all 1 � k � n � 1

ehr.Qk;n; t / D
�
t C k � 1

k � 1

��
t C n � k

n � k

�
�

�
t C n � 2

n � 1

�
; and

ehr.�Qk;n; t / D �
t C k � 1

k � 1

��
t C n � k � 1

n � k

�
�

�
t C n � 2

n � 1

�
:

Proof. By definition we have

ehr.Qk;n; t / D #.tQk;n \ Zn/

D #

(
x 2 Œ0; t �n \ Zn W

nX
iD1

xi D 2t;

k�1X
iD1

xi � t;

nX
iDkC1

xi � t

)
:

The above expression can be interpreted as the number of ways of placing 2t indistin-
guishable balls into n distinct boxes, each of capacity t , under the additional constraints
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that the first k � 1 as well as the last n� k boxes together contain at most t balls. The
number xi equals the number of balls in box i in this setting.

As a first step, we ignore the capacity bound xk � t for a moment, and count the
number of ways that t balls can be placed into the first k boxes, and the remaining
t balls are placed into the last n � k C 1 boxes. There are

�
tCk�1

k�1

��
tCn�k

n�k

�
ways of

placing 2t balls in such a way. (Notice that we do not over-count here, as the number
of balls placed in box k in the first batch can be recovered from the balls in the boxes
1 to k � 1, and similarly for the second batch.)

As a second step we count in how many cases we placed more than t balls in
box k. In these cases the k-th box contains at least t C 1 many balls. If we ignore
t C 1 many balls in box k, there are

�
tCn�2

n�1

�
many possibilities to place the remaining

2t � .t C 1/ D t � 1 balls into n boxes. Subtracting this number from the above leads
to the first formula.

To obtain the second formula we observe that the polytopeQk;n is the disjoint union
of�Qk;n and the product of simplices(

x 2 Œ0; 1�n W

kX
iD1

xi D 1;

nX
iDkC1

xi D 1

)
D �1;k ��1;n�k

whose Ehrhart polynomial is equal to
�
tCk�1

k�1

��
tCn�k�1

n�k�1

�
. It follows that

ehr.�Qk;n; t / D ehr.Qk;n; t / �
�
t C k � 1

k � 1

��
t C n � k � 1

n � k � 1

�
D

�
t C k � 1

k � 1

���
t C n � k

n � k

�
�

�
t C n � k � 1

n � k � 1

��
�

�
t C n � 2

n � 1

�
D

�
t C k � 1

k � 1

��
t C n � k � 1

n � k

�
�

�
t C n � 2

n � 1

�
as desired.

We observe that Q2;n agrees with the basis polytope of the minimal matroid T2;n.
For 1 � ` � n � 1 we now consider the half-open polytope

R`;n WD

(
x 2 �2;n W

X̀
iD1

xi > 1

)
D

(
x 2 �2;n W

nX
iD`C1

xi < 1

)
:

Observe that R1;n agrees with �Q1;n which is the empty polytope. Furthermore, note
that each of the polytopes R`;n can be decomposed as

R`;n D �Q1;n t�Q2;n t � � � t�Q`;n :
For 1 � a � n we define the polynomials

Pa;n WD

aX
kD1

�
t C n � k � 1

n � k

��
t C k � 1

k � 1

�
:

In particular, P0;n WD 0 for all n � 0.
As a direct consequence of Proposition 4.4.4 we obtain the following.
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Corollary 4.4.5 For all 1 � ` � n � 1 the Ehrhart polynomial of R`;n equals

ehr.R`;n; t / D P`;n.t/ � `
�
t C n � 2

n � 1

�
:

We are ready to state a formula for the Ehrhart polynomial of all connected rank 2
matroids.

Theorem 4.4.6 LetM be a connected matroid of rank 2. Suppose thatM has exactly
s hyperplanes of sizes a1; : : : ; as. Then s � 3 and we have

ehr.P.M/; t/ D

�
2t C n � 1

n � 1

�
�

sX
iD1

Pai ;n.t/;

where

Pa;n.t/ WD

aX
kD1

�
t C n � k � 1

n � k

��
t C k � 1

k � 1

�
for 1 � a � n.

Proof. First note that a rank 2 matroid is disconnected whenever it has only s � 2

hyperplanes. Moreover, the ground set of a connected matroid M of rank 2 with s
hyperplanes has at least s � 3 elements, and a connected matroid on n � 2 elements
is loopless. Thus formula (4.19) applies and hence the basis polytope ofM is

P.M/ D

(
x 2 �2;n W

X
i2H

xi � 1 for everyH hyperplane

)
:

Furthermore, the matroid hyperplanes of a loopless rank 2matroid partition the ground
set. Now pick any hyperplane H of cardinality ar . The subset of �2;n that violates
the inequality for H is a copy of Rar ;n after permuting the coordinates. Moreover,
Lemma 4.4.2 shows that a point in�2;n can violate at most one inequality imposed by
a hyperplane.

Therefore, by applying the formulas for the Ehrhart polynomials of Corollary 4.4.5
and for the hypersimplex, we get

ehr.P.M/; t/ D ehr.�2;n; t / �
sX
iD1

ehr.Rai ;n; t /

D

��
2t C n � 1

n � 1

�
� n

�
t C n � 2

n � 1

��
�

sX
iD1

�
Pai ;n.t/ � ai

�
t C n � 2

n � 1

��
D

�
2t C n � 1

n � 1

�
�

sX
iD1

Pai ;n.t/

where in the last step we used a1C� � �Cas D nwhich is satisfied since the hyperplanes
form a partition of the groundset.
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Ehrhart positivity

We are going to prove that all matroids of rank 2 are Ehrhart positive. Our proof rests
on the following superadditivity of the polynomials Pa;n.

Proposition 4.4.7 For all nonnegative integers a; b; n such that aC b � n

Pa;n C Pb;n � PaCb;n :

Moreover, the inequality on the coefficients of positive degree is strict whenever a; b >
0.

Proof. There is nothing to show if a D 0. Thus fix numbers 1 � a � b such that
aC b � n. We are going to prove that

Pa;n C Pb;n � Pa�1;n C PbC1;n: (4.20)

This will prove the claim since applying this inequality a times yields

Pa;nCPb;n � Pa�1;nCPbC1;n � Pa�2;nCPbC2;n � � � � � P0;nCPaCb;n D PaCb;n:

Moreover, our proof will show that in (4.20) the inequality on the coefficients of
positive degree is strict. Inequality (4.20) is equivalent to

Pa;n � Pa�1;n � PbC1;n � Pb;n;

which, by definition, is equivalent to�
t C n � a � 1

n � a

��
t C a � 1

a � 1

�
�

�
t C n � b � 2

n � b � 1

��
t C b

b

�
: (4.21)

Notice that both sides have the common factor
�
tCn�b�2

n�b�1

��
tCa�1

a�1

�
which has nonnegative

coefficients. After canceling this factor and multiplying with the positive number�
b

b�aC1

��
n�a

b�aC1

�
, we obtain the inequality�

t C n � a � 1

b � aC 1

��
b

b � aC 1

�
�

�
t C b

b � aC 1

��
n � a

b � aC 1

�
: (4.22)

Inequality (4.21) is implied by (4.22) using property (4.18). Also, notice that if we
prove that (4.22) is strict for all coefficients, then (4.21) is strict for all coefficients of
positive degree. This is because the polynomial

�
tCn�b�2

n�b�1

��
tCa�1

a�1

�
is a product of t and

a polynomial with positive coefficients.
To prove this, we use the following variables c D n � a and u D b � a C 1.

Since a C b � n we have b � c. Moreover, we have 1 � u � b. Observe that
inequality (4.22) reads �

t C c � 1

u

��
b

u

�
�

�
t C b

u

�� c
u

�
; (4.23)
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after substitution. Observe further that if b D c, then the inequality is automatically
satisfied, and is in fact strict on all coefficients. Assume now that b < c, so that
c � 1 � b. Notice that if we multiply twice with uŠ, the inequality to prove becomes

.t C c � 1/ � � � .t C c � u/ �
bŠ

.b � u/Š
� .t C b/ � � � .t C b � uC 1/ �

cŠ

.c � u/Š
:

which can be rewritten as

.c � u/Š

cŠ
� .t C c � 1/ � � � .t C c � u/ �

.b � u/Š

bŠ
� .t C b/ � � � .t C b � uC 1/:

And this is equivalent to

c � u

c
�

�
t

c � 1
C 1

�
� � �

�
t

c � u
C 1

�
�

�
t

b
C 1

�
� � �

�
t

b � uC 1
C 1

�
:

And since c�1 � b, and c�u
c
< 1, the claim follows from property (4.18) by comparing

the coefficients at each individual factor on the left with the corresponding factor on
the right.

Theorem 4.4.8 LetM be a connected matroid of rank 2 on n elements. Then

ehr.P.T2;n/; t/ � ehr.P.M/; t/ � ehr.P.U2;n/; t/ :

Moreover, the inequalities are strict on the coefficients of positive degree whenever the
matroid M is neither minimal nor uniform. In particular, all the basis polytopes of
matroids of rank 2 matroids are Ehrhart positive.

Proof. The minimal matroid T2;n has exactly three hyperplanes, of cardinalities 1, 1,
and n�2, respectively. The uniformmatroidU2;n, on the other hand, has n hyperplanes
each of cardinality 1.

Since we are under the hypothesis ofM being connected, we know thatM has at
least s � 3 hyperplanes that partition the groundset. Assume that these hyperplanes
have cardinalities a1; : : : ; as. These numbers sum to n.

By using Theorem 4.4.6, after cancelling
�
2tCn�1

n�1

�
and multiplying by �1, the

inequalities to prove read

P1;n C � � � C P1;n„ ƒ‚ …
n summands

�

sX
iD1

Pai ;n.t/ � P1;n C P1;n C Pn�2;n: (4.24)

The left inequality follows directly from the superadditivity in Proposition 4.4.7, since
we may group the summands on the left into groups of sizes a1; : : : ; as and get
the inequality with the expression in the middle. To prove the right inequality, we
proceed by looking at inequality (4.20). Recall that s � 3, so that we can assume
1 � a1 � a2 � a3. By repeatedly applying (4.20) we get

Pa1;n C Pa2;n C Pa3;n � P1;n C Pa1Ca2�1;n C Pa3;n
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� P1;n C P1;n C Pa1Ca2Ca3�2;n:

Using the superadditivity again we arrive at

sX
iD1

Pai ;s � P1;n C P1;n C Pa1Ca2Ca3�2;n C

sX
iD4

Pai ;s � P1;n C P1;n C Pn�2;n;

which completes the proof of the desired inequality. In particular, it follows that all
connected matroids of rank 2 are Ehrhart positive. Moreover, the inequalities given
in (4.24) are strict for the coefficients of positive degree by Proposition 4.4.7. This
proves that the coefficients of the Ehrhart polynomial of a connected rank 2 matroid
M are strictly between those of the minimal and the uniform matroid whenever the
coefficient is not the constant term andM is neither T2;n nor U2;n.





CHAPTER 5
Conjectures and open problems

5.1 The h�-polynomial
In the preceding chapters we have put little to no attention to the h�-polynomial of
matroid polytopes. In [DHK09], apart from the Ehrhart positivity conjecture that we
have disproved, De Loera et al. left another intriguing conjecture that we will now
discuss.

A polynomial p.t/ D
Pd
jD0 ai t

i of degree d is said to be unimodal if there is an
index j such that

a0 � � � � � aj�1 � aj � ajC1 � � � � � ad :

Also, we say that it has no internal zeros if whenever we choose two nonzero coeffi-
cients, say aj and ak with j < k, it holds that all the coefficients ai for j � i � k are
nonzero.

A condition that is stronger than unimodality is the log-concavity. We say that p
defined as above is log-concave if it has no internal zeros and for every j D 1; : : : ; d�1
it holds:

a2j � aj�1ajC1:

Many polynomials that appear naturally in combinatorics have some of the two
above properties. In some cases, it is easier to prove the log-concavity than the
unimodality but, in general terms, both of these two properties are usually hard to
establish.

Let us state the second of De Loera et al.’s conjectures.

Conjecture 5.1.1 The h�-polynomial of the basis polytope of a matroid has unimodal
coefficients.

This conjecture, which has not been proved nor disproved yet, admits a stronger
form, that we will support with many examples and particular cases.

79
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Conjecture 5.1.2 The h�-polynomial of the basis and the independence polytope of a
matroid have real roots.

The fact that our conjecture is indeed stronger than Conjecture 5.1.1 is a conse-
quence of the following well-known result, whose proof can be found for example in
[Brä15].

Proposition 5.1.3 Let p be a polynomial with positive coefficients that has only real
roots. Then p is log-concave and, in particular, it is unimodal.

Many families of polytopes do have h�-polynomials that are real-rooted. For
instance, consider any n-uple of positive integers s D .s1; : : : ; sn/, and the polytope:

Ps D

�
x 2 Rn W 0 �

x1

s1
�
x2

s2
� � � � �

xn

sn
� 1

�
:

Such a polytope is called an s-lecture hall polytope. It can be proved that it has
integral vertices. Moreover, in [SV15] Savage and Visontai proved

Theorem 5.1.4 The h�-polynomials of all s-lecture hall polytopes are real-rooted.

Another example of polytopes with such property is that of zonotopes. Consider a
list of integer vectorsL D fv1; : : : ; vmg � Rn, and let Z � Rn be the polytope defined
by:

Z D

(
mX
iD1

�ivi W 0 � �i � 1 for all i

)
:

A polytope as above is what we call a zonotope.

Theorem 5.1.5 All integral zonotopes are Ehrhart positive and h�-real-rooted.

For a proof of the Ehrhart positivity, one can read [DM12] by D’Adderio andMoci,
whereas the proof of the h�-real-rootedness is due to Beck, Jochemko andMcCullough
and can be found in [BJM19].

A particulary interesting zonotope that is worth-mentioning is precisely the regular
permutohedron, i.e. the convex hull of all the points inRn of the form .�.1/; : : : ; �.n//
for the nŠ permutations � 2 Sn.

Evidence for the real-rootedness conjecture

As a corollary of a result proved by Wagner in [Wag92] we have the following:

Proposition 5.1.6 Let P1 and P2 be two lattice polytopes. If P1 and P2 are h�-real-
rooted, then P1 � P2 is h�-real-rooted.

A natural consequence of this and Proposition 1.2.7 is that we can restrict ourselves
again only to connected matroids to attack Conjecture 5.1.2.
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Theorem 5.1.7 The following polytopes are h�-real-rooted.

(a) P.Tk;n/ for all minimal matroids Tk;n.

(b) PI.Tk;n/ for 1 � k � n � 200

(c) P.Uk;n/ and PI.Uk;n/ for all 1 � k � n � 200.

(d) P.M/ and PI.M/ for all sparse paving matroids of rank 2.

(e) P.M/ and PI.M/ for all matroids with 9 or less elements.

(f) P.M/ and PI.M/ for all sparse paving matroids with at most 30 elements.

(g) P.M/ for all matroidsM of rank 2 and at most 35 elements.

Proof. We have already stated (a) as Corollary 4.1.11. To prove (b) and (c) we use
a computer and our explicit formulas of the Ehrhart polynomials of such polytopes;
for PI.Tk;n/ it is necessary to use the fact that Tk;n is obtained by relaxing a circuit-
hyperplane on the matroid Uk�1;k ˚U1;n�k, and Corollary 4.1.17. The proof of (d) is
ad-hoc and is included below. For (e) we employed a database of matroids and the use
of a computer. To prove (f) we use a computer and the upper bound for the number of
circuit-hyperplanes of a sparse-paving matroid given by Lemma 4.3.8. To prove (g),
we rely on the fact that connected matroids of rank 2 and n elements are in bijection
with partitions of the set f1; : : : ; ng into at least 3 parts, and that Theorem 4.4.6 gives
us a formula for the Ehrhart polynomial by knowing the cardinalities of the parts.

Part of the proof of (d) was pointed out to the author by Fedor Petrov, in the platform
MathOverflow. It is very ad-hoc in nature, and heavily relies on a very explicit formula
that exists for h�.�2;n; x/. Before giving the proof we observe the following.

Remark 5.1.8. Whenever M is a sparse paving matroid of rank 2 with � circuit-
hyperplanes, it holds � � bn

2
c. Indeed, by the equivalences of Theorem 4.2.6, the

Johnson graph J.n; 2/ has as set of vertices all the 2-subsets of f1; : : : ; ng. A stable
subset of this graph corresponds with a way of choosing 2-subsets of f1; : : : ; ng in such
a way that are pairwise disjoint. If there were more than bn

2
c such sets, there would be

at least nC 1 elements in total, which is a contradiction.

Proof of (d) in Theorem 5.1.7. By using Corollary 4.1.19, we obtain that whenever
M is a sparse paving matroid of rank k, cardinality n and having exactly � circuit-
hyperplanes, then

h�.P.M/; x/ D h�.�k;n; x/ � �x � h
�.P.Tk;n/; t/

h�.PI.M/; x/ D h�.PI.Uk;n/; x/ � �x � h
�.P.Tk;nC1/; t/

By using the formulas of Theorem 3.1.1 and Theorem 3.4.1, we readily see that the
Ehrhart polynomials of �2;n and PI.U2;n/ can be written as follows

ehr.�2;n; t / D
�
2t C n � 1

n � 1

�
� n

�
t C n � 2

n � 1

�
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ehr.PI.U2;n/; t/ D

�
2t C n

n

�
� n

�
t C n � 1

n

�
:

By using a combinatorial identity, it can be proved that

h�.�2;n; x/ D �nx C

bn
2
cX

jD0

�
n

2j

�
xj D �nx C

.1C
p
x/n C .1 �

p
x/n

2
:

Also, by looking at the above formulas, it is possible to see that

h�.PI.Uk;n/; x/ D h
�.�2;nC1; x/C x:

Recall that in Theorem 4.1.11 we established a formula for the h�-polynomial of
the basis polytope of Tk;n. When the rank k D 2, it assumes a very simple form:

h�.P.T2;n/; x/ D .n � 3/x C 1:

Putting all this pieces together, we obtain

h�.P.M/; x/ D ��.n � 3/x2 � .�C n/x C
.1C

p
x/n C .1 �

p
x/n

2

h�.PI.M/; x/ D ��.n � 2/x2 � .�C n/x C
.1C

p
x/nC1 C .1 �

p
x/nC1

2

From now on, we will focus only on the h�-polynomial of P.M/. The proof for the
independence polytope carries out exactly the same way, by just being careful with the
shifting in some of the coefficients. What we have to prove is that h�.P.M/; x/ has
b
n
2
c negative roots. By writing x D � tan2 � for 0 � � < �=2, and using the identity

.1C i tan �/n C .1 � i tan �/n

2
D
.cos � C i sin �/n C .cos � � i sin �/n

2 cosn t

D
ein� C e�in�

2 cosn �

D
cosn�
cosn �

we can change our h�-polynomial into:

h�.P.M/;� tan2 �/ D ��.n � 3/ tan4 � C .�C n/ tan2 � C
cosn�
cosn �

D
��.n � 3/ sin4 � cosn�4 � C .�C n/ sin2 � cosn�2 � C cosn�

cosn �
:

The denominator is clearly positive for 0 < � < �=2. Let us analyze the numerator.
What we will prove is that evaluating it at the points �j D j �

n
for j D 0; 1; : : : ; bn

2
c

gives us values that alternate in sign. This will conduct us to the result, by a mere
application of the intermediate value theorem (notice that it shall be impossible to
evaluate in �

2
, but this is aminor issue that can be resolved by evaluating in a sufficiently
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close point, by continuity). To prove that it alternates in sign, first observe that
cos.n�j / D 1 whenever j is even and equals �1 whenever j is odd, so that we can
focus on the following expression

��.n � 3/ sin4 � cosn�4 � C .�C n/ sin2 � cosn�2 �:

By using the variable y D cos � , we can rewrite this as follows

f .y/ D ��.n � 3/.1 � y2/2yn�4 C .�C n/.1 � y2/yn�2:

Our claim is that �1 < f .y/ < 1 for all 0 � y � 1. Observe that this implies that
the numerator of the expression for the h�-polynomial alternates in sign for the �j ’s,
because the summand cosn� will be 1 or �1 and the remaining terms will not add up
a value of enough size to change the sign.

We have reduced the problem of proving the real-rootedness of h�.P.M/; x/ to
an elementary problem of maxima and minima for the differentiable function f in
the compact interval Œ0; 1�. What follows is the proof of both the upper and the lower
bounds. We warn the reader that although the expression for f is a polynomial,
achieving these tight bounds is somewhat tricky and requires some clever manipula-
tions. Recall that by Remark 5.1.8 we have that � � bn

2
c, as this will be used several

times in what follows.
To bound f we will use the following factorization:

f .y/ D yn�4.1 � y2/
�
��.n � 3/.1 � y2/C .�C n/y2

�
D yn�4.1 � y2/

�
y2 �

.n � 3/�

nC .n � 2/�

�
.nC .n � 2/�/: (5.1)

Let us prove first that the maximal value of f for y 2 Œ0; 1� is less than 1. Observe
that the first, the second and the fourth factors are nonnegative, so that we may restrict
ourselves to values of y such that the third factor is positive too. Let us consider some
cases:

� Assume that 0 � � < 7
20
n. The reason of the strange constant 7

20
is that it

provides a somewhat good approximation of e
2
� 1 with small numerator and

denominator. Consider the factors yn�4.1� y2/. By differentiating, we can see
that its maximum is achieved at y0 D

q
1 � 2

n�2
. Hence:

f .y/ � yn�40 .1 � y20/

�
y2 �

.n � 3/�

nC .n � 2/�

�
.nC .n � 2/�/

D

�
1 �

2

n � 2

�n�4
2 2

n � 2

�
y2 �

.n � 3/�

nC .n � 2/�

�
.nC .n � 2/�/

�

�
1 �

2

n � 2

�n�4
2 2

n � 2

�
12 �

.n � 3/�

nC .n � 2/�

�
.nC .n � 2/�/

D

�
1 �

2

n � 2

�n�4
2 2

n � 2
� .nC �/
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<

�
1 �

2

n � 2

�n�4
2 2

n � 2
�
27n

20

Notice that the factor
�
1 � 2

n�2

�n�4
2 converges to e�1 � 0:3678. In fact, for

n � 177, it is
�
1 � 2

n�2

�n�4
2 < 37

100
. So that for such values of n, we have:

f .y/ <
37

100
�

1

n � 2
�
54n

20
D
1998

2000

n

n � 2

and adding the condition n � 2000. In fact,
�
1 � 2

n�2

�n�4
2 2

n�2
�
27n
20

is smaller
than one for all n � 447. It is also possible to verify with a computer that for
n � 446 and 0 � � � 7n

20
, indeed f is bounded by above by 1.

� Let us assume now that 7n
20
� � � n

2
. We analyze two subcases now.

– Assume 1 � y2 < 1
nC�

. Then, we have the chain of inequalities:

f .y/ < yn�4
1

nC �

�
y2 �

.n � 3/�

nC .n � 2/�

�
.nC .n � 2/�/

� 1 �
1

nC �

�
1 �

.n � 3/�

nC .n � 2/�

�
.nC .n � 2/�/

D
1

nC �
� .nC �/

D 1:

– Assume 1 � y2 � 1
nC�

. Since we needed the positivity for the third factor
in (5.1), we have to look at f in the following interval

.n � 3/�

nC .n � 2/�
� y2 � 1 �

1

nC �
: (5.2)

Using this, we obtain:

f .y/ � yn�4.1 � y2/

�
1 �

1

nC �
�

.n � 3/�

nC .n � 2/�

�
.nC .n � 2/�/

D yn�4.1 � y2/

�
nC � �

nC .n � 2/�

nC �

�
D yn�4.1 � y2/.nC �/ � yn�4.1 � y2/

nC .n � 2/�

nC �
(5.3)

Let us call f1.y/ D yn�4.1 � y2/.n C �/ and f2.y/ D yn�4.1 �

y2/nC.n�2/�
nC�

. We will maximize f1 and minimize f2 in the interval of
equation (5.2). It suffices to show that the difference between that maxi-
mum and that minimum is less than one and the proof will be complete.
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To maximize f1 we proceed by differentiating as we did in the first case.
We obtain:

f1.y/ �

�
1 �

2

n � 2

�n�4
2

�
2

n � 2
� .nC �/

�

�
1 �

2

n � 2

�n�4
2

�
2

n � 2
�
3n

2
(5.4)

�
37

100
�
3n

n � 2
(5.5)

D
111

100
�
n

n � 2

�
111

100
�
2000

1998

D 1:1122 : : :

where, as in the first case, we used the bounds that come from n � 2000.
Moreover, the expression on equation (5.4) is already less than 1:1122 : : :
for all n � 390.
To minimize f2, we observe that up to multiplication by a constant, f2 and
f1 are the same function. Both of these functions only have one critic point
in the interval (5.2), that corresponds to a maximum. Hence, the minimum
of f2 is attained at one of the two extremes of the interval.

I If y D
q
1 � 1

nC�
. We obtain:

f2.y/ D

�
1 �

1

nC �

�n�4
2

�
1

nC �
�
nC .n � 2/�

nC �

�

 
1 �

1

nC 7n
20

!n�4
2

�
1

nC n
2

�
nC .n � 2/7n

20

nC n
2

D

 
1 �

1

nC 7n
20

!n�4
2

�
4

9n

�
1C .n � 2/

7

20

�
� e�

2
1C7=20 �

28nC 24

45n

> e�
2

1C7=20 �
28

45

D 0:14143 � � �

I If y D
q

.n�3/�

nC.n�2/�
. We obtain:

f2.y/ D

�
.n � 3/�

nC .n � 2/�

�n�4
2
�

nC �

nC .n � 2/�

�
nC .n � 2/�

nC �

D

�
.n � 3/�

nC .n � 2/�

�n�4
2
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D

�
1 �

�C n

nC .n � 2/�

�n�4
2

�

 
1 �

n
2
C n

nC .n � 2/7n
20

!n�4
2

D

�
1 �

20=7 � 3=2

20=7C .n � 2/

�n�4
2

� e�
3
4
� 20

7

D 0:117319 : : :

Now it is clear that the maximum of f1 is at most 1:112 and the minimum
of f2 is at least 0:117. Hence, the maximum value of f D f1 � f2 in the
interval defined in (5.2) is less than 0:995 < 1, as desired.

So far we have proved that f .y/ < 1 for all y 2 Œ0; 1�. It remains to prove that
f .y/ > �1 in this interval. Observe that now we have to focus only on values such
that the third factor in (5.1) is negative. In other words, by changing its sign, we have
to maximize

g.y/ D yn�4.1 � y2/

�
.n � 3/�

nC .n � 2/�
� y2

�
.nC .n � 2/�/

in the interval
h
0;
q

.n�3/�

nC.n�2/�

i
.

Let us factor g.y/ D u1.y/ � u2.y/ � .nC .n � 2/�/, with:

u1.x/ D y
n�4

2 .c � y2/

u2.x/ D y
n�4

2 .1 � y2/

where we use the shorthand c D .n�3/�

nC.n�2/�
. We can bound u1 by find its maximum via

differentiating and equating to zero. In fact u01.x/ D c n�4
2
y

n�6
2 �

n
2
y

n�2
2 yields that

the maximum is achieved at y2 D c
�
1 � 4

n

�
. Hence:

u1.x/ � c
n�4

4

�
1 �

4

n

�n�4
4

c
4

n

< c
n
4
2

n

where we used that the term
�
1 � 4

n

�n�4
4 is less than 1

2
for n > 10 (in fact, it converges

to e�1). By doing the same with u2, we obtain:

u2.x/ <
2

n
;

and combining all of our results, what we obtain is:

f2.x/ D u1.y/u2.y/ � .nC .n � 2/�/
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< c
n�2

4
4

n2
.nC .n � 2/�/

� c
n
4
4

n2
�

�
nC .n � 2/

n

2

�
D c

n
4 � 2

D

�
.n � 3/�

nC .n � 2/�

�n�2
4

� 2

�

�
.n � 3/�

2�C .n � 2/�

�n�2
4

� 2

D

�
1 �

3

n

�n�2
4

� 2

< 1;

where in the last step we used that
�
1 � 3

n

�n�2
4 < 1

2
for n > 10, provided that this

term converges to e�3=4 � 0:472 < 1
2
. To finish the proof, we take care of the

fact of checking that our claim on the cases n � 446. We have verified this with a
computer.

5.2 Open problems
In this final section we collect several open problems and conjectures that may lead to
further understanding of the Ehrhart theory of matroids. They are not intended as a
comprehensive collection of open problems but rather some directions of research that
we believe might very well be pursued.

Weighted Lah Numbers

We start with a conjecture that has been checked for several values using a computer.
It is interesting as it provides a certain understanding of the weighted Lah numbers,
which were the key to prove the Ehrhart positivity of hypersimplices.

Conjecture 5.2.1 The polynomial Cn;m defined by

Cn;m.x/ D

n�m�1X
`D0

W.`; n;mC 1/x`;

has all of its complex roots lying on the unit circle.

In Chapter 3 we obtained a formula for the coefficients of the Ehrhart polynomial
of the hypersimplex. Our formula is manifestly positive and combinatorial. A question
that arises is the following: is it possible to interpret these coefficients as the solution
to a “nice” combinatorial problem?
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Open Problem 5.2.2 Find a combinatorial interpretation for the quantity:

k�1X
`D0

W.`; n;mC 1/A.m; k � ` � 1/:

Ehrhart coefficients

We restate here Conjecture 4.0.1, which initially motivated us to take a look at minimal
matroids. Although minimal matroids were studied first as potential candidates to
realise the minimum coefficient-wise Ehrhart polynomial for connected matroids of
fixed rank and cardinality, at the end of the story, they do not satisfy that property
after all. This is because we have seen that P.Tk;n/ is Ehrhart positive, whereas there
are basis polytopes of matroids with negative Ehrhart coefficients. Nevertheless, the
upper-bound conjecture still stands.

Conjecture 5.2.3 IfM is a connected matroid of rank k and cardinality n, then

� ehr.P.M/; t/ is coefficient-wise smaller than ehr.�k;n; t /.

� ehr.PI.M/; t/ is coefficient-wise smaller than ehr.PI.Uk;n/; t/.

We recall that this Conjecture has been proved for all sparse paving matroids and
for all rank 2 matroids. Observe that it is not even clear that the Ehrhart polynomial
of the basis polytope of the minimal matroid Tk;n is coefficient-wise smaller than the
Ehrhart polynomial of the hypersimplex �k;n.

Also, we take the opportunity to state the following problem which might be
difficult to address without the help of a computer (and maybe still very hard with the
help of a computer).

Open Problem 5.2.4 Is there any matroidM of cardinality 18 such that P.M/ is not
Ehrhart positive?

Recall that we proved that there are non Ehrhart positive matroids for each cardi-
nality starting from 19. Also, we proved that for sparse paving matroids with 17 or
less elements, the Ehrhart coefficients are always positive.

Triangulations and Positroids

A fact that is intimately related with the h�-polynomials is the existence of unimodular
triangulations, i.e. a division of the polytope into simplices of unit volume. Not every
polytope admits such a triangulation, but when it does, the h�-vector of the polytope
coincides with the h-vector of the triangulation (for a proof, see [BR15]). It has been
proved that in many instances the basis polytope of a matroid admits a unimodular
triangulation and, moreover, a regular unimodular triangulation, i.e. a triangulation
that is obtained by first lifting the vertices of the polytope to generic heights and then
taking the triangulation induced by the lower facets of the lifted polytope.
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Conjecture 5.2.5 IfM is a matroid then P.M/ and PI.M/ admit regular unimodular
triangulations.

A version of this conjecture was stated in [Haw09] and in [Bra16]. There are some
matroids for which the above conjecture is known to be true. In particular, hypersim-
plices have such property [Sta77]. Li [Li12] and by Early and Kim [Ear17, Kim20]
to give combinatorial interpretations of the h�-polynomial of all hypersimplices. A
natural question is if it is possible to deduce our formula for the coefficients of the
Ehrhart polynomial using such triangulations.

Open Problem 5.2.6 Derive a geometric proof of Theorem 3.3.3.

An important property of hypersimplices that captures the fact that they have such
a nice triangulation is that they belong to another very interesting general class of
polytopes.

Definition 5.2.7. A polytope P � Rn is said to be an alcoved polytope if it can be
described as:

P D

�
x 2 Rn W ˛i � xi � ˇi for 1 � i � n

˛ij � xi C � � � C xj � ˇij for 1 � i < j � n

�
;

for some ˛i ; ˇi ; ˛ij ; ˇij 2 Z.

A basic property of alcoved polytopes is that they are always lattice polytopes.
They were introduced by Lam and Postnikov in [LP07]. Their original definition is
slightly different but essentially equivalent to the above. We state now a fundamental
characteristic of alcoved polytopes.

Theorem 5.2.8 If P is an alcoved polytope, then it admits a regular unimodular
triangulation.

This motivates us to look more closely into the class of alcoved polytopes that
are the basis polytope of some matroid. Matroids whose basis polytope is an alcoved
polytope are called positroids, [Pos06, Oh11, ARW16]. Again, this was not the
original definition of positroids given in [Pos06], but it is equivalent to that. The class
of positroids is contained in the class of representable matroids and contains all lattice
path matroids.

Open Problem 5.2.9 Extend Li and Kim’s results to all positroids and, if possible,
deduce a formula as Theorem 3.3.3 for all positroids.

A fact that follows readily from our definition of positroid is that all matroids of
rank 2 are positroids. Also, as we mentioned before, all hypersimplices are positroids
(this is a bit easier to verify). We conjecture that positroids are Ehrhart positive.

Conjecture 5.2.10 LetM be a positroid. ThenP.M/ andPI.M/ are Ehrhart positive.
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Given the fact that we mentioned regular unimodular triangulations, it is important
to say that another well-known consequence of having regular unimodular triangula-
tions is a partial h�-unimodality.

Theorem 5.2.11 (Athanasiadis - Hibi - Stanley) Let P be a lattice polytope of dimen-
sion n admitting a regular unimodular triangulation. Then its h�-vector satisfies the
following inequalities

h�
bnC1

2 c
� � � � � h�n�1 � h

�
n:

h�i � h
�
nC1�i for all i D 0; : : : ;

�
nC1
2

˘
:

h�i �

�
h�1 C i � 1

i

�
for all i D 0; : : : ; n:

For a proof of this and other related results, see [Ath04]. In [BR07] Bruns and
Römer proved that whenever a lattice polytope is Gorenstein, i.e. it has a symmetric
h�-vector and a regular unimodular triangulation, then it is unimodal. Recently in
[HLMC21] Hibi et al. gave a characterization of all graphic matroids with symmetric
h�-vector. Their result was extended by Lasoń and Michałek [LM20], and they were
able to characterize all matroids with an independence or a basis polytope with a
symmetric h�-vector.

In particular, by combining some of the above results it is possible to see that all
positroidswith aGorenstein basis polytope have a unimodalh�-vector. As an extremely
particular case, this allows us to recover a result by De Negri and Hibi [DH97] that
establishes that all hypersimplices of the form �n;2n have unimodal h�-vectors.



APPENDIX A
Combinatorial identities and related

results

Wehave collected in this final section some combinatorial results that are used through-
out several proofs.

Lemma A.0.1 (Hockey-Stick identity)

mX
jD0

�
r C j

j

�
D

�
r CmC 1

r C 1

�
:

Lemma A.0.2 (Vandermonde’s Identity)

mX
jD0

�
r

j

��
s

m � j

�
D

�
r C s

m

�
:

Proposition A.0.3 Let n and c1 � : : : � ck be nonnegative integers such that n �Pk�1
iD1 ci . The number of ways N of putting exactly n indistinguishable balls into k

distinguishable boxes of capacities c1; c2; : : : ; ck is given by:

N D

 
k � 1C

Pk
iD1 ci � n

k � 1

!
:

Proof. Note that instead of thinking of putting balls in a box, we can think of leaving
free space in a box.

The sum of free spaces in any possible distribution will be exactly
Pk
iD1 ci � n.

Thus we have to assign free spaces f1; : : : ; fk to every box in such a way that their
sum is:

f1 C : : :C fk D

kX
iD1

ci � n;

91
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and we are given the constraint 0 � fi � ci , of which the inequalities fi � ci are
superfluous since the constraints fi � 0 for all i (it is, all of them) already imply that

fi �

kX
iD1

ci � n � ck � ci :

Hence we just have to count the number of ways to put
Pk
iD1 ci � n indistinguishable

balls into k distinguishable boxes, which gives the desired result.

Lemma A.0.4 (Surányi’s Identity)�
r C j

r

��
s C j

s

�
D

X
k

� r
k

� � s
k

��j C r C s � k
r C s

�
Proof. See [Szé85, Corollary 2].

Lemma A.0.5 (Double Hockey-Stick Identity)

mX
jD0

�
r C j

j

��
s C j

j

�
D

X
k

� r
k

� � s
k

��r C s C 1Cm � k
r C s C 1

�
Proof. We proceed using Surányi’s Identity:

mX
jD0

�
r C j

j

��
s C j

j

�
D

mX
jD0

�
r C j

r

��
s C j

s

�
D

mX
jD0

sX
kD0

� r
k

� � s
k

��j C r C s � k
r C s

�
D

sX
kD0

� r
k

� � s
k

� mX
jD0

�
j C r C s � k

r C s

�
D

mX
kD0

� r
k

� � s
k

��r C s C 1Cm � k
r C s C 1

�
;

where in the last step we used the Hockey-Stick identity.
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